PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 7

Exercise 1 (Maximum principle for subharmonic functions). Let Q be an open, bounded and
connected set in R”. We say that u € C2(Q)nC (5) is subharmonic if

—-Au <0, in Q.

(i) Show that subharmonic functions satisfy the mean value formulae
u(x) S][ u(y)ds(y), u(x) S][ u(y)dy,
By (x) B (x)

for any x € Q and r > 0 such that B, (x) c Q.
(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists
Xo € Q such that

u (xp) = max u(x)
Q

then u is constant.
(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

max u(x) = maxu(x).
o 00

(iv) Do subharmonic functions satisfy the minimum principle?
Remark: A function ue C2(Q)nC (ﬁ) is called superharmonic if
—-Au=0, in Q,

or equivalently if —u is subharmonic. Superharmonic functions satisfy the mean value formu-
lae

u(x) 2][ u(y)dS(y), u(x) 2][ u(y)dy,
0B, (x) By (x)

and the strong and weak minimum principle.
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4 PARTIAL DIFFERENTIAL EQUATIONS III & V. PROBLEM CLASS 7

Exercise 2 (Application of the maximum principle for subharmonic functions - comparison the-
orem). Let Q be an open, bounded and connected set in R”. Assume that for i = 1,2 we have

that u; € C2(Q)nC (5) satisfy

-Au;=f; inQ,
u=gi on 0Q),

where f; € C(Q) and g; € C(0Q) for i = 1,2. Assume that fi < f, and g; < g» and prove that
u; < uyp. This is known as a comparison principle.
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Exercise 3 (Weak maximum principle without mean value formula). Let QQ be an open, bounded
and connected in R”. Consider the equation

—Au(x)+b(x)-Vu(x) = f(x), xeQ

where b = {b;}! | € C! (ﬁ;R”). Our goal is to show thatif u e C2(Q)nC (5) is a solution to the
equation in Q then if f <0 (subharmonic solution) u has a weak maximum principle.
(i) Assuming xj € Q is a local maximum for u, show that if f <0 on Q then

—Au(xy) <0.

(ii) Recall that a necessary condition for a point xj to be a local maximum for a C? function
@ : Q — Ris that the Hessian matrix at xo, Hess ¢ (xp), is negative semi-definite, i.e. all its
eigenvalues are non-positive or equivalently, for any y € R”

yTHess @ (xp)y = —a(xp) |y|2 ,

for some a (xg) = 0. Use this to show that if xy € Q is a local maximum for u then Au (xg) < 0.
(iii) Show that if f < 0in Q then u can’'t have a local maximum in , and as such satisfies the
weak maximum principle.
(iv) We want to extend the above to the case f < 0. For any A, € € R define

Ug 2 (X) = u(x) + get,

(a) Show that
Vg 5 (x) = Vu(x) +eAe* (1,0,0,...,07,
and
Aug 3 (x) = Au(x) + eAzet,
(b) Show that u, j solves the equation
~Ate () + b0 Yt A (1) = f(2) — A (A= by (x)) .
(c) Show that there exists Ag > 0 such that forall e >0
fx)=edo (Ao —Dbi(x) €™ <0
on Q.

(d) Conclude that for any € >0

rnax(u(x) + ee’l"xl) = max(u(x) + Eeﬂoxl)
a 00
and consequently

u(x) < maxu(y) + e maxe'o)
0Q yeoQ

for all x € Q.
(e) Conclude the weak maximum principle for u.

Remark: This could be extended to more general elliptic PDEs.
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