
PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 7 SOLUTION

Exercise 1 (Maximum principle for subharmonic functions). Let Ω be an open, bounded and

connected set in Rn . We say that u ∈C 2 (Ω)∩C
(
Ω

)
is subharmonic if

−∆u ≤ 0, inΩ.

(i) Show that subharmonic functions satisfy the mean value formulae

u(x) ≤−
ˆ
∂Br (x)

u(y)dS(y), u(x) ≤−
ˆ

Br (x)
u(y)d y,

for any x ∈Ω and r > 0 such that Br (x) ⊂Ω.
(ii) Show that subharmonic functions satisfy the strong maximum principle: If there exists

x0 ∈Ω such that

u (x0) = max
Ω

u(x)

then u is constant.
(iii) Conclude that subharmonic functions satisfy the weak maximum principle:

max
Ω

u(x) = max
∂Ω

u(x).

(iv) Do subharmonic functions satisfy the minimum principle?

Remark: A function u ∈C 2 (Ω)∩C
(
Ω

)
is called superharmonic if

−∆u ≥ 0, inΩ,

or equivalently if −u is subharmonic. Superharmonic functions satisfy the mean value formu-
lae

u(x) ≥−
ˆ
∂Br (x)

u(y)dS(y), u(x) ≥−
ˆ

Br (x)
u(y)d y,

and the strong and weak minimum principle.

Solution. (i) Much like in class, we will show that the second mean value theorem follows
from the first. Indeed, given x ∈Ω and r > 0 such that Br (x) ⊂Ω we see that Bρ(x) ⊂Ω for
all ρ ∈ (0,r ] andˆ

Br (x)
u(y)d y =

ˆ r

0

ˆ
∂Bρ (x)

u(y)dS(y)dρ ≥
under our assumption

ˆ r

0

∣∣∂Bρ(x)
∣∣u(x)dρ = nα(n)u(x)

ˆ r

0
ρn−1dρ = |Br (x)|u(x),

which implies that

u(x) ≤−
ˆ

Br (x)
u(y)d y.
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We turn our attention to the first mean value theorem and consider the function

φ(ρ) =−
ˆ
∂Bρ(x)

u(y)dS(y).

Just like in class, since u ∈C 2 (Ω) we see that for any x ∈Ω,φ(ρ) is differentiable on an open
interval (0,r ) and

φ′(ρ) = ρ

n
−
ˆ

Bρ(x)
∆u(y)d y.

As u is subharmonic we conclude that φ′(ρ) ≥ 0 and consequently that φ is increasing. We
conclude that for any r > 0 such that Br (x) ⊂Ωwe have that

−
ˆ
∂Br (x)

u(y)dS(y) =φ(r ) ≥ lim
ε→0+

φ (ε) = u(x).

Here we have used the fact that if f is continuous at x0 then

−
ˆ
∂Bε(x0)

f (y)d y −→
ε→0+

f (x0) .

(ii) The proof is almost identical to the strong maximum principle from class. Assume that
x0 ∈Ω such that

u (x0) = max
Ω

u(x) = M .

Then, since Ω is open, we can find r (x0) > 0 such that Br (x0) (x0) ⊂ Ω. Since u is subhar-
monic the mean value formula tells us that

M = u (x0) ≤−
ˆ

Br (x0)(x0)
u(y)d y ≤−

ˆ
Br (x0)(x0)

Md y = M .

This implies that −́
Br (x0)(x0) u(y)d y = M or that

−
ˆ

Br (x0)(x0)

(
M −u(y)

)
d y = 0.

Since M −u(y) ≥ 0 for all y ∈ Ω and it is a continuous function on Br (x0) we must have
that u(y) = M for all y ∈ Br (x0) (x0). We conclude that if x0 ∈ u−1 {M }∩Ω then there exists
r (x0) > 0 such that Br (x0) (x0) ⊂ u−1 (M)∩Ω. i.e. the set u−1 {M }∩Ω is open in Ω. It is also
closed inΩ as the preimage of a closed set by a continuous function. SinceΩ is connected
and u−1 {M }∩Ω is not empty by assumption, we conclude that it is Ω, i.e. u is constant
on Ω. Due to continuity of u we conclude that it is also constant on Ω which shows the
desired result.

(iii) This follows directly as in class - Since u ∈C
(
Ω

)
it must have a maximum on Ω. Denote it

by M . If it is attained at an internal point then u must be constant and as such

max
Ω

u(x) = max
∂Ω

u(x).

Otherwise, it is attained on ∂Ω and the above still holds.
(iv) A subharmonic function does not satisfy the minimum principle necessarily. Indeed, con-

sider the one dimensional function u(x) = x2 on (−1,1). It is subharmonic but its mini-
mum is an internal point.

□
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Exercise 2 (Application of the maximum principle for subharmonic functions - comparison the-
orem). Let Ω be an open, bounded and connected set in Rn . Assume that for i = 1,2 we have

that ui ∈C 2 (Ω)∩C
(
Ω

)
satisfy { −∆ui = fi inΩ,

ui = gi on ∂Ω,

where fi ∈ C (Ω) and gi ∈ C (∂Ω) for i = 1,2. Assume that f1 ≤ f2 and g1 ≤ g2 and prove that
u1 ≤ u2. This is known as a comparison principle.

