PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 7 SOLUTION

Exercise 1 (*Maximum principle for subharmonic functions*). Let Ω be an open, bounded and connected set in \mathbb{R}^n . We say that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is *subharmonic* if

$$-\Delta u \leq 0$$
, in Ω .

(i) Show that subharmonic functions satisfy the mean value formulae

$$u(x) \leq \int_{\partial B_r(x)} u(y) dS(y), \qquad u(x) \leq \int_{B_r(x)} u(y) dy,$$

for any $x \in \Omega$ and r > 0 such that $\overline{B_r(x)} \subset \Omega$.

(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists $x_0 \in \Omega$ such that

$$u(x_0) = \max_{\overline{\Omega}} u(x)$$

then *u* is constant.

(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

$$\max_{\overline{\Omega}} u(x) = \max_{\partial \Omega} u(x).$$

(iv) Do subharmonic functions satisfy the minimum principle?

Remark: A function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is called *superharmonic* if

$$-\Delta u \ge 0, \quad \text{in } \Omega,$$

or equivalently if -u is subharmonic. Superharmonic functions satisfy the mean value formulae

$$u(x) \ge \int_{\partial B_r(x)} u(y) dS(y), \qquad u(x) \ge \int_{B_r(x)} u(y) dy,$$

and the strong and weak minimum principle.

Solution. (i) Much like in class, we will show that the second mean value theorem follows from the first. Indeed, given $x \in \Omega$ and r > 0 such that $\overline{B_r(x)} \subset \Omega$ we see that $\overline{B_\rho(x)} \subset \Omega$ for all $\rho \in (0, r]$ and

$$\int_{B_r(x)} u(y)dy = \int_0^r \int_{\partial_{B_\rho(x)}} u(y)dS(y)d\rho \ge$$
under our assumption
$$\int_0^r \left|\partial B_\rho(x)\right| u(x)d\rho = n\alpha(n)u(x)\int_0^r \rho^{n-1}d\rho = |B_r(x)|u(x),$$

which implies that

$$u(x) \leq \int_{B_r(x)} u(y) dy.$$

We turn our attention to the first mean value theorem and consider the function

$$\phi(\rho) = \int_{\partial B_{\rho}(x)} u(y) dS(y).$$

Just like in class, since $u \in C^2(\Omega)$ we see that for any $x \in \Omega$, $\phi(\rho)$ is differentiable on an open interval (0, r) and

$$\phi'(\rho) = \frac{\rho}{n} \int_{B_{\rho}(x)} \Delta u(y) dy.$$

As *u* is subharmonic we conclude that $\phi'(\rho) \ge 0$ and consequently that ϕ is increasing. We conclude that for any r > 0 such that $\overline{B_r(x)} \subset \Omega$ we have that

$$\oint_{\partial B_r(x)} u(y) dS(y) = \phi(r) \ge \lim_{\varepsilon \to 0^+} \phi(\varepsilon) = u(x).$$

Here we have used the fact that if *f* is continuous at x_0 then

$$\int_{\partial B_{\varepsilon}(x_0)} f(y) dy \underset{\varepsilon \to 0^+}{\longrightarrow} f(x_0)$$

(ii) The proof is almost identical to the strong maximum principle from class. Assume that $x_0 \in \Omega$ such that

$$u(x_0) = \max_{\overline{\Omega}} u(x) = M.$$

Then, since Ω is open, we can find $r(x_0) > 0$ such that $\overline{B_{r(x_0)}}(x_0) \subset \Omega$. Since *u* is subharmonic the mean value formula tells us that

$$M = u(x_0) \leq \int_{B_{r(x_0)}(x_0)} u(y) dy \leq \int_{B_{r(x_0)}(x_0)} M dy = M.$$

This implies that $\int_{B_{r(x_0)}(x_0)} u(y) dy = M$ or that

$$\int_{B_{r(x_0)}(x_0)} \left(M - u(y)\right) dy = 0.$$

Since $M - u(y) \ge 0$ for all $y \in \Omega$ and it is a continuous function on $B_r(x_0)$ we must have that u(y) = M for all $y \in B_{r(x_0)}(x_0)$. We conclude that if $x_0 \in u^{-1} \{M\} \cap \Omega$ then there exists $r(x_0) > 0$ such that $B_{r(x_0)}(x_0) \subset u^{-1}(M) \cap \Omega$. i.e. the set $u^{-1} \{M\} \cap \Omega$ is open in Ω . It is also closed in Ω as the preimage of a closed set by a continuous function. Since Ω is connected and $u^{-1} \{M\} \cap \Omega$ is not empty by assumption, we conclude that it is Ω , i.e. u is constant on Ω . Due to continuity of u we conclude that it is also constant on $\overline{\Omega}$ which shows the desired result.

