
PARTIAL DIFFERENTIAL EQUATIONS III & V

PROBLEM CLASS 7

Exercise 1 (Maximum principle for subharmonic functions). Let ω be an open, bounded and

connected set in Rn . We say that u →C 2 (ω)↑C
(
ω

)
is subharmonic if

↓εu ↔ 0, inω.

(i) Show that subharmonic functions satisfy the mean value formulae

u(x) ↔↓
ˆ
ωBr (x)

u(y)dS(y), u(x) ↔↓
ˆ

Br (x)
u(y)d y,

for any x →ω and r > 0 such that Br (x) ↗ω.
(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists

x0 →ω such that
u (x0) = max

ω
u(x)

then u is constant.
(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

max
ω

u(x) = max
ωω

u(x).

(iv) Do subharmonic functions satisfy the minimum principle?

Remark: A function u →C 2 (ω)↑C
(
ω

)
is called superharmonic if

↓εu ↘ 0, inω,

or equivalently if ↓u is subharmonic. Superharmonic functions satisfy the mean value formu-
lae

u(x) ↘↓
ˆ
ωBr (x)

u(y)dS(y), u(x) ↘↓
ˆ

Br (x)
u(y)d y,

and the strong and weak minimum principle.
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Exercise 2 (Application of the maximum principle for subharmonic functions - comparison the-
orem). Let ω be an open, bounded and connected set in Rn . Assume that for i = 1,2 we have
that ui →C 2 (ω)↑C

(
ω

)
satisfy

{
↓εui = fi inω,
ui = gi on ωω,

where fi → C (ω) and gi → C (ωω) for i = 1,2. Assume that f1 ↔ f2 and g1 ↔ g2 and prove that
u1 ↔ u2. This is known as a comparison principle.
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Exercise 3 (Weak maximum principle without mean value formula). Letωbe an open, bounded
and connected in Rn . Consider the equation

↓εu(x)+b(x) ·≃u(x) = f (x), x →ω

where b = {bi }n
i=1 → C 1

(
ω;Rn

)
. Our goal is to show that if u → C 2 (ω)↑C

(
ω

)
is a solution to the

equation inω then if f ↔ 0 (subharmonic solution) u has a weak maximum principle.
(i) Assuming x0 →ω is a local maximum for u, show that if f < 0 onω then

↓εu (x0) < 0.

(ii) Recall that a necessary condition for a point x0 to be a local maximum for a C 2 function
ε :ω⇐ R is that the Hessian matrix at x0, Hess ε (x0), is negative semi-definite, i.e. all its
eigenvalues are non-positive or equivalently, for any y →Rn

y T Hessε (x0) y ↔↓ϑ (x0)
∣∣y

∣∣2 ,

for someϑ (x0) ↘ 0. Use this to show that if x0 →ω is a local maximum for u thenεu (x0) ↔ 0.
(iii) Show that if f < 0 in ω then u can’t have a local maximum in ω, and as such satisfies the

weak maximum principle.
(iv) We want to extend the above to the case f ↔ 0. For any ϖ,ϱ →R define

uϱ,ϖ(x) = u(x)+ϱeϖx1 .

(a) Show that
≃uϱ,ϖ(x) =≃u(x)+ϱϖeϖx1 (1,0,0, . . . ,0)T ,

and
εuϱ,ϖ(x) =εu(x)+ϱϖ2eϖx1 .

(b) Show that uϱ,ϖ solves the equation

↓εuϱ,ϖ(x)+b(x) ·uϱ,ϖ(x) = f (x)↓ϱϖ (ϖ↓b1(x))eϖx1 .

(c) Show that there exists ϖ0 > 0 such that for all ϱ> 0

f (x)↓ϱϖ0 (ϖ0 ↓b1(x))eϖ0x1 < 0

onω.
(d) Conclude that for any ϱ> 0

max
ω

(
u(x)+ϱeϖ0x1

)
= max

ωω

(
u(x)+ϱeϖ0x1

)

and consequently
u(x) ↔ max

ωω
u(y)+ϱmax

y→ωω
eϖ0 y1

for all x →ω.
(e) Conclude the weak maximum principle for u.

Remark: This could be extended to more general elliptic PDEs.



PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 7 7



8 PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 7



PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 7 9


