
PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 6 SOLUTION

In all our exercises in this sheet we will assume that Ω is an open,
bounded, and connected set with smooth boundary.

Exercise 1 (Lower bound for Dirichlet’s Energy). In this problem we will
consider the Dirichlet Energy associated to the PDE

(1)

{ −∆u = f x ∈Ω
u = 0 x ∈ ∂Ω

E [u] = 1

2

∫
Ω
|∇u(x)|2 d x −

∫
Ω

f (x)u(x)d x.

(i) Young’s inequality states that for any a,b ∈R and any Hölder conju-
gate numbers p, q ∈ (1,∞) we have that

|ab| ≤ |a|p
p

+ |b|q
q

.

Consequently, for any ε> 0 we find that by replacing a with
(
pε

) 1
p a

and b with b

(pε)
1
p

we get that

|ab| ≤ ε |a|p + |b|q
qpq−1εq−1

and in particular that for any ε> 0 choosing p = q = 2 yields

|ab| ≤ εa2 + b2

4ε
.

Show that for any ε> 0 and any

u ∈V =
{

v ∈C 1
(
Ω

)
| v = 0 on ∂Ω

}
we have that

E [u] ≥
(

1

2
−εCP (Ω)2

)
∥u∥2

H 1
0 (Ω)

− 1

4ε

∥∥ f
∥∥2

L2(Ω)

where CP (Ω) is the Poincaré constant associated to the domainΩ.
(ii) Conclude that there exists a constant C > 0 such that

inf
u∈V

E [u] ≥−C .
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Solution. (i) Using the given Young inequality we find that for any ε> 0∣∣∣∣∫
Ω

f (x)u(x)d x

∣∣∣∣≤ ∫
Ω

∣∣ f (x)
∣∣ |u(x)|d x

≤
∫
Ω

(
ε |u(x)|2 + 1

4ε

∣∣ f (x)
∣∣2

)
d x.

Using the Poincaré inequality (which is allowed since u ∈V ) we find
that∫

Ω
f (x)u(x)d x ≤

∣∣∣∣∫
Ω

f (x)u(x)d x

∣∣∣∣≤ ε∥u∥2
L2(Ω) +

1

4ε

∥∥ f
∥∥2

L2(Ω)

≤ εCP (Ω)2 ∥u∥2
H 1

0 (Ω)
+ 1

4ε

∥∥ f
∥∥2

L2(Ω) .

Consequently

E [u] = 1

2
∥u∥2

H 1
0 (Ω)

−
∫
Ω

f (x)u(x)d x ≥ 1

2
∥u∥2

H 1
0
−

(
εCP (Ω)2 ∥u∥2

H 1
0 (Ω)

+ 1

4ε

∥∥ f
∥∥2

L2(Ω)

)
=

(
1

2
−εCP (Ω)2

)
∥u∥2

H 1
0 (Ω)

− 1

4ε

∥∥ f
∥∥2

L2(Ω) .

(ii) For any ε> 0 such that

1

2
−εCP (Ω)2 ≥ 0

we’ll find that

E [u] ≥− 1

4ε

∥∥ f
∥∥2

L2(Ω) .

In particular, choosing ε= 1
2CP (Ω)2 gives us that

E [u] ≥−CP (Ω)2

2

∥∥ f
∥∥2

L2(Ω) .

□

Exercise 2 (Uniqueness of weak solutions). Show that if u and v are weak
solutions, in the sense defined in class, for{ −∆u = f x ∈Ω

u = 0 x ∈ ∂Ω
then u = v .

Solution. We say that u is a weak solution to the Dirichlet problem above

if u ∈V =
{

v ∈C 1
(
Ω

)
| v = 0 on ∂Ω

}
and for any ϕ ∈V we have that∫

Ω
∇u(x) ·∇ϕ(x)d x =

∫
Ω

f (x)ϕ(x)d x.
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If u and v are both weak solutions to the equation than for any ϕ ∈V∫
Ω
∇u(x) ·∇ϕ(x)d x =

∫
Ω

f (x)ϕ(x)d x

and ∫
Ω
∇v(x) ·∇ϕ(x)d x =

∫
Ω

f (x)ϕ(x)d x.