(iii) This follows directly as in class - Since $u \in C(\overline{\Omega})$ it must have a maximum on $\overline{\Omega}$. Denote it by *M*. If it is attained at an internal point then *u* must be constant and as such

$$\max_{\overline{\Omega}} u(x) = \max_{\partial \Omega} u(x).$$

Otherwise, it is attained on $\partial \Omega$ and the above still holds.

(iv) A subharmonic function does not satisfy the minimum principle necessarily. Indeed, consider the one dimensional function $u(x) = x^2$ on (-1, 1). It is subharmonic but its minimum is an internal point.

Exercise 2 (Application of the maximum principle for subharmonic functions - comparison theorem). Let Ω be an open, bounded and connected set in \mathbb{R}^n . Assume that for i = 1, 2 we have that $u_i \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy

$$\begin{cases} -\Delta u_i = f_i & \text{in } \Omega, \\ u_i = g_i & \text{on } \partial \Omega_i \end{cases}$$

where $f_i \in C(\Omega)$ and $g_i \in C(\partial\Omega)$ for i = 1, 2. Assume that $f_1 \leq f_2$ and $g_1 \leq g_2$ and prove that $u_1 \leq u_2$. This is known as a *comparison principle*.

Solution. We define $u = u_1 - u_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ and notice that in Ω

$$-\Delta u = f_1 - f_2 \le 0,$$

i.e. *u* is subharmonic. Using the weak maximum principle we find that

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u = \max_{\partial \Omega} (g_1 - g_2) \le 0,$$

which implies that for any $x \in \overline{\Omega}$

$$u_1(x) - u_2(x) = u(x) \le 0,$$

showing the desired result.

Exercise 3 (Weak maximum principle without mean value formula). Let Ω be an open, bounded and connected in \mathbb{R}^n . Consider the equation

$$-\Delta u(x) + \boldsymbol{b}(x) \cdot \nabla u(x) = f(x), \qquad x \in \Omega$$

where $\boldsymbol{b} = \{b_i\}_{i=1}^n \in C^1(\overline{\Omega}; \mathbb{R}^n)$. Our goal is to show that if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is a solution to the equation in Ω then if $f \leq 0$ (subharmonic solution) u has a weak maximum principle.

(i) Assuming $x_0 \in \Omega$ is a local maximum for *u*, show that if f < 0 on Ω then

$$-\Delta u(x_0) < 0.$$

(ii) Recall that a necessary condition for a point x_0 to be a local maximum for a C^2 function $\varphi : \Omega \to \mathbb{R}$ is that the Hessian matrix at x_0 , Hess $\varphi(x_0)$, is negative semi-definite, i.e. all its eigenvalues are non-positive or equivalently, for any $y \in \mathbb{R}^n$

$$\boldsymbol{y}^{T}$$
Hess $\boldsymbol{\varphi}(x_{0}) \boldsymbol{y} \leq -\boldsymbol{\alpha}(x_{0}) |\boldsymbol{y}|^{2}$,

for some $\alpha(x_0) \ge 0$. Use this to show that if $x_0 \in \Omega$ is a local maximum for u then $\Delta u(x_0) \le 0$. (iii) Show that if f < 0 in Ω then u can't have a local maximum in Ω , and as such satisfies the

- weak maximum principle.
- (iv) We want to extend the above to the case $f \leq 0$. For any $\lambda, \varepsilon \in \mathbb{R}$ define

$$u_{\varepsilon,\lambda}(x) = u(x) + \varepsilon e^{\lambda x_1}.$$

(a) Show that

$$\nabla u_{\varepsilon,\lambda}(x) = \nabla u(x) + \varepsilon \lambda e^{\lambda x_1} (1, 0, 0, \dots, 0)^T$$

and

$$\Delta u_{\varepsilon,\lambda}(x) = \Delta u(x) + \varepsilon \lambda^2 e^{\lambda x_1}.$$

(b) Show that $u_{\varepsilon,\lambda}$ solves the equation

$$-\Delta u_{\varepsilon,\lambda}(x) + \boldsymbol{b}(x) \cdot \nabla u_{\varepsilon,\lambda}(x) = f(x) - \varepsilon \lambda \left(\lambda - b_1(x)\right) e^{\lambda x_1}.$$

(c) Show that there exists $\lambda_0 > 0$ such that for all $\varepsilon > 0$

$$f(x) - \varepsilon \lambda_0 \left(\lambda_0 - b_1(x)\right) e^{\lambda_0 x_1} < 0$$

on Ω.

(d) Conclude that for any $\varepsilon > 0$

$$\max_{\overline{\Omega}} \left(u(x) + \varepsilon e^{\lambda_0 x_1} \right) = \max_{\partial \Omega} \left(u(x) + \varepsilon e^{\lambda_0 x_1} \right)$$

and consequently

$$u(x) \le \max_{\partial \Omega} u(y) + \varepsilon \max_{y \in \partial \Omega} e^{\lambda_0 y_1}$$

for all $x \in \overline{\Omega}$.

