
PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 8

Exercise 1 (Properties of the fundamental solution to the Heat equation). Let

Φ(x, t ) = 1

(4πkt )
n
2

e− |x|2
4kt ,

where k > 0 is given, be the fundamental solution to the Heat equation.

(i) Show that for any p ≥ 1

∥Φ(x, t )∥Lp (Rn ) =
(4πkt )

n(1−p)
2p

p
n

2p

You may use the fact that
´
Rn e−|y|2

2 d y = (2π)
n
2 .

In particular, ˆ
Rn
Φ(x, t )d x = ∥Φ (·, t )∥L1(Rn ) = 1

for all t > 0.
(ii) Young’s convolution inequality states that if f ∈ Lp (Rn) and g ∈ Lq (Rn) where p, q ∈ [1,∞]

are such that
1

p
+ 1

q
= 1+ 1

r
for some r ∈ [1,∞] then f ∗ g ∈ Lr (Rn) and∥∥ f ∗ g

∥∥
Lr (Rn ) ≤

∥∥ f
∥∥

Lp (Rn )

∥∥g
∥∥

Lq (Rn ) .

Use this to show that for any g ∈Cc (Rn) we have that for any r ≥ 1 and any 1 ≤ p ≤ r

∥∥Φ(·, t )∗ g
∥∥

Lr ≤
Cp,n,k

∥∥g
∥∥

L
r p

r p+p−r (Rn )

t
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where Cp,n,k is an explicit constant that depends only on p, n, and k.

Exercise 2 (Bonus – additional bounds on u =Φ∗g ). Consider the solution to the heat equation

ut (x, t )−k∆u(x, t ) = 0, x ∈Rn , t > 0,

u(x,0) = g (x), x ∈Rn ,

where k > 0 and g ∈ L1 (Rn), given by

u(x, t ) =
ˆ
Rn
Φ(x − y, t )g (y)d y

with

Φ(x, t ) = 1

(4πkt )
n
2

e− |x|2
4kt .

(i) Show that if g ∈ L∞ (Rn) then so is u. Moreover

∥u∥L∞(Rn×(0,∞)) ≤
∥∥g

∥∥
L∞(Rn ) .
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(ii) If g ∈ L2 (Rn) one can show that u(·, t ) ∈ L2 (Rn) for all t > 0 (follows from the previous
exercise!). Show that for any t > 0

∥u (·, t )∥L2(Rn ) ≤
∥∥g

∥∥
L2(Rn ) .

Hint: You may use the following:

Φ≥ 0, and

ˆ
Rn
Φ(z, t )d z = 1, ∀t > 0.

Φ̂(ξ, t ) = 1

(2π)
n
2

e−kt |ξ|2 .

Exercise 3 (The energy method: Uniqueness for the heat equation in a time dependent domain).
Let k > 0, T > 0 be given. Let a,b : [0,T ] → R be smooth functions such that a(t ) < b(t ) for all
t ∈ [0,T ]. Let U ⊂R× (0,T ] be the non-cylindrical domain

U = {(x, t ) ∈R× (0,T ] | a(t ) < x < b(t )} .

Consider the heat equation 
ut −kuxx = f (x, t ) (x, t ) ∈U ,
u(a(t ), t ) = g1(t ) t ∈ [0,T ],
u(b(t ), t ) = g2(t ) t ∈ [0,T ],
u(x,0) = u0(x) x ∈ (a(0),b(0)) .

Use the energy method to prove that the equation has at most one smooth solution.

Exercise 4 (Grönwall’s inequality). Another important inequality in the study of PDEs, in par-
ticular in the study of long time behaviour of solutions, is the so-called Grönwall’s inequality
which state that if y : [0,T ] → R is continuous and differentiable on (0,T ), and if there exists
λ ∈R such that

y ′(t ) ≤λy(t )

then we have that
y(t ) ≤ y(0)eλt .

Prove Grönwall’s inequality.
Remark: The above inequality can be generalised to show that if

y ′(t ) ≤λ(t )y(t )

then y(t ) ≤ y(0)e
´ t

0 λ(s)d s . There are additional important Grönwall inequalities which we won’t
mention at this point.

Exercise 5. Let T > 0 be given and define

ΩT = (a,b)× (0,T ]

for a given −∞< a < b <∞.

(i) Show that there exists at most one solution u ∈C 2
1 (ΩT )∩C

(
ΩT

)
to the problem

(1)

{
ut −uxx = 1 (x, t ) ∈ΩT ,
u = 0 (x, t ) ∈ ΓT ,

where ΓT = (a,b)× {0}∪ {a}× [0,T ]∪ {b}× [0,T ].

(ii) Assume that u is a C 2
1 (ΩT )∩C

(
ΩT

)
solution to (1). Show that for any (x, t ) ∈ΩT

0 ≤ u(x, t ) ≤ t .


