
PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 7

Exercise 1 (Maximum principle for subharmonic functions). Let Ω be an open, bounded and

connected set in Rn . We say that u ∈C 2 (Ω)∩C
(
Ω

)
is subharmonic if

−∆u ≤ 0, inΩ.

(i) Show that subharmonic functions satisfy the mean value formulae

u(x) ≤−
ˆ
∂Br (x)

u(y)dS(y), u(x) ≤−
ˆ

Br (x)
u(y)d y,

for any x ∈Ω and r > 0 such that Br (x) ⊂Ω.
(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists

x0 ∈Ω such that
u (x0) = max

Ω
u(x)

then u is constant.
(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

max
Ω

u(x) = max
∂Ω

u(x).

(iv) Do subharmonic functions satisfy the minimum principle?

Remark: A function u ∈C 2 (Ω)∩C
(
Ω

)
is called superharmonic if

−∆u ≥ 0, inΩ,

or equivalently if −u is subharmonic. Superharmonic functions satisfy the mean value formu-
lae

u(x) ≥−
ˆ
∂Br (x)

u(y)dS(y), u(x) ≥−
ˆ

Br (x)
u(y)d y,

and the strong and weak minimum principle.

Exercise 2 (Application of the maximum principle for subharmonic functions - comparison the-
orem). Let Ω be an open, bounded and connected set in Rn . Assume that for i = 1,2 we have

that ui ∈C 2 (Ω)∩C
(
Ω

)
satisfy { −∆ui = fi inΩ,

ui = gi on ∂Ω,

where fi ∈ C (Ω) and gi ∈ C (∂Ω) for i = 1,2. Assume that f1 ≤ f2 and g1 ≤ g2 and prove that
u1 ≤ u2. This is known as a comparison principle.

Exercise 3 (Weak maximum principle without mean value formula). LetΩbe an open, bounded
and connected in Rn . Consider the equation

−∆u(x)+b(x) ·∇u(x) = f (x), x ∈Ω
where b = {bi }n

i=1 ∈ C 1
(
Ω;Rn

)
. Our goal is to show that if u ∈ C 2 (Ω)∩C

(
Ω

)
is a solution to the

equation inΩ then if f ≤ 0 (subharmonic solution) u has a weak maximum principle.
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(i) Assuming x0 ∈Ω is a local maximum for u, show that if f < 0 onΩ then

−∆u (x0) < 0.

(ii) Recall that a necessary condition for a point x0 to be a local maximum for a C 2 function
ϕ :Ω→ R is that the Hessian matrix at x0, Hess ϕ (x0), is negative semi-definite, i.e. all its
eigenvalues are non-positive or equivalently, for any y ∈Rn

y T Hessϕ (x0) y ≤−α (x0)
∣∣y

∣∣2 ,

for someα (x0) ≥ 0. Use this to show that if x0 ∈Ω is a local maximum for u then∆u (x0) ≤ 0.
(iii) Show that if f < 0 in Ω then u can’t have a local maximum in Ω, and as such satisfies the

weak maximum principle.
(iv) We want to extend the above to the case f ≤ 0. For any λ,ε ∈R define

uε,λ(x) = u(x)+εeλx1 .

(a) Show that
∇uε,λ(x) =∇u(x)+ελeλx1 (1,0,0, . . . ,0)T ,

and
∆uε,λ(x) =∆u(x)+ελ2eλx1 .

(b) Show that uε,λ solves the equation

−∆uε,λ(x)+b(x) ·∇uε,λ(x) = f (x)−ελ (λ−b1(x))eλx1 .

(c) Show that there exists λ0 > 0 such that for all ε> 0

f (x)−ελ0 (λ0 −b1(x))eλ0x1 < 0

onΩ.
(d) Conclude that for any ε> 0

max
Ω

(
u(x)+εeλ0x1

)
= max

∂Ω

(
u(x)+εeλ0x1

)
and consequently

u(x) ≤ max
∂Ω

u(y)+εmax
y∈∂Ω

eλ0 y1

for all x ∈Ω.
(e) Conclude the weak maximum principle for u.

Remark: This could be extended to more general elliptic PDEs.


