
PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 5 SOLUTION

Exercise 1 (Hölder inequality). The so-called Hölder inequality which states
that for for (measurable) set E ⊆ Rn and any f ∈ Lp (E) and g ∈ Lq (E)
where p and q Hölder conjugate, i.e. p, q ∈ [1,∞] and 1/p +1/q = 1 we
have that1 ∫

E

∣∣ f (x)g (x)
∣∣d x ≤ ∥∥ f

∥∥
Lp (E)

∥∥g
∥∥

Lq (E) .

where Lp (E) is defined like Lp (Rn) where the set on which we integrate is
E instead of Rn .

(i) Prove Hölder inequality when E = Rn , p = ∞ and q = 1. You may
assume that f is bounded on Rn (and as such use sup instead of
esssup).

(ii) Show that if f ∈ Cc (Rn) and g ∈ Lp (Rn) then there exists a compact
set K ⊂Rn such that∫

Rn

∣∣ f (x)g (x)
∣∣d x ≤ ∥∥ f

∥∥
L∞ |K | 1

q

(∫
K

∣∣g (x)
∣∣p d x

) 1
p

.

(iii) Use Hölder inequality to show that if f ∈ Lp (Rn) and g ∈ Lq (Rn) with
p and q Hölder conjugates we have that

sup
x∈Rn

∣∣ f ∗ g (x)
∣∣= ∥∥ f ∗ g

∥∥
L∞(Rn ) ≤

∥∥ f
∥∥

Lp (Rn )

∥∥g
∥∥

Lq (Rn ) .

Solution. (i) We have that∫
Rn

∣∣ f (x)g (x)
∣∣d x ≤

∫
Rn

(
sup
x∈Rn

∣∣ f (x)
∣∣)∣∣g (x)

∣∣d x = ∥∥ f
∥∥

L∞(Rn )

∫
Rn

∣∣g (x)
∣∣d x

= ∥∥ f
∥∥

L∞(Rn )

∥∥g
∥∥

L1(Rn ) ,

which is the desired inequality.
(ii) Since f ∈ Cc (Rn) we know that there exists a compact set K ⊂ Rn

such that f |K c = 0 and that
∥∥ f

∥∥∞ <∞. We conclude that∫
Rn

∣∣ f (x)g (x)
∣∣d x =

∫
K

∣∣ f (x)g (x)
∣∣d x ≤ ∥∥ f

∥∥
L∞

∫
K

∣∣g (x)
∣∣d x = ∥∥ f

∥∥
L∞

∫
K

1
∣∣g (x)

∣∣d x

1One particular case that is worth to mention is when p = q = 2. This case is the
famous Cauchy-Schwarz inequality and it reads as∫

E

∣∣ f (x)g (x)
∣∣d x ≤

(∫
E

∣∣ f (x)
∣∣2 d x

) 1
2
(∫

E

∣∣g (x)
∣∣2 d x

) 1
2

1
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≤ ∥∥ f
∥∥

L∞ ∥1∥Lq (K )

∥∥g
∥∥

Lp (K ) =
∥∥ f

∥∥
L∞ |K | 1

q

(∫
K

∣∣g (x)
∣∣p d x

) 1
p

.

(iii) We have that∣∣ f ∗ g (x)
∣∣= ∣∣∣∣∫

Rn
f (x − y)g (y)d y

∣∣∣∣≤ ∫
Rn

∣∣ f (x − y)g (y)d y
∣∣≤ ∥∥ f (x −·)∥∥Lp (Rn )

∥∥g
∥∥

Lq (Rn ) .

Since∥∥ f (x −·)∥∥Lp (Rn ) =
{ (∫

Rn

∣∣ f (x − y)
∣∣p d y

) 1
p , p ∈ [1,∞),

esssupy∈Rn

∣∣ f (x − y)
∣∣ , p =∞,

=
{ (∫

Rn

∣∣ f (z)
∣∣p d z

) 1
p , p ∈ [1,∞),

esssupz∈Rn

∣∣ f (z)
∣∣ , p =∞,

= ∥∥ f
∥∥

Lp (Rn )

we conclude the desired result.
□

Exercise 2 (Poincaré-like inequalities).

(i) Using the formula

f (x)− f (y) =
∫ x

y
f ′(s)d s,

which holds for any C 1 function on an interval that contains x and
y , together with Hölder’s inequality show that for any Hölder conju-
gates p and q , any f ∈C 1 ([a,b]), and any c ∈ [a,b] we have that

sup
x∈[a,b]

∣∣ f (x)− f (c)
∣∣≤ (b −a)

1
q
∥∥ f ′∥∥

Lp ([a,b]) ,

where q is the Hölder conjugate of p.
(ii) Conclude that for any p ∈ [1,∞] and r ∈ [1,∞), any f ∈ C 1 ([a,b]),

and any c ∈ [a,b] we have that(∫ b

a

∣∣ f (x)− f (c)
∣∣r d x

) 1
r

≤ (b −a)
1
q + 1

r
∥∥ f ′∥∥

Lp ([a,b]) .

or equivalently∥∥ f − f (c)
∥∥

Lr ([a,b]) ≤ (b −a)
1
q + 1

r
∥∥ f ′∥∥

Lp ([a,b]) .

Note that due to our previous sub-question the above remains true
when r =∞.

