PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 5 SOLUTION

Exercise 1 (Héolder inequality). The so-called Holder inequality which states
that for for (measurable) set E < R” and any f € LP (E) and g € L9 (E)
where p and g Hélder conjugate, i.e. p,g € [1,00] and 1/p+1/g =1 we
have tha]

[, gl =]l el

where L? (E) is defined like L? (R") where the set on which we integrate is
E instead of R".

(i) Prove Holder inequality when E = R"”, p = co and g = 1. You may
assume that f is bounded on R” (and as such use sup instead of
esssup).

(ii) Show thatif f € C,(R") and g € LP (R") then there exists a compact
set K < R” such that

X 1
S p
fRn|f(x)g(x)|de||f||Loo|K|q(fK|g(x)|pdx) .

(iii) Use Holder inequality to show thatif f € L” (R") and g € LY (R™) with
p and g Holder conjugates we have that

EBRQ |f* g(x)| = ”f* g”LOO(R") = ”fHU’(IR") ”gHM([R”)'

Solution. (i) We have that
‘[Rn|f(x)g(x)|dx§fw (suug|f(x)|)|g(x)|dx: ||f||LOO(Rn)fRn|g(x)|dx

= ||f||L°°([R”) ”g”Ll([R")’
which is the desired inequality.
(ii) Since f € C.(R") we know that there exists a compact set K c R"
such that f|xc =0 and that || f ||Oo < 0co. We conclude that

| lrwgwlax=[ |fogwldrs |l [ lgeolde= |1l [ 1lgw]dx
R K K K

10ne particular case that is worth to mention is when p = g = 2. This case is the
famous Cauchy-Schwarz inequality and it reads as

fE|f(x)g(x)|dxs(fE|f(x)|2dx);([E|g(x)|2dx);
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1
1
< Ul b I v = 1A 160 [ g0l ax)
(iii) We have that

fRnf(x— gy dy

|f=g0)|=
Since

1
. _) g lfx=-p|Pdy)?, pell,oo),
”f(x )“LP(Rn) { essSup e |f(x— y)l’ p =00,

< | =gy = 1£ =9 g 18] ogery

1
p 21
:{ (fen|[f @] d2)?, pell,o0), :”f“LP(IR")

esSSup ,cpn |f(z)| , P =00,

we conclude the desired result.

Exercise 2 (Poincaré-like inequalities).

(i) Using the formula
X
f(x)—f(y):f f(s)ds,
y

which holds for any C! function on an interval that contains x and
¥, together with Holder’s inequality show that for any Hélder conju-
gates p and ¢, any f € C!(la, b)), and any c € [a, b] we have that

1
sup |f(0)=f©| =@ || 1oam

x€la,b]

where ¢ is the Holder conjugate of p.
(ii) Conclude that for any p € [1,00] and r € [1,00), any f € C! ([, b]),
and any c € [a, b] we have that

1
b T
Ua 1FW-F@] dx| == || 1ran-

or equivalently

1,1
I/ = F@Nirarn s =07 |l srgan)-

Note that due to our previous sub-question the above remains true
when r = co.

(iii) Use sub—question to conclude that for any f € C! ([a, b]) and any
p € [1,00] we have

|r-7

LPUab) B =) || £l 1o a1
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where
_ 1 b
=— (s)ds.
Feg—| 1

(iv) Use sub—question@to conclude that forany f € C 1([a, b)) such that
f(c)=0forsome ce€ [a, b] and any p € [1,00] we have

”f”LP([a,b]) =(b-a ”fI”LP([a,b])‘

Solution.
We have

x X X b

f f'(s)ds sf |f’(s)|ds:f 1.|f’(s)|dssf 1| f'(s)| ds.
C C c a

Using Holder inequality we find that

|f(x) - flo)] =

1
|f(x) —f(c)| < 111l zaia b ”f,”LP([a,b]) =(b-a) ”f’”LP([a,b])'
(i) Since

b " b r
f |f(x)—f(c)|’dxs( sup |f(x)—f(c)|) f ldx:(b—a)( sup |f(x)—f(c)|)
a x€la,b) a x€la,b)

we conclude from the previous sub-question that

b ¥
(f |f(x)—f(c)|’) dx<(b-a) sup |f0) - f©o)

x€la,b)
1.1
<sb-a7 " |f ”LP([a,b])
which is the desired result.

(iii) The mean value theorem for integrals says that for any two contin-

uous functions on [a, b], f and g, we have that there exists c € [a, b]
such that

b b
f fogx)dx = f(c)f g(x)dx.
a a
Choosing g = 1 we find that there exists c. € [a, b] such that

b
Sfdx 1 P -
Ju S = fx)dx=f.
b b—
[, ldx aJa

plugging that into sub-question[iijwith r = p gives the desired result.
(iv) Similarly, choosing ¢ = a and r = p in sub-question [ii] gives us the
desired result.

f(c*) =

O

Exercise 3 (The Poincaré constant,).
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(i) Let Q be an open bounded domain in R” with smooth boundary.

(1)

2)

(ii)

Consider the PDE

—Au(x) =Aulx) inQ,
u(x)=0 onoQ,

where u € C? (5) and A € R. By multiplying the above by u and inte-
grating by parts show that if u # 0 we have that

f IVu(x)|?dx
_Jo

f u?(x)dx
Q

This is known as the Rayleigh quotient formula for the eigenvalue A
in terms of the eigenfunction u.

Remark: This procedure, where we multiplied by a function, in-
tegrated, and recovered a functional that helps us understand our
equation better is known as the energy method (the functional we
found is our “energy”). This is an important method which will re-
peat in this module.

Remark: We could allow u to have values in C. In that case we would
multiply our PDE with u and conclude that

A =>0.

[qu(x)lzdx
_Ja
flu(x)lz dx
Q

Show that any A that satisfies our PDE must satisfy

A > 0.

1

A= —
Ch

where Cp is the Poincaré inequality that is associated to (2 and the
Dirichlet boundary condition, i.e. the best constant for which

flu(x)lzdxscl%f IVu(x)l? dx.
Q Q

Remark: The above implies that

] 1
min Az=—.
eigenvalues C >
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One can in fact show that there is equality in the above. This is con-
nected to minimising the energy

IVu(x)|>dx
Elu] = =2

f lv(x)|? dx
Q

over an appropriate space of functions.
Solution.

(i) Multiplying our equation by © and integrating we find that

—f u(x)Au(x)dx:)Lf u?(x)dx.
Q Q

Since
div(u(x)Vu(x)) = IVu(x)I2 + u(x)Au(x)
we conclude that

—f u(x)Au(x)dx:f IVu(x)Izdx—f div(u(x)Vu(x)) dx
Q Q Q

:f IVu(x)Izdx—f u(y)Vu(y)~n(y)dS(y):f IVu(x)|> dx
Q 0Q Q

where we have used the fact that u|3q = 0. We conclude that
f IVu(x)|?dx = /1[ u?(x)dx
Q Q

which is the desired result.
(ii) We know that any u which is C! and is zero on the boundary satisfies

f lu(x)? dx < Cf,f IVu(x)? dx
Q Q
and as such
JolVu@)Pdx 1
folu?  —C3
This implies that if u solves our PDE and u # 0 then
_JolVu®@Pdx 1
foluxP?  —c&