Solution. We define u = u1 −u2 ∈C 2 (Ω)∩C
(
Ω

)
and notice that inΩ

−∆u = f1 − f2 ≤ 0,

i.e. u is subharmonic. Using the weak maximum principle we find that

max
Ω

u = max
∂Ω

u = max
∂Ω

(
g1 − g2

)≤ 0,

which implies that for any x ∈Ω
u1(x)−u2(x) = u(x) ≤ 0,

showing the desired result. □

Exercise 3 (Weak maximum principle without mean value formula). LetΩbe an open, bounded
and connected in Rn . Consider the equation

−∆u(x)+b(x) ·∇u(x) = f (x), x ∈Ω
where b = {bi }n

i=1 ∈ C 1
(
Ω;Rn

)
. Our goal is to show that if u ∈ C 2 (Ω)∩C

(
Ω

)
is a solution to the

equation inΩ then if f ≤ 0 (subharmonic solution) u has a weak maximum principle.

(i) Assuming x0 ∈Ω is a local maximum for u, show that if f < 0 onΩ then

−∆u (x0) < 0.

(ii) Recall that a necessary condition for a point x0 to be a local maximum for a C 2 function
ϕ :Ω→ R is that the Hessian matrix at x0, Hess ϕ (x0), is negative semi-definite, i.e. all its
eigenvalues are non-positive or equivalently, for any y ∈Rn

y T Hessϕ (x0) y ≤−α (x0)
∣∣y

∣∣2 ,

for someα (x0) ≥ 0. Use this to show that if x0 ∈Ω is a local maximum for u then∆u (x0) ≤ 0.
(iii) Show that if f < 0 in Ω then u can’t have a local maximum in Ω, and as such satisfies the

weak maximum principle.
(iv) We want to extend the above to the case f ≤ 0. For any λ,ε ∈R define

uε,λ(x) = u(x)+εeλx1 .

(a) Show that
∇uε,λ(x) =∇u(x)+ελeλx1 (1,0,0, . . . ,0)T ,

and
∆uε,λ(x) =∆u(x)+ελ2eλx1 .

(b) Show that uε,λ solves the equation

−∆uε,λ(x)+b(x) ·∇uε,λ(x) = f (x)−ελ (λ−b1(x))eλx1 .
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(c) Show that there exists λ0 > 0 such that for all ε> 0

f (x)−ελ0 (λ0 −b1(x))eλ0x1 < 0

onΩ.
(d) Conclude that for any ε> 0

max
Ω

(
u(x)+εeλ0x1

)
= max

∂Ω

(
u(x)+εeλ0x1

)
and consequently

u(x) ≤ max
∂Ω

u(y)+εmax
y∈∂Ω

eλ0 y1

for all x ∈Ω.
(e) Conclude the weak maximum principle for u.

Remark: This could be extended to more general elliptic PDEs.

Solution. (i) We know that if x0 ∈Ω is a local extremum then ∇u (x0) = 0. Consequently,

−∆u (x0) = f (x0) < 0.

(ii) We recall that

∆u(x) =
n∑

i=1
∂xi xi u(x) = tr(Hessu(x)) .

As the trace of a symmetric matrix is the sum of its eigenvalues, we know that if x0 is a local
maximum then these eigenvalues are non-positive and consequently

∆u (x0) ≤ 0.

(iii) This follows immediately from the last two parts. Indeed, if x0 was local maximum then
−∆u(x0) < 0 and ∆u(x0) ≤ 0 which is impossible. Consequently, u can’t attain any global
maximum in an internal point and we get the weak maximum principle.

(iv) (a) We have that

∂xi uε,λ(x) = ∂xi u(x)+
{
ελeλx1 , i = 1,

0, i ̸= 1,

which shows the first statement. Similarly

∂xi xi uε,λ(x) = ∂xi xi u(x)+
{
ελ2eλx1 , i = 1,

0, i ̸= 1,

and as such

∆uε,λ(x) =
n∑

i=1
∂xi xi u(x) =∆u(x)+ελ2eλx .

(b) We have that

−∆uε,λ(x)+b(x) ·∇uε,λ(x) =−∆u(x)−ελ2eλx1 +b(x) ·∇u(x)

+ελeλx1 b(x) · (1,0,0, . . . ,0)T = f (x)−ελ2eλx1 +ελb1(x)eλx1 ,

from which we get the desired equality.
(c) Choosing any λ> ∥b1∥L∞

(
Ω

) will give us the desired result. For instance we can choose

λ0 = ∥b1∥L∞
(
Ω

)+1.
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(d) Since
−∆uε,λ0 (x)+b(x) ·∇uε,λ0 (x) = f (x)−ελ0 (λ0 −b1(x))eλ0x1

≤ 0−ελ0 (λ0 −b1(x))eλ0x1 < 0

onΩwe conclude from (iii) that

max
Ω

(
u(x)+εeλ0x1

)
= max

∂Ω

(
u(x)+εeλ0x1

)
.

Consequently, for any ε> 0 and any x ∈Ω
u(x) ≤ u(x)+εeλ0x1 ≤ max

Ω

(
u(y)+εeλ0 y1

)
= max

∂Ω

(
u(y)+εeλ0 y1

)
≤ max

∂Ω
u(y)+εmax

∂Ω
eλ0 y1 .

(e) As the above holds for any ε> 0 we can take it to zero to conclude that for any x ∈Ω
u(x) ≤ max

∂Ω
u(y).

Consequently
max
∂Ω

u(x) ≤ max
Ω

u(x) ≤ max
∂Ω

u(x),

which gives us the desired weak maximum principle

max
Ω

u(x) = max
∂Ω

u(x).

□