(iii) Use sub-question ii to conclude that for any f ∈ C 1 ([a,b]) and any
p ∈ [1,∞] we have∥∥∥ f − f

∥∥∥
Lp ([a,b])

≤ (b −a)
∥∥ f ′∥∥

Lp ([a,b])
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where

f = 1

b −a

∫ b

a
f (s)d s.

(iv) Use sub-question ii to conclude that for any f ∈C 1 ([a,b]) such that
f (c) = 0 for some c ∈ [a,b] and any p ∈ [1,∞] we have∥∥ f

∥∥
Lp ([a,b]) ≤ (b −a)

∥∥ f ′∥∥
Lp ([a,b]) .

Solution.
We have∣∣ f (x)− f (c)

∣∣= ∣∣∣∣∫ x

c
f ′(s)d s

∣∣∣∣≤ ∫ x

c

∣∣ f ′(s)
∣∣d s =

∫ x

c
1·∣∣ f ′(s)

∣∣d s ≤
∫ b

a
1·∣∣ f ′(s)

∣∣d s.

Using Hölder inequality we find that∣∣ f (x)− f (c)
∣∣≤ ∥1∥Lq ([a,b])

∥∥ f ′∥∥
Lp ([a,b]) = (b −a)

1
q
∥∥ f ′∥∥

Lp ([a,b]) .

(i)(ii) Since∫ b

a

∣∣ f (x)− f (c)
∣∣r d x ≤

(
sup

x∈[a,b]

∣∣ f (x)− f (c)
∣∣)r ∫ b

a
1d x = (b −a)

(
sup

x∈[a,b]

∣∣ f (x)− f (c)
∣∣)r

we conclude from the previous sub-question that(∫ b

a

∣∣ f (x)− f (c)
∣∣r

) 1
r

d x ≤ (b −a)
1
r sup

x∈[a,b]

∣∣ f (x)− f (c)
∣∣

≤ (b −a)
1
q + 1

r
∥∥ f ′∥∥

Lp ([a,b])

which is the desired result.
(iii) The mean value theorem for integrals says that for any two contin-

uous functions on [a,b], f and g , we have that there exists c ∈ [a,b]
such that ∫ b

a
f (x)g (x)d x = f (c)

∫ b

a
g (x)d x.

Choosing g ≡ 1 we find that there exists c∗ ∈ [a,b] such that

f (c∗) =
∫ b

a f (x)d x∫ b
a 1d x

= 1

b −a

∫ b

a
f (x)d x = f .

plugging that into sub-question ii with r = p gives the desired result.
(iv) Similarly, choosing c = a and r = p in sub-question ii gives us the

desired result.
□

Exercise 3 (The Poincaré constant).
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(i) Let Ω be an open bounded domain in Rn with smooth boundary.
Consider the PDE

(1)
−∆u(x) =λu(x) inΩ,

u(x) = 0 on ∂Ω,

where u ∈C 2
(
Ω

)
and λ ∈R. By multiplying the above by u and inte-

grating by parts show that if u ̸= 0 we have that

(2) λ=

∫
Ω
|∇u(x)|2 d x∫
Ω

u2(x)d x
≥ 0.

This is known as the Rayleigh quotient formula for the eigenvalue λ
in terms of the eigenfunction u.
Remark: This procedure, where we multiplied by a function, in-
tegrated, and recovered a functional that helps us understand our
equation better is known as the energy method (the functional we
found is our “energy”). This is an important method which will re-
peat in this module.
Remark: We could allow u to have values inC. In that case we would
multiply our PDE with u and conclude that

λ=

∫
Ω
|∇u(x)|2 d x∫
Ω
|u(x)|2 d x

≥ 0.

(ii) Show that any λ that satisfies our PDE must satisfy

λ≥ 1

C 2
P

where CP is the Poincaré inequality that is associated to Ω and the
Dirichlet boundary condition, i.e. the best constant for which∫

Ω
|u(x)|2 d x ≤C 2

P

∫
Ω
|∇u(x)|2 d x.

Remark: The above implies that

min
eigenvalues

λ≥ 1

C 2
P

.
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One can in fact show that there is equality in the above. This is con-
nected to minimising the energy

E [u] =

∫
Ω
|∇u(x)|2 d x∫
Ω
|v(x)|2 d x

over an appropriate space of functions.

Solution.

(i) Multiplying our equation by u and integrating we find that

−
∫
Ω

u(x)∆u(x)d x =λ
∫
Ω

u2(x)d x.

Since
div(u(x)∇u(x)) = |∇u(x)|2 +u(x)∆u(x)

we conclude that

−
∫
Ω

u(x)∆u(x)d x =
∫
Ω
|∇u(x)|2 d x −

∫
Ω

div(u(x)∇u(x))d x

=
∫
Ω
|∇u(x)|2 d x −

∫
∂Ω

u(y)∇u(y) ·n(y)dS(y) =
∫
Ω
|∇u(x)|2 d x

where we have used the fact that u|∂Ω = 0. We conclude that∫
Ω
|∇u(x)|2 d x =λ

∫
Ω

u2(x)d x

which is the desired result.
(ii) We know that any u which is C 1 and is zero on the boundary satisfies∫

Ω
|u(x)|2 d x ≤C 2

P

∫
Ω
|∇u(x)|2 d x

and as such ∫
Ω |∇u(x)|2 d x∫
Ω |u(x)|2 ≥ 1

C 2
P

.

This implies that if u solves our PDE and u ̸= 0 then

λ=
∫
Ω |∇u(x)|2 d x∫
Ω |u(x)|2 ≥ 1

C 2
P

.

□


