PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 6 SOLUTION

In all our exercises in this sheet we will assume that Q2 is an open,
bounded, and connected set with smooth boundary.

Exercise 1 (Lower bound for Dirichlet’s Energy). In this problem we will
consider the Dirichlet Energy associated to the PDE

M -Au=f xeQ
u=0 x€0Q

E[u]:lf IVu(x)Izdx—ff(x)u(x)dx.
2 Ja Q

(i) Young's inequality states that for any a, b € R and any Holder conju-
gate numbers p, g € (1,00) we have that

p q
|ab| sﬂ+ﬂ.
p q

1
Consequently, for any ¢ > 0 we find that by replacing a with (pe)? a

and b with —2+ we get that
(pe)?

bl

lab| < el|alP + ————
qpq—lgq—l

and in particular that for any € > 0 choosing p = g = 2 yields

2
lab| < ea® + —.
4¢e

Show that for any € > 0 and any
ueV:{vecl(ﬁ) | vzoonOQ}
we have that
Elu] (5 ~eCp(Q) ) i o) = 22 1/ ey

where Cp (Q) is the Poincaré constant associated to the domain Q.
(ii) Conclude that there exists a constant C > 0 such that

inf E{u] = —C.
ueV

1
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Solution. (i) Using the given Young inequality we find that for any € > 0

ff(x)u(x)dx Sf |f 0| lux)| dx
Q Q

o 1 2)
sfg(elu(x)l +4£|f(x)| dx.

Using the Poincaré inequality (which is allowed since u € V) we find

that
1
2 2
fo(x)u(x)dxs fo(x)u(x)dx SEIIuIILz(Q)JfE”f”H(Q)
< eCr @ Iul?,  +— |f|2
=eCp H@ " g M 2@
Consequently

_1e L2 2,2 12
Elu =2 ||u||H5(Q)—fo(x)u(x)dx > ||u||H&—(ecp @ Nullg )+ 22 1120

_(1 2 2 1 2
= (E—scp(m )”u”H(}(Q)_E”f”LZ(Q)'
(ii) For any € > 0 such that
1 2
E—ECP(Q) >0
we'll find that
Blul = - | £
T e W IPQY

. . _ 1 .
In particular, choosing € = 5=~ co@p 8ives us that

_Cp()?

Elu] = 5 ”f”iz((z)'

t

Exercise 2 (Uniqueness of weak solutions). Show that if u and v are weak
solutions, in the sense defined in class, for

-Au=f xeQ
u=0 x€o0Q

then u =v.

Solution. We say that u is a weak solution to the Dirichlet problem above
ifueV= {ve c! (ﬁ) lv=0 onGQ} and for any ¢ € V we have that

fVu(x)-V(p(x)dx:ff(x)(p(x)dx.
Q Q
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If u and v are both weak solutions to the equation than forany p € V

fVu(x)-V(p(x)dx:ff(x)(p(x)dx
Q Q
and
fVv(x)-Vq)(x)dx:ff(x)(p(x)dx.
Q Q

Consequently,
f V(u(x)—v(x)) -Veo(x)dx =0.
Q

Since this holds for any ¢ € V we must have that u—v = 0. Indeed, choose
¢ =u—v (or ¢ =u— v if the functions are complex valued) we find that

f IV (u(x) — v(x)*dx =0,
Q

which implies that V (z— v) = 0. As the domain is connected (which im-
plies that u — v is a constant) and the function u — v is zero on 0Q we
conclude that u = v. U
Exercise 3 (Uniqueness for a more general elliptic problem). Consider the
linear, second-order, elliptic PDE
—div(AVu)+b-Vu+cu=f inQ,
2) —
u=g onoQ,

where QO < R” is open and bounded with smooth boundary, A €
CHQ;R™™), b € CL(Q;R"), and ¢, [, g€ C(Q). Assume that c is non-
negatives, divb = 0, and A is uniformly positive definite, i.e., there exists a
constant @ > 0 such that yT A(x)y = a|y|? for all y € R", x € Q. Prove that
has at most one solution u € C%(Q).

Solution. Defining u = u; — up we see that
—div(AVu) +b-Vu+cu=—-div(AVu;) +b-Vuy + cuy
—(—=div(AVup) +b-Vus +cup) = f—f=0 inQ
and
u=g-g=0, on 0€).
Thus, in order to show uniqueness it is enough for us to show that if u
solves our equation with f = g = 0 then u must be the zero function.

