PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 7 SOLUTION

Exercise 1 (Maximum principle for subharmonic functions). Let Q be an open, bounded and
connected set in R”. We say that u € c:Q)ncC (5) is subharmonic if

-Au<0, in Q.

(i) Show that subharmonic functions satisfy the mean value formulae

u(x) S][ u(y)dS(y), u(x) S]Z u(y)dy,
0B, (x) B, (%)

for any x € Q and r > 0 such that B, (x) c Q.
(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists
Xp € Q such that

u (xp) = max u(x)
Q

then u is constant.
(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

max u(x) = maxu(x).
Q 0Q

(iv) Do subharmonic functions satisfy the minimum principle?

Remark: A function ue C?>(Q)nC (5) is called superharmonic if
-Au=0, in Q,

or equivalently if —u is subharmonic. Superharmonic functions satisfy the mean value formu-
lae

u(x) 2][ u(dsy),  ulx) 2][ u(y)dy,
4B, (x) By (x)
and the strong and weak minimum principle.

Solution. (i) Much like in class, we will show that the second mean value theorem follows
from the first. Indeed, given x € Q and r > 0 such that B, (x) < Q we see that B, (x) < Q for
all p € (0,r] and

.
/ u(y)dy=/ / u(y)dS(y)dp = ,
Br (x) 0 5Bp ) under our assumptlon

/ |0B, (x)| u(x)dp = na(n)u(x)/ " ldp =B, (x)| u(x),
0 0

which implies that

u(x) s][ u(y)dy.
By (x)
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(i)

(iii)

(iv)
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We turn our attention to the first mean value theorem and consider the function
¢(p) =][ u(y)ds(y).
0B, (x)

Just like in class, since u € C? (Q) we see that for any x € Q, ¢(p) is differentiable on an open
interval (0, r) and

¢'(p) = 3][ Au(y)dy.
"/ By (x)

As u is subharmonic we conclude that ¢'(p) = 0 and consequently that ¢ is increasing. We
conclude that for any r > 0 such that B, (x) c Q we have that

][ u(y)dS(y) =¢(r) = lim+(p(£) = u(x).
9B (%) €=0

Here we have used the fact that if f is continuous at x, then

][ fydy — f(xo).
0B (x0) e—07

The proof is almost identical to the strong maximum principle from class. Assume that
X € Q such that
u(xp) = maxu(x) = M.
Q
Then, since Q is open, we can find r (xp) > 0 such that m(xo) c Q. Since u is subhar-
monic the mean value formula tells us that

M = u(xp) s][ u(y)dys][ Mdy =M.
Br(xo)(xo) Br(xo)(x(])

This implies that f, ) (50
r{xp

u(y)dy = M or that

][ (M -u(y))dy=o.
By (xg) (x0)

Since M — u(y) = 0 for all y € Q and it is a continuous function on B, (xy) we must have
that u(y) = M for all y € B, (4, (xo). We conclude that if x¢ € u~ 1 {M} N Q then there exists
r (xo) > 0 such that By (xy (xp) © uw N (M)NQ. ie. theset u 1 {M}NnQ is open in Q. It is also
closed in Q as the preimage of a closed set by a continuous function. Since Q is connected
and u~ ' {M} N Q is not empty by assumption, we conclude that it is Q, i.e. u is constant
on Q. Due to continuity of u we conclude that it is also constant on Q which shows the
desired result.

This follows directly as in class - Since u € C (5) it must have a maximum on Q. Denote it

by M. Ifitis attained at an internal point then u must be constant and as such

max u(x) = max u(x).
a 00

Otherwise, it is attained on 0Q and the above still holds.
A subharmonic function does not satisfy the minimum principle necessarily. Indeed, con-
sider the one dimensional function u(x) = x2 on (=1,1). It is subharmonic but its mini-
mum is an internal point.

