
PARTIAL DIFFERENTIAL EQUATIONS III & V
PROBLEM CLASS 8 SOLUTION

Exercise 1 (Properties of the fundamental solution to the Heat equation). Let

Φ(x, t ) = 1

(4πkt )
n
2

e− |x|2
4kt ,

where k > 0 is given, be the fundamental solution to the Heat equation.

(i) Show that for any p ≥ 1

∥Φ(x, t )∥Lp (Rn ) =
(4πkt )

n(1−p)
2p

p
n

2p

You may use the fact that
´
Rn e−|y|2

2 d y = (2π)
n
2 .

In particular, ˆ
Rn
Φ(x, t )d x = ∥Φ (·, t )∥L1(Rn ) = 1

for all t > 0.
(ii) Young’s convolution inequality states that if f ∈ Lp (Rn) and g ∈ Lq (Rn) where p, q ∈ [1,∞]

are such that
1

p
+ 1

q
= 1+ 1

r
for some r ∈ [1,∞] then f ∗ g ∈ Lr (Rn) and∥∥ f ∗ g

∥∥
Lr (Rn ) ≤

∥∥ f
∥∥

Lp (Rn )

∥∥g
∥∥

Lq (Rn ) .

Use this to show that for any g ∈Cc (Rn) we have that for any r ≥ 1 and any 1 ≤ p ≤ r

∥∥Φ(·, t )∗ g
∥∥

Lr ≤
Cp,n,k

∥∥g
∥∥

L
r p

r p+p−r (Rn )

t
n(p−1)

2p

where Cp,n,k is an explicit constant that depends only on p, n, and k.

Solution:

(i)

∥Φ(x, t )∥p
Lp (Rn ) =

1

(4πkt )
pn
2

ˆ
Rn

e− p|x|2
4kt d x

=
y=

√
p

2kt x

1

(4πkt )
pn
2

(
2kt

p

) n
2
ˆ
Rn

e−|y|2
2 d y = (4πkt )

n(1−p)
2

p
n
2

,

from which the result follows.
(ii) This follows from the fact that if1

1

p
+ 1

q
= 1+ 1

r
,

1Note that this inequality automatically implies that p, q ≤ r if p, q,r ∈ [1,∞].
1
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then q = r p
r p+p−r , part (i), and Young’s convolution inequality. Indeed,

∥∥Φ(·, t )∗ g
∥∥

Lr ≤ ∥Φ∥Lp (Rn )

∥∥g
∥∥

L
r p

r p+p−r (Rn )
= (4πkt )

n(p−1)
2p

p
n

2p

∥∥g
∥∥

L
r p

r p+p−r (Rn )
.

Exercise 2 (Bonus – additional bounds on u =Φ∗g ). Consider the solution to the heat equation

ut (x, t )−k∆u(x, t ) = 0, x ∈Rn , t > 0,

u(x,0) = g (x), x ∈Rn ,

where k > 0 and g ∈ L1 (Rn), given by

u(x, t ) =
ˆ
Rn
Φ(x − y, t )g (y)d y

with

Φ(x, t ) = 1

(4πkt )
n
2

e− |x|2
4kt .

(i) Show that if g ∈ L∞ (Rn) then so is u. Moreover

∥u∥L∞(Rn×(0,∞)) ≤
∥∥g

∥∥
L∞(Rn ) .

(ii) If g ∈ L2 (Rn) one can show that u(·, t ) ∈ L2 (Rn) for all t > 0 (follows from the previous
exercise!). Show that for any t > 0

∥u (·, t )∥L2(Rn ) ≤
∥∥g

∥∥
L2(Rn ) .

Hint: You may use the following:

Φ≥ 0, and

ˆ
Rn
Φ(z, t )d z = 1, ∀t > 0.

Φ̂(ξ, t ) = 1

(2π)
n
2

e−kt |ξ|2 .

