PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 7

Exercise 1 (*Maximum principle for subharmonic functions*). Let Ω be an open, bounded and connected set in \mathbb{R}^n . We say that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is *subharmonic* if

$$-\Delta u \leq 0$$
, in Ω .

(i) Show that subharmonic functions satisfy the mean value formulae

$$u(x) \leq \int_{\partial B_r(x)} u(y) dS(y), \qquad u(x) \leq \int_{B_r(x)} u(y) dy,$$

for any $x \in \Omega$ and r > 0 such that $\overline{B_r(x)} \subset \Omega$.

(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists $x_0 \in \Omega$ such that

$$u(x_0) = \max_{\overline{\Omega}} u(x)$$

then *u* is constant.

(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

$$\max_{\overline{\Omega}} u(x) = \max_{\partial \Omega} u(x).$$

(iv) Do subharmonic functions satisfy the minimum principle?

Remark: A function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is called *superharmonic* if

$$-\Delta u \ge 0, \quad \text{in } \Omega$$

or equivalently if -u is subharmonic. Superharmonic functions satisfy the mean value formulae

$$u(x) \ge \int_{\partial B_r(x)} u(y) dS(y), \qquad u(x) \ge \int_{B_r(x)} u(y) dy,$$

and the strong and weak minimum principle.

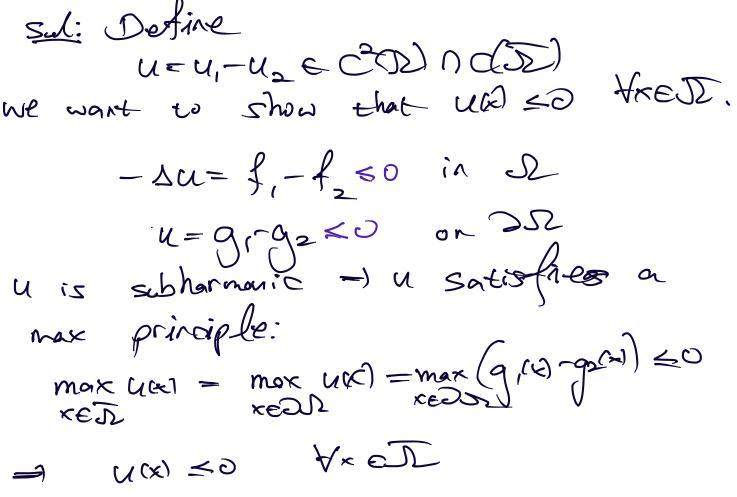
PROBLEM CLASS 7 u(x)= ll. Define $S = dx \in D | u(x) = l(f) = u(f))$ As I is connected, to show that le=M , i.e. S=J, it is enough to show that s is not empty, S is absel in I and s is open in J2. . RES SO SEE . U is cont. and 2023 is closed in R so $S = u^{r}(\{M\})$ is closed in N. · Let xeS we will find 1-22 s.t Braics showing it is open and concluding the result. As I is open and xEI there exist noo st Brach and consequency Brach CD $M = U(x) \leq \int U(y) dy = M$ $B_{n_0}(x) = B_{n_0}(x)$ =) f(u-ukg))dy = 0 By(x) care and non-negative which implies ungs=Il in Bright ie Brainces.

(m) we	are max principle fellows
from	the strong principle (see lectures)
(iv) No.	usa=x² is subharmonic on (-1,1)
but	min $u(x) = u(x) \neq min \{u(x), u(-x)\}$ $\Sigma - i, i$

Exercise 2 (Application of the maximum principle for subharmonic functions - comparison theorem). Let Ω be an open, bounded and connected set in \mathbb{R}^n . Assume that for i = 1, 2 we have that $u_i \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy

$$\begin{cases} -\Delta u_i = f_i & \text{in } \Omega, \\ u_i = g_i & \text{on } \partial \Omega, \end{cases}$$

where $f_i \in C(\Omega)$ and $g_i \in C(\partial\Omega)$ for i = 1, 2. Assume that $f_1 \leq f_2$ and $g_1 \leq g_2$ and prove that $u_1 \leq u_2$. This is known as a *comparison principle*.