Consequently, ∫
Ω
∇ (u(x)− v(x)) ·∇ϕ(x)d x = 0.

Since this holds for anyϕ ∈V we must have that u−v = 0. Indeed, choose
ϕ= u − v (or ϕ= u − v if the functions are complex valued) we find that∫

Ω
|∇ (u(x)− v(x))|2 d x = 0,

which implies that ∇ (u − v) = 0. As the domain is connected (which im-
plies that u − v is a constant) and the function u − v is zero on ∂Ω we
conclude that u = v . □

Exercise 3 (Uniqueness for a more general elliptic problem). Consider the
linear, second-order, elliptic PDE

(2)
−div(A∇u)+b ·∇u + cu = f inΩ,

u = g on ∂Ω,

where Ω ⊂ Rn is open and bounded with smooth boundary, A ∈
C 1(Ω;Rn×n), b ∈ C 1(Ω;Rn), and c, f , g ∈ C (Ω). Assume that c is non-
negatives, divb = 0, and A is uniformly positive definite, i.e., there exists a
constant α> 0 such that yT A(x)y ≥α|y |2 for all y ∈ Rn , x ∈Ω. Prove that
(2) has at most one solution u ∈C 2(Ω).

Solution. Defining u = u1 −u2 we see that

−div(A∇u)+b ·∇u + cu =−div(A∇u1)+b ·∇u1 + cu1

− (−div(A∇u2)+b ·∇u2 + cu2) = f − f = 0 inΩ

and
u = g − g = 0, on ∂Ω.

Thus, in order to show uniqueness it is enough for us to show that if u
solves our equation with f = g = 0 then u must be the zero function.
Motivated by the energy method we multiply the our equation with u (or
u if the function has complex values) and integrating overΩ. We find that

−
∫
Ω

u(x)div(A(x)∇u(x))d x+
∫
Ω

u(x)b(x) ·∇u(x)d x+
∫
Ω

c(x)u(x)2d x = 0.

We notice that

−u(x)div(A(x)∇u(x)) =−div(u(x)A(x)∇u(x))+∇u(x) · A(x)∇u(x).
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Similarly we have that

u(x)b(x) ·∇u(x) = div((u(x)b(x))u(x))−u(x)div(u(x)b(x))

= div
(
b(x)u(x)2)−u(x) (u(x)divb(x)+b(x) ·∇u(x))

= div
(
b(x)u(x)2)−u(x)b(x) ·∇u(x),

as divb = 0. Consequently

u(x)b(x) ·∇u(x) = 1

2
div

(
b(x)u(x)2) .

Using the fact that u|∂Ω = 0 we conclude that

−
∫
Ω

u(x)div(A(x)∇u(x))d x =−
∫
∂Ω

u(y)A(y)∇u(y) · n̂(y)dS(y)

+
∫
Ω
∇u(x) · A(x)∇u(x)d x =

∫
Ω
∇u(x) · A(x)∇u(x)d x

and ∫
Ω

u(x)b(x) ·∇u(x)d x = 1

2

∫
∂Ω

u(y)2b(y) · n̂(y)dS(y) = 0.

Plugging these identities into our original integral yields

(3)
∫
Ω
∇u(x) · A(x)∇u(x)d x +

∫
Ω

c(x)u(x)2d x = 0.

Using the fact that c ≥ 0 and the uniform positive definiteness of A we see
that

0 ≤α
∫
Ω
|∇u(x)|2 d x ≤

∫
Ω
∇u(x) · A(x)∇u(x)d x +

∫
Ω

c(x)u(x)2d x = 0,

which, as each term is non-negative, implies that that∫
Ω
|∇u(x)|2 ud x = 0.

As this implies that ∇u = 0 and since u|∂Ω = 0 we conclude that u = 0. □

Exercise 4. Consider the space

V = {ϕ ∈C 1(Ω) : ϕ= 0 on ∂Ω, ϕ ̸= 0}

and the functional E : V →R defined by

E [v] =

∫
Ω
|∇v(x)|2 d x∫
Ω
|v(x)|2 d x

.