(e) Conclude the weak maximum principle for *u*.

Remark: This could be extended to more general elliptic PDEs.

Solution. (i) We know that if $x_0 \in \Omega$ is a local extremum then $\nabla u(x_0) = 0$. Consequently,

$$-\Delta u(x_0) = f(x_0) < 0.$$

(ii) We recall that

$$\Delta u(x) = \sum_{i=1}^{n} \partial_{x_i x_i} u(x) = \operatorname{tr} (\operatorname{Hess} u(x)).$$

As the trace of a symmetric matrix is the sum of its eigenvalues, we know that if x_0 is a local maximum then these eigenvalues are non-positive and consequently

$$\Delta u(x_0) \leq 0.$$

- (iii) This follows immediately from the last two parts. Indeed, if x_0 was local maximum then $-\Delta u(x_0) < 0$ and $\Delta u(x_0) \le 0$ which is impossible. Consequently, *u* can't attain any global maximum in an internal point and we get the weak maximum principle.
- (iv) (a) We have that

$$\partial_{x_i} u_{\varepsilon,\lambda}(x) = \partial_{x_i} u(x) + \begin{cases} \varepsilon \lambda e^{\lambda x_1}, & i = 1, \\ 0, & i \neq 1, \end{cases}$$

which shows the first statement. Similarly

$$\partial_{x_i x_i} u_{\varepsilon,\lambda}(x) = \partial_{x_i x_i} u(x) + \begin{cases} \varepsilon \lambda^2 e^{\lambda x_1}, & i = 1, \\ 0, & i \neq 1, \end{cases}$$

and as such

$$\Delta u_{\varepsilon,\lambda}(x) = \sum_{i=1}^n \partial_{x_i x_i} u(x) = \Delta u(x) + \varepsilon \lambda^2 e^{\lambda x}.$$

(b) We have that

$$-\Delta u_{\varepsilon,\lambda}(x) + \mathbf{b}(x) \cdot \nabla u_{\varepsilon,\lambda}(x) = -\Delta u(x) - \varepsilon \lambda^2 e^{\lambda x_1} + \mathbf{b}(x) \cdot \nabla u(x)$$
$$+ \varepsilon \lambda e^{\lambda x_1} \mathbf{b}(x) \cdot (1,0,0,\ldots,0)^T = f(x) - \varepsilon \lambda^2 e^{\lambda x_1} + \varepsilon \lambda b_1(x) e^{\lambda x_1},$$

from which we get the desired equality.

(c) Choosing any $\lambda > \|b_1\|_{L^{\infty}(\overline{\Omega})}$ will give us the desired result. For instance we can choose $\lambda_0 = \|b_1\|_{L^{\infty}(\overline{\Omega})} + 1.$

(d) Since

$$-\Delta u_{\varepsilon,\lambda_0}(x) + \mathbf{b}(x) \cdot \nabla u_{\varepsilon,\lambda_0}(x) = f(x) - \varepsilon \lambda_0 \left(\lambda_0 - b_1(x)\right) e^{\lambda_0 x_1}$$

$$\leq 0 - \varepsilon \lambda_0 \left(\lambda_0 - b_1(x)\right) e^{\lambda_0 x_1} < 0$$

on Ω we conclude from (iii) that

$$\max_{\overline{\Omega}} \Big(u(x) + \varepsilon e^{\lambda_0 x_1} \Big) = \max_{\partial \Omega} \Big(u(x) + \varepsilon e^{\lambda_0 x_1} \Big).$$

Consequently, for any
$$\varepsilon > 0$$
 and any $x \in \overline{\Omega}$

tly, for any
$$\varepsilon > 0$$
 and any $x \in \overline{\Omega}$
$$u(x) \le u(x) + \varepsilon e^{\lambda_0 x_1} \le \max_{\overline{\Omega}} \left(u(y) + \varepsilon e^{\lambda_0 y_1} \right)$$
$$= \max_{\partial \Omega} \left(u(y) + \varepsilon e^{\lambda_0 y_1} \right) \le \max_{\partial \Omega} u(y) + \varepsilon \max_{\partial \Omega} e^{\lambda_0 y_1}.$$

(e) As the above holds for any $\varepsilon > 0$ we can take it to zero to conclude that for any $x \in \overline{\Omega}$

$$u(x) \le \max_{\partial \Omega} u(y).$$

Consequently

$$\max_{\partial\Omega} u(x) \le \max_{\overline{\Omega}} u(x) \le \max_{\partial\Omega} u(x),$$

which gives us the desired weak maximum principle

$$\max_{\overline{\Omega}} u(x) = \max_{\partial \Omega} u(x).$$