PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 8 SOLUTION

Exercise 1 (Properties of the fundamental solution to the Heat equation). Let
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where k > 0 is given, be the fundamental solution to the Heat equation.
(i) Show thatforany p=>1
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You may use the fact that fRn e‘yT dy=(2m)2.
In particular,
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forall £ > 0.
(ii) Young'’s convolution inequality states that if f € LP (R") and g € LY (R") where p, g € [1,00]
are such that
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for some r € [1,00] then f * ge L (R") and

”f* 8llrrmm = ”f”LP([R”) ”g”Lq([R”)'
Use this to show that for any g € C. (R") we have that foranyr>1andanyl<p<r
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where Cp, ,, x is an explicit constant that depends only on p, n, and k.

Solution:
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from which the result follows.
(ii) This follows from the fact that if*
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INote that this inequality automatically implies that p,g < rif p,q,r € [1,00].
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then g = , part (i), and Young’s convolution inequality. Indeed,

rp+p r’
n(p-1)
|oC, 0% g, < 1@l rgs g SN P
’ 8llir = LPR" |8 Lrl”*pr([R") p% 8 LW’;H([R{")'

Exercise 2 (Bonus — additional bounds on u = ® x g). Consider the solution to the heat equation
ui(x,t) — kAu(x, ) =0, xeR"™ >0,
u(x,0) = g(x), xeR",

where k >0 and g € L! (R"), given by

ulx, 1) = / Ox-y,0gly)dy
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with
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(i) Show that if g € L*° (R") then so is u. Moreover
lull o x 0,000 = 1|8 oo geny -

() If ge L% (R™) one can show that u(,t) € L2 (R") for all ¢ > 0 (follows from the previous
exercise!). Show that for any 7 > 0

” u (') t) ”LZ([R”) = ||g||L2([Rn) .
Hint: You may use the following:

b =0, and / O(z,t)dz=1, Vt>0.
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Solution:
(i) We have that for any x € R” and >0

lu(x, 1) S/IR" |-y, 0||g|dy = ||g||Loo(Rn)/RnCD(x—y, Hdy

= el [ 0G0z gl e
z=x-y R"
dz=|(-1D"|dy
Consequently
el ro @ x 0,00 = |8 l| poo ) -

(ii) Passing to the Fourier transform in the spatial variable we find that

0,10 =00 0 *gl) = 2m? BE, 108 =g @ e ",
Using to Plancherel’s identity we find that

NG )% o = 1B Oy = [ 1T(E ) dE
L2[R™) L2(R™) RP

= /[R g @ e qe < /R 8@ dé = ||8] 72 m = 18] T2n)
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giving us the desired result.

Exercise 3 (The energy method: Uniqueness for the heat equation in a time dependent domain).
Let k >0, T > 0 be given. Let a,b : [0, T] — R be smooth functions such that a(¢) < b(¢) for all
te[0,T]. Let U cR x (0, T] be the non-cylindrical domain

U={(x,0)eRx(0,T]|a(t)<x<b(t)}.
Consider the heat equation

ur—kuy,=f(x, 1) (x,teU,
u(a(r),r) = g1(1) tel0, 1],
u(b(t), 1) = g(1) telf0, 1],
u(x,0) = up(x) x € (a(0), b(0)).

Use the energy method to prove that the equation has at most one smooth solution.

Solution:
Assuming there exist two smooth solution to the equation, u; and u,, we start by defining w =
u; — up. The linearity of the equation implies that w solves the equation

wr—kwy,=0 (x,0)eU,
w(a(t),t)=0 t€[0,T],
wb),)=0 te[0,T],
w(x,0)=0 x € (a(0), b(0)).

As is common with the energy method, we will multiply our equation by a function and inte-
grating by parts. In this case (though not always!) it will be w. We have that

b(t) b(t)
/ wix, w(x, t)dx = k/ w(x,t) Wy (x,t)dx.
a(t) a(r)

Since

b(t)
/ w(x,t) Wyx (x,)dx =w (b(1),t) wy (b(1), 1) — w(a(t), t) wy (a(t), 1)
a —— ———

(1) -0 -0

b(t) b(¢)
—/ w5 (x, 1) dx = —/ w2 (x,t)dx
a(t) a(t)

and w;w = 10, (w?) we find that

b(t) b(t)
/ 0 (w?) (x,dx = —Zk/ w? (x, 1) dx.
a(t) a(t)

