
PARTIAL DIFFERENTIAL EQUATIONS III & V

PROBLEM CLASS 8

Exercise 1 (Properties of the fundamental solution to the Heat equation). Let

ω(x, t ) = 1

(4ωkt )
n

2
e
→ |x|2

4kt ,

where k > 0 is given, be the fundamental solution to the Heat equation.
(i) Show that for any p ↑ 1

↓ω(x, t )↓Lp (Rn ) =
(4ωkt )

n(1→p)
2p

p

n

2p

You may use the fact that
´
Rn e

→ |y|2
2 d y = (2ω)

n

2 .
In particular, ˆ

Rn

ω(x, t )d x = ↓ω (·, t )↓L1(Rn ) = 1

for all t > 0.
(ii) Young’s convolution inequality states that if f ↔ L

p (Rn) and g ↔ L
q (Rn) where p, q ↔ [1,↗]

are such that
1
p
+ 1

q
= 1+ 1

r

for some r ↔ [1,↗] then f ↘ g ↔ L
r (Rn) and

∥∥ f ↘ g

∥∥
Lr (Rn ) ≃

∥∥ f

∥∥
Lp (Rn )

∥∥g

∥∥
Lq (Rn ) .

Use this to show that for any g ↔Cc (Rn) we have that for any r ↑ 1 and any 1 ≃ p ≃ r

∥∥ω(·, t )↘ g

∥∥
Lr ≃

Cp,n,k
∥∥g

∥∥
L

r p

r p+p→r (Rn )

t

n(p→1)
2p

where Cp,n,k is an explicit constant that depends only on p, n, and k.

1



2 PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 8



PARTIAL DIFFERENTIAL EQUATIONS III & V PROBLEM CLASS 8 3

Exercise 2 (Bonus – additional bounds on u =ω↘g ). Consider the solution to the heat equation

ut (x, t )→kεu(x, t ) = 0, x ↔Rn , t > 0,

u(x,0) = g (x), x ↔Rn ,

ut (x, t )→kεu(x, t ) = 0, x ↔Rn , t > 0,
u(x,0) = g (x), x ↔Rn ,

where k > 0 and g ↔ L
1 (Rn), given by

u(x, t ) =
ˆ
Rn

ω(x → y, t )g (y)d y

with

ω(x, t ) = 1

(4ωkt )
n

2
e
→ |x|2

4kt .

(i) Show that if g ↔ L
↗ (Rn) then so is u. Moreover

↓u↓L↗(Rn⇐(0,↗)) ≃
∥∥g

∥∥
L↗(Rn ) .

(ii) If g ↔ L
2 (Rn) one can show that u(·, t ) ↔ L

2 (Rn) for all t > 0 (follows from the previous
exercise!). Show that for any t > 0

↓u (·, t )↓L2(Rn ) ≃
∥∥g

∥∥
L2(Rn ) .

Hint: You may use the following:

ω↑ 0, and
ˆ
Rn

ω(z, t )d z = 1, ⇒t > 0.

ω̂(ε, t ) = 1

(2ω)
n

2
e
→kt |ε|2 .
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Exercise 3 (The energy method: Uniqueness for the heat equation in a time dependent domain).
Let k > 0, T > 0 be given. Let a,b : [0,T ] ⇑ R be smooth functions such that a(t ) < b(t ) for all
t ↔ [0,T ]. Let U ⇓R⇐ (0,T ] be the non-cylindrical domain

U = {(x, t ) ↔R⇐ (0,T ] | a(t ) < x < b(t )} .

Consider the heat equation




ut →kuxx = f (x, t ) (x, t ) ↔U ,
u(a(t ), t ) = g1(x) t ↔ [0,T ],
u(b(t ), t ) = g2(x) t ↔ [0,T ],
u(x,0) = u0(x) x ↔ (a(0),b(0)) .

Use the energy method to prove that the equation has at most one smooth solution.
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Exercise 4 (Grönwall’s inequality). Another important inequality in the study of PDEs, in par-
ticular in the study of long time behaviour of solutions, is the so-called Grönwall’s inequality
which state that if y : [0,T ] ⇑ R is continuous and differentiable on (0,T ), and if there exists
ϑ ↔R such that

y
⇔(t ) ≃ϑy(t )

then we have that
y(t ) ≃ y(0)e

ϑt .
Prove Grönwall’s inequality.
Remark: The above inequality can be generalised to show that if

y
⇔(t ) ≃ϑ(t )y(t )

then y(t ) ≃ y(0)e

´
t

0 ϑ(s)d s . There are additional important Grönwall inequalities which we won’t
mention at this point.
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Exercise 5. Let T > 0 be given and define

ϑT = (a,b)⇐ (0,T ]

for a given →↗< a < b <↗.

(i) Show that there exists at most one solution u ↔C
2
1 (ϑT )↖C

(
ϑT

)
to the problem

(1)
{

ut →uxx = 1 (x, t ) ↔ϑT ,
u = 0 (x, t ) ↔ ϖT ,

where ϖT = (a,b)⇐ {0}↙ {a}⇐ [0,T ]↙ {b}⇐ [0,T ].
(ii) Assume that u is a C

2
1 (ϑT )↖C

(
ϑT

)
solution to (1). Show that for any (x, t ) ↔ϑT

0 ≃ u(x, t ) ≃ t .
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