U
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Exercise 2 (Application of the maximum principle for subharmonic functions - comparison the-
orem). Let Q be an open, bounded and connected set in R”. Assume that for i = 1,2 we have

that u; € C2(Q)nC (5) satisfy
-Au;=f; inQ,
U =gj on 09,
where f; € C(Q) and g; € C(0Q) for i = 1,2. Assume that f; < f> and g; < g» and prove that
u1 < up. This is known as a comparison principle.
Solution. We define u = u; —u, € C2(Q)nC (5) and notice that in Q

—Au=fi-f2=0,
i.e. uis subharmonic. Using the weak maximum principle we find that

maxuy =maxu =max(g; —g2) <0
a 0Q 0Q (g1-8) =0,

which implies that for any x € Q
u1(x) = uz(x) = u(x) <0,
showing the desired result. U

Exercise 3 (Weak maximum principle without mean value formula). Let Q2 be an open, bounded
and connected in R”. Consider the equation

—Au(x)+b(x)-Vu(x) = f(x), xeQ

where b = {b;}_, € C! (E;R”). Our goal is to show thatif ue C2(Q)nC (5) is a solution to the
equation in Q then if f <0 (subharmonic solution) u has a weak maximum principle.
(i) Assuming xj € Q is a local maximum for u, show that if f <0 on Q then

—Au(xy) <0.

(ii) Recall that a necessary condition for a point x, to be a local maximum for a C? function
@ : Q — Ris that the Hessian matrix at xo, Hess ¢ (xp), is negative semi-definite, i.e. all its
eigenvalues are non-positive or equivalently, for any y € R"

yTHess ¢ (x9) y < —a (xo) |y|2,

for some a (xg) = 0. Use this to show that if xy € Q is a local maximum for © then Au (xg) < 0.
(iii) Show that if f < 0in Q then u can’t have a local maximum in Q, and as such satisfies the
weak maximum principle.
(iv) We want to extend the above to the case f < 0. For any A, € € R define

Ue 2 (X) = u(x) + geM,

(a) Show that
Ve 2 (x) = Vu(x) + ere™ (1,0,0,...,007,
and
Aug 2 (x) = Au(x) + eA2eM,

(b) Show that u, ) solves the equation

— A ) (X) + B(X) - Vg A (X) = f(x) — €A (A - by (x)) e
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(c) Show that there exists Ag > 0 such that forall e >0
f(x)—edo (Ao — b1 (x)) €M <0

on Q.
(d) Conclude that for any € >0

rnax(u(x) + ee’loxl) = max(u(x) + Eel‘)xl)
a 0Q
and consequently

u(x) < maxu(y) + e maxe)
0Q yeoQ

for all x € Q.
(e) Conclude the weak maximum principle for u.

Remark: This could be extended to more general elliptic PDEs.

Solution. (i) We know that if xy € Q is a local extremum then Vu (xp) = 0. Consequently,
—Au(xg) = f(xg) <O0.
(ii) We recall that
Au(x) = i Ox;x; u(x) = tr (Hessu(x)).
As the trace of a symmetric matri;( ils the sum of its eigenvalues, we know that if xy is a local
maximum then these eigenvalues are non-positive and consequently

Au(xg) <0.

(iii) This follows immediately from the last two parts. Indeed, if xy was local maximum then
—Au(xp) <0 and Au(xp) < 0 which is impossible. Consequently, u can't attain any global
maximum in an internal point and we get the weak maximum principle.

(iv) (@) We have that

eleM =1,
Oy, Ug 2 (X) = 0y, u(x) +
Xi s,]L() Xi (x) {0’ i;ﬁl,
which shows the first statement. Similarly
5 o 0+ eA2eM, =1,
x; Ug 1 (X) = O, U(X
x;x; Ye A XiXi 0’ i £ 1’

and as such
n

At (X) = Y Ox, u(x) = Au(x) + A%
i=1
(b) We have that

—Aug 2 (x) +b(x) - Ve p (x) = —Au(x) —e)2eMn +b(x)-Vu(x)
+ede™ib(x) - (1,0,0,...,0)T = f(x) —eA2e™ + eAb (x) e,

from which we get the desired equality.
(c) Choosing any A > [ by || Lo (5) will give us the desired result. For instance we can choose

Ao = IIby ”Lw(ﬁ) +1.
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(d) Since
— At 1, (X) +B(X) - Vigg 1, () = F() — eAg (Ag — by (x)) &M
<0—elo(Ao— by (x) €M <0
on Q we conclude from (iii) that

m_ax(u(x) + seloxl) = ngax(u(x) + ee’l"xl) .
Q Q

Consequently, for any £ > 0 and any x € Q

u(x) < u(x) + e < m_ax(u(y) + eei"yl)
Q

= max(u(y) +£e’1°3’1) < maxu(y) + e max e,
00 00 00

(e) As the above holds for any £ > 0 we can take it to zero to conclude that for any x € Q

ulx) < r%gxu(y).

Consequently

max u#(x) < maxu(x) < maxu(x),
4Q a 4Q

which gives us the desired weak maximum principle

max u(x) = max u(x).
a 0Q