Solution:

(i) We have that for any x ∈Rn and t > 0

|u(x, t )| ≤
ˆ
Rn

∣∣Φ(x − y, t )
∣∣ ∣∣g (y)

∣∣d y ≤ ∥∥g
∥∥

L∞(Rn )

ˆ
Rn
Φ(x − y, t )d y

=
z = x − y

d z = ∣∣(−1)n
∣∣d y

∥∥g
∥∥

L∞(Rn )

ˆ
Rn
Φ(z, t )d z = ∥∥g

∥∥
L∞(Rn ) .

Consequently
∥u∥L∞(Rn×(0,∞)) ≤

∥∥g
∥∥

L∞(Rn ) .

(ii) Passing to the Fourier transform in the spatial variable we find that

û (ξ, t ) = áΦ(·, t )∗ g (ξ) = (2π)
n
2 Φ̂ (ξ, t ) ĝ (ξ) = ĝ (ξ)e−kt |ξ|2 .

Using to Plancherel’s identity we find that

∥u (·, t )∥2
L2(Rn ) = ∥û (·, t )∥2

L2(Rn ) =
ˆ
Rn

|û (ξ, t )|2 dξ

=
ˆ
Rn

∣∣g (ξ)
∣∣2 e−2kt |ξ|2 dξ≤

ˆ
Rn

∣∣g (ξ)
∣∣2 dξ= ∥∥ĝ

∥∥2
L2(Rn ) =

∥∥g
∥∥2

L2(Rn ) ,
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giving us the desired result.

Exercise 3 (The energy method: Uniqueness for the heat equation in a time dependent domain).
Let k > 0, T > 0 be given. Let a,b : [0,T ] → R be smooth functions such that a(t ) < b(t ) for all
t ∈ [0,T ]. Let U ⊂R× (0,T ] be the non-cylindrical domain

U = {(x, t ) ∈R× (0,T ] | a(t ) < x < b(t )} .

Consider the heat equation 
ut −kuxx = f (x, t ) (x, t ) ∈U ,
u(a(t ), t ) = g1(t ) t ∈ [0,T ],
u(b(t ), t ) = g2(t ) t ∈ [0,T ],
u(x,0) = u0(x) x ∈ (a(0),b(0)) .

Use the energy method to prove that the equation has at most one smooth solution.

Solution:
Assuming there exist two smooth solution to the equation, u1 and u2, we start by defining w =
u1 −u2. The linearity of the equation implies that w solves the equation

wt −kwxx = 0 (x, t ) ∈U ,
w(a(t ), t ) = 0 t ∈ [0,T ],
w(b(t ), t ) = 0 t ∈ [0,T ],
w(x,0) = 0 x ∈ (a(0),b(0)) .

As is common with the energy method, we will multiply our equation by a function and inte-
grating by parts. In this case (though not always!) it will be w . We have thatˆ b(t )

a(t )
wt (x, t ) w (x, t )d x = k

ˆ b(t )

a(t )
w (x, t ) wxx (x, t )d x.

Since ˆ b(t )

a(t )
w (x, t ) wxx (x, t )d x = w (b(t ), t )︸ ︷︷ ︸

=0

wx (b(t ), t )−w (a(t ), t )︸ ︷︷ ︸
=0

wx (a(t ), t )

−
ˆ b(t )

a(t )
w 2

x (x, t )d x =−
ˆ b(t )

a(t )
w 2

x (x, t )d x

and wt w = 1
2∂t

(
w 2

)
we find that
ˆ b(t )

a(t )
∂t

(
w 2) (x, t )d x =−2k

ˆ b(t )

a(t )
w 2

x (x, t )d x.

We would like to write
´ b(t )

a(t ) ∂t
(
w 2

)
d x as a full time derivative. This is not immediately clear as

the boundaries of the integration also depend on t . We notice, however, that

d

d t

ˆ b(t )

a(t )
w 2 (x, t )d x =

ˆ b(t )

a(t )
∂t

(
w 2) (x, t )d x +w 2 (b(t ), t )