PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 7

Exercise 1 (Maximum principle for subharmonic functions). Let Q) be an open, bounded and
connected set in R". We say that u € c:2 Q)ncC (5) is subharmonic if

—Au<0, in Q.

(i) Show that subharmonic functions satisfy the mean value formulae
u(x) S][ u(dsy),  ux) S][ u(y)dy,
0B, (x) B (%)

for any x € Q and r > 0 such that B, (x) c Q.
(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists
Xp € Q such that

u (xp) = max u(x)
Q

then u is constant.
(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

max u(x) = maxu(x).
ol 0Q

(iv) Do subharmonic functions satisfy the minimum principle?
Remark: A function ue C2(Q)nC (5) is called superharmonic if
—-Au=0, in Q,

or equivalently if —u is subharmonic. Superharmonic functions satisfy the mean value formu-
lae

u(x) 2][ u(y)dS(y), u(x) 2][ u(y)dy,
0B, (x) Br(x)

and the strong and weak minimum principle.

Exercise 2 (Application of the maximum principle for subharmonic functions - comparison the-
orem). Let Q be an open, bounded and connected set in R”. Assume that for i = 1,2 we have

that u; € C2(Q)NnC (5) satisfy

—-Au;=f; inQ,

u=gi on 0Q),
where f; € C(Q) and g; € C(0Q) for i = 1,2. Assume that fi < f, and g; < g» and prove that
u; < up. This is known as a comparison principle.

Exercise 3 (Weak maximum principle without mean value formula). Let Q) be an open, bounded
and connected in R”. Consider the equation

—Au(x)+b(x)-Vu(x) = f(x), xeQ

where b = {b;}}"_; € C! (ﬁ;R”). Our goal is to show thatif ue C2( Q) nC (5) is a solution to the

equation in Q then if f < 0 (subharmonic solution) © has a weak maximum principle.
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(i) Assuming xj € Q is a local maximum for u, show that if f <0 on Q then
—Au(xy) <0.

(ii) Recall that a necessary condition for a point x to be a local maximum for a C? function
¢ : Q — R is that the Hessian matrix at xy, Hess ¢ (xp), is negative semi-definite, i.e. all its
eigenvalues are non-positive or equivalently, for any y € R"

yTHess ¢ (x9) y < —a (xo) |y|2,

for some a (xg) = 0. Use this to show that if xy € Q) is a local maximum for © then Au (xg) < 0.
(iii) Show that if f < 0 in Q then u can’'t have a local maximum in (, and as such satisfies the
weak maximum principle.
(iv) We want to extend the above to the case f < 0. For any A, € € R define

Ue 2 (X) = u(x) + geM,

(a) Show that
Ve 2 (x) = Vu(x) +ere? (1,0,0,...,007,
and
At 5 (%) = Au(x) +eA2et™,
(b) Show that u, ) solves the equation
~ At 2 (X) + B(X) - Vg 1(X) = f(x) — €A (A= by (x)) .
(c) Show that there exists Ay > 0 such that foralle >0
F(x)—edo (Ao — b1 (x)) €M <0

on Q.
(d) Conclude that for any € >0

Q
and consequently

max(u(x) + se%xl) = ngax (u(x) + eeaoxl)
Q

u(x) < max u(y) + e maxe’0”!
0Q yeoQ

for all x € Q.
(e) Conclude the weak maximum principle for u.

Remark: This could be extended to more general elliptic PDEs.