Exercise 3 (*Weak maximum principle without mean value formula*). Let Ω be an open, bounded and connected in \mathbb{R}^n . Consider the equation

$$-\Delta u(x) + \boldsymbol{b}(x) \cdot \nabla u(x) = f(x), \qquad x \in \Omega$$

where $\boldsymbol{b} = \{b_i\}_{i=1}^n \in C^1(\overline{\Omega}; \mathbb{R}^n)$. Our goal is to show that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a solution to the equation in Ω then if $f \leq 0$ (subharmonic solution) u has a weak maximum principle.

(i) Assuming $x_0 \in \Omega$ is a local maximum for *u*, show that if f < 0 on Ω then

$$-\Delta u(x_0) < 0.$$

(ii) Recall that a necessary condition for a point x_0 to be a local maximum for a C^2 function $\varphi : \Omega \to \mathbb{R}$ is that the Hessian matrix at x_0 , Hess $\varphi(x_0)$, is negative semi-definite, i.e. all its eigenvalues are non-positive or equivalently, for any $y \in \mathbb{R}^n$

$$\mathbf{y}^T$$
 Hess $\varphi(x_0) \mathbf{y} \leq -\alpha(x_0) |\mathbf{y}|^2$,

for some $\alpha(x_0) \ge 0$. Use this to show that if $x_0 \in \Omega$ is a local maximum for *u* then $\Delta u(x_0) \le 0$. (iii) Show that if f < 0 in Ω then *u* can't have a local maximum in Ω , and as such satisfies the

- weak maximum principle.
- (iv) We want to extend the above to the case $f \le 0$. For any $\lambda, \varepsilon \in \mathbb{R}$ define

$$u_{\varepsilon,\lambda}(x) = u(x) + \varepsilon e^{\lambda x_1}$$

(a) Show that

$$\nabla u_{\varepsilon,\lambda}(x) = \nabla u(x) + \varepsilon \lambda e^{\lambda x_1} (1, 0, 0, \dots, 0)^T,$$

and

$$\Delta u_{\varepsilon,\lambda}(x) = \Delta u(x) + \varepsilon \lambda^2 e^{\lambda x_1}.$$

(b) Show that $u_{\varepsilon,\lambda}$ solves the equation

$$-\Delta u_{\varepsilon,\lambda}(x) + \boldsymbol{b}(x) \, \boldsymbol{\nabla} u_{\varepsilon,\lambda}(x) = f(x) - \varepsilon \lambda \, (\lambda - b_1(x)) \, e^{\lambda x_1}.$$

(c) Show that there exists $\lambda_0 > 0$ such that for all $\varepsilon > 0$

$$f(x) - \varepsilon \lambda_0 \left(\lambda_0 - b_1(x)\right) e^{\lambda_0 x_1} < 0$$

on Ω.

(d) Conclude that for any $\varepsilon > 0$

$$\max_{\overline{\Omega}} \left(u(x) + \varepsilon e^{\lambda_0 x_1} \right) = \max_{\partial \Omega} \left(u(x) + \varepsilon e^{\lambda_0 x_1} \right)$$

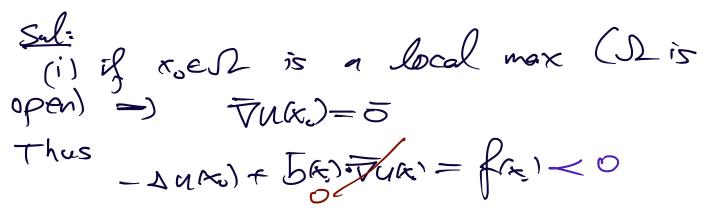
and consequently

$$u(x) \le \max_{\partial \Omega} u(y) + \varepsilon \max_{y \in \partial \Omega} e^{\lambda_0 y_1}$$

for all $x \in \overline{\Omega}$.

(e) Conclude the weak maximum principle for *u*.

Remark: This could be extended to more general elliptic PDEs.



7