We would like to write [ :((:)) 0 (w?) dx as a full time derivative. This is not immediately clear as

the boundaries of the integration also depend on ¢. We notice, however, that

b(1) b()
— w? (x, t)dx:/ 0 (w?) (x, ) dx + w? (b(1), H b' (1)
dat J aw a(®) —

(D)
—w?(a(n), ) d (1) :/ at(wz) (x, 1) dx,
N ——

a(t)



4 PARTIAL DIFFERENTIAL EQUATIONS III & V. PROBLEM CLASS 8 SOLUTION

which is justified since all the functions are smooth. We conclude that our equation can be

written as
b(1)
w? (x,£) dx = —Zk/ w2 (x,1)dx <0,

a(t)

d b(t)

d t a(t)
which implies that the energy

1 b(t)
E(1) = —/ w? (x, 1) dx
2 Jaw

is non-increasing. Consequently
b(0)
0<E(H) <E0) = / w? (x,0)dx=0
a(0)
from which we conclude that, since w is continuous, w (x,t) =0 on U or u; = u».
Remark: We could have started by guessing (or being given) the energy and finding its deriva-
tive. Indeed, defining

1 b(t)
E(f) ==~ / w? (x, 1) dx
2 Jaw

we find that (again, all the functions are smooth)

1/M” w? (b(1), ) b (1)
a

d
—E(t) == 0, (w?) (x,0d
B0 =2 . (W) (1) X+ 5 -

=0
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b(t)
= k/ w(x, ) wyx (x,)dx=kw(b(),t) wy(b(1),t) — kw (a(t), t) wy (a(t), )
a —— ——

@ =0 =0

b(1) b(1)
—k/ wi(x,t)dx:—k/ w2 (x,1)dx < 0.
a(r) a(t)

Exercise 4 (Gronwall’s inequality). Another important inequality in the study of PDEs, in par-
ticular in the study of long time behaviour of solutions, is the so-called Gronwall’s inequality
which state that if y : [0, T] — R is continuous and differentiable on (0, T'), and if there exists
A € R such that

Y=y
then we have that
y(1) < y(0)e™.
Prove Gronwall’s inequality.
Remark: The above inequality can be generalised to show that if

¥ (5) = A y(r)

t
then y(1) < y(0) eJo M9ds There are additional important Gronwall inequalities which we won't
mention at this point.
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Solution:
We note that we can write our inequality as

y'(5) = Ay(r) 0.
Had we had equality, we would have used the integrating factor e/ =Vdt — o=At This motivates
us to define z(1) = e M y(t). We find that
2 =e My -Ayn)=<o0.

Since z(t) is differentiable on (0, T') and continuous on [0, T] (as y(¢) is) we conclude that z(f)
must be non-increasing on [0, T']. Consequently, for any € [0, T] we have that z(#) < z(0) = y(0)
which implies

y(1) = z(He* < y(0)e.

Exercise 5. Let T > 0 be given and define
Qr=(a,b)x(0,T]

foragiven —co< a < b < oo.

(i) Show that there exists at most one solution u € Cf QrnC (Q_T) to the problem
M { Ur— Uy =1 (x,0)€Qr,

u=20 (x,0)elr,
whereI'r = (a, b) x {0} u {a} x [0, T] U {b} x [0, T].
(ii) Assume that u is a Cf Qr)nC (Q_T) solution to (1). Show that for any (x, 1) € Q7
O0<u(xt) <t.

Solution:

(i) Assuming that there are two Cl2 Qr)nC (Q_T) solutions, u#; and u,, we define w = u; — u,

which is also a function in C? (Q7)n C (Q_T) and satisfies the equation

wr—wyxx=0 (x,1)€Qr,

u=0 (x,)elr,
Using the weak maximum and weak minimum principles for the heat equation we find
that

maxw(x,t) =maxw(x,t) =0
or Iy

and

minw(x,t) =minw(x,t) =0
or Iy

which implies that w =0 on Qr, or equivalently that u; = u,.
(i) We see that u satisfies
ut - u_xx = 1 > 0
and consequently, according to the weak minimum principle,

minu(x,t) =minu(x,t) =0
or Iy

showing that u(x, t) =0 on Q7.
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We can't use the weak maximum principle on u but we notice that the second inequality
that we'd like to show, u(x, t) < t, can be rewritten as u(x, t) — t < 0. This motivates us to

define w(x, 1) = u(x, t) — t. We find that w € C? (Q7)n C (Q_T) and it satisfies
Wr—Wxx=Ur—1—Uxx =0
in Q7 and
w=0-t=-t
on I'r. Using the weak maximum principle principle for w we find that

maxw(x,t) =maxw(x,t) =max(—1) <0
Q_T I'r I'r

which implies that for any x € Qr

ulx,)=wx,+t<t.