Motivated by the energy method we multiply the our equation with u (or
u if the function has complex values) and integrating over Q2. We find that

—f u(x)diV(A(x)Vu(x))dx+f u(x)b(x)-Vu(x)dx+f c(X)u(x)’>dx =0.
Q Q Q

We notice that
—u(x)div(A(x)Vu(x)) = =div(u(x) A(x)Vu(x)) + Vu(x) - A(x)Vu(x).
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Similarly we have that
u(x)b(x)-Vu(x) = div((u(x)b(x)) u(x)) — u(x)div (u(x)b(x))
= div (b(x) u(x)?) — u(x) (w(x)divb(x) +b(x) - Vu(x))
= div(b(x)u(x)?) — u(x)b(x) - Vuu(x),
as divb = 0. Consequently
u(x)b(x) - Vu(x) = %div(b(x)u(x)z).

Using the fact that u|sq = 0 we conclude that

—fQu(x)div(A(x)Vu(x))dx= —faﬂ w(y)A(Y)Vu(y) -m(y)dS(y)

+f Vu(x)- A(x)Vu(x)dx = f Vu(x) - A(x)Vu(x)dx
Q Q
and )
fQu(x)b(x)-Vu(x)dx = 5[@9 u(y)zb(y) -n(y)dS(y) =0.
Plugging these identities into our original integral yields
(3) f Vu(x) -A(x)Vu(x)dx+f c(x)u(x)’dx =0.
Q Q
Using the fact that ¢ = 0 and the uniform positive definiteness of A we see
that
0< af IVu(x)|* dx s[ Vu(x) -A(x)Vu(x)dx+f c(x)u(x)*dx=0,
Q Q Q

which, as each term is non-negative, implies that that

f IVu(x)|? udx = 0.
Q
As this implies that Vu = 0 and since u|sq = 0 we conclude that u =0. [J
Exercise 4. Consider the space
V={peCQ):p=00n0Q, ¢ #0}
and the functional E: V — R defined by

IVu(x)|®dx
E[v] = £

f lv(x)|? dx
Q

Suppose that u € C2%(Q) N V minimises E and show that
-Au=Au inQ,

u=20 on 09,
where A = E[u].
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Solution. For any ¢ € V and any € > 0 we find that u, = u+é&¢@ € C! (5)

and u.|sq = 0. We claim that u, # 0 for € small enough. Indeed we have
that

|u(x0) +epx)| = lu()| || = 1)~ €| @] o g -

Since u #= 0 we can find xj such that |u(xp)| > 0. Consequently, for € <

—”Jp””(x")' we have that |u, (xo)| > 0, showing that u, # 0.
L®Q)

Next we consider the function
g(€) = Elug]

We know that
g(0) = Elugl = Elu] = Efu,] = g(¢)

for any € > 0 small enough. Consequently, if g is differentiable at € = 0 we
must have that g’(0) = 0. By the definition of E we see that

 Jo|Vu) +eve)|* dx
Jo|un) + @) dx

g(e)

Jo (IVUP +26Vu() - Vo) + € [Vo ) dx

)

Jo (u(0)? +2eu(x)p(x) + £2¢(x)?) dx
which shows the required differentiability. We see that

g'e) = ! )2 (f (2Vu(x)-V(p(x)+2£|V(p(x)|2)dx)f |u(x) + e dx
Q Q

(fQ |u(x) +£(p(x)|2dx

- (f (2u(x)p(x) +2e0(x)?) dx)f |Vu(x) +£V(p(x)|2dx)
Q Q
and as such
2(foVux) - Vo)) foux)?dx-2([qu@ex)dx) [ Vux)*dx

'0) =
¢ (Jo ux)?dx)*

2
 fqul0?dx
Since g’(0) = 0 we conclude that for any ¢ € V

(fg (Vu(x) -Vo(x) — E[u] u(x)cp(x)) dx).

fQ (Vu(x) - Vo(x) — Elulu(x)p(x)) dx = 0.

Since u € C? (5) we have that

Vu(x)-Ve(x) =div ((p(x)Vu(x)) —pxX)Au(x).
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Using the divergence theorem and the fact that ¢|5q = 0 we find that

O:fﬂ(div((p(x)Vu(x))—(p(x)Au(x)—E[u]u(x)(p(x))dx

:fm(p(y)Vu(y)-ﬁ(y)dS(y)—fQ(Au(x)+E[u]u(x))<p(x)dx

= —f (Au(x) + Elu]lu(x)) p(x)dx.
Q
This implies that
f (Au(x) + Elu]u(x)) p(x)dx=0
Q

for any ¢ € V. Consequently, (the fundamental theorem of the calculus
of variation) we must have that
—Au(x) = Elulu(x), x€eQ.

As u € V we have that u|g = 0 and we conclude the desired result. U