Suppose that u ∈C 2(Ω)∩V minimises E and show that
−∆u =λu inΩ,

u = 0 on ∂Ω,

where λ= E [u].
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Solution. For any ϕ ∈ V and any ε > 0 we find that uε = u +εϕ ∈ C 1
(
Ω

)
and uε|∂Ω = 0. We claim that uε ̸= 0 for ε small enough. Indeed we have
that ∣∣u(x)+εϕ(x)

∣∣≥ |u(x)|−ε ∣∣ϕ(x)
∣∣≥ |u(x)|−ε∥∥ϕ∥∥

L∞(Ω) .

Since u ̸== 0 we can find x0 such that |u(x0)| > 0. Consequently, for ε <
|u(x0)|

∥ϕ∥L∞(Ω)
we have that |uε(x0)| > 0, showing that uε ̸= 0.

Next we consider the function

g (ε) = E [uε]

We know that

g (0) = E [u0] = E [u] ≤ E [uε] = g (ε)

for any ε> 0 small enough. Consequently, if g is differentiable at ε= 0 we
must have that g ′(0) = 0. By the definition of E we see that

g (ε) =
∫
Ω

∣∣∇u(x)+ε∇ϕ(x)
∣∣2 d x∫

Ω

∣∣u(x)+εϕ(x)
∣∣2 d x

=
∫
Ω

(
|∇u(x)|2 +2ε∇u(x) ·∇ϕ(x)+ε2

∣∣∇ϕ(x)
∣∣2

)
d x∫

Ω

(
u(x)2 +2εu(x)ϕ(x)+ε2ϕ(x)2

)
d x

,

which shows the required differentiability. We see that

g ′(ε) = 1(∫
Ω

∣∣u(x)+εϕ(x)
∣∣2 d x

)2

((∫
Ω

(
2∇u(x) ·∇ϕ(x)+2ε

∣∣∇ϕ(x)
∣∣2

)
d x

)∫
Ω

∣∣u(x)+εϕ(x)
∣∣2 d x

−
(∫
Ω

(
2u(x)ϕ(x)+2εϕ(x)2)d x

)∫
Ω

∣∣∇u(x)+ε∇ϕ(x)
∣∣2 d x

)
and as such

g ′(0) = 2
(∫
Ω∇u(x) ·∇ϕ(x)

)∫
Ωu(x)2d x −2

(∫
Ωu(x)ϕ(x)d x

)∫
Ω |∇u(x)|2 d x(∫

Ωu(x)2d x
)2

= 2∫
Ωu(x)2d x

(∫
Ω

(∇u(x) ·∇ϕ(x)−E [u]u(x)ϕ(x)
)

d x

)
.

Since g ′(0) = 0 we conclude that for any ϕ ∈V∫
Ω

(∇u(x) ·∇ϕ(x)−E [u]u(x)ϕ(x)
)

d x = 0.

Since u ∈C 2
(
Ω

)
we have that

∇u(x) ·∇ϕ(x) = div
(
ϕ(x)∇u(x)

)−ϕ(x)∆u(x).
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Using the divergence theorem and the fact that ϕ|∂Ω = 0 we find that

0 =
∫
Ω

(
div

(
ϕ(x)∇u(x)

)−ϕ(x)∆u(x)−E [u]u(x)ϕ(x)
)

d x

=
∫
∂Ω
ϕ(y)∇u(y) · n̂(y)dS(y)−

∫
Ω

(∆u(x)+E [u]u(x))ϕ(x)d x

=−
∫
Ω

(∆u(x)+E [u]u(x))ϕ(x)d x.

This implies that ∫
Ω

(∆u(x)+E [u]u(x))ϕ(x)d x = 0

for any ϕ ∈ V . Consequently, (the fundamental theorem of the calculus
of variation) we must have that

−∆u(x) = E [u]u(x), x ∈Ω.

As u ∈V we have that u|Ω = 0 and we conclude the desired result. □


