PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 6

In all our exercises in this sheet we will assume that Q is an open,
bounded, and connected set with smooth boundary.

Exercise 1 (Lower bound for Dirichlet’s Energy). In this problem we will
consider the Dirichlet Energy associated to the PDE

{ -Au=f xeQ

(1) u=0 x€0Q

Elu]l = fIVu(x)I dx— ff(x)u(x)dx

(i) Young's inequality states that for any a, b € R and any Holder conju-
gate numbers p, g € (1,00) we have that
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Consequently, for any ¢ > 0 we find that by replacing a with (pe)? a
and b with we get that
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and in particular that for any € > 0 choosing p = g = 2 yields
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Show that for any € > 0 and any
LLEVZ{UECI( )Iv OonOQ}
we have that

1 2 2
Elul = (5 —€Cp (Q)) ||u||H1(Q) ||f||L2(Q)

where Cp (QQ) is the Poincaré constant associated to the domain Q.
(ii) Conclude that there exists a constant C > 0 such that

inf E[u] = -C.
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Exercise 2 (Uniqueness of weak solutions). Show that if u and v are weak
solutions, in the sense defined in class, for

-Au=f xeQ
u=20 x€0Q

then u=v.
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Exercise 3 (Uniqueness for a more general elliptic problem). Consider the
linear, second-order, elliptic PDE

—div(AVu)+b-Vu+cu=f inQ,

© u=g onoQ,

where QO < R” is open and bounded with smooth boundary, A €
CHQ;R™™), b e C'(Q;R"), and ¢.f.g8 € C(Q). Assume that ¢ is non-
negatives, divbh = 0, and A is uniformly positive definite, i.e., there exists a
constant & > 0 such that y” A(x)y = a|y|? for all y € R", x € Q. Prove that
has at most one solution u € C2(Q).
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Exercise 4. Consider the space
V={peCQ): p=00n0Q, ¢ #0}
and the functional E: V — R defined by
IVu(x)|®dx

E[U]zQ—.
f lv(x)|? dx
Q

Suppose that u € C2%(Q) N V minimises E and show that
-Au=Au inQ,

u=20 on 09,
where A = E[u].
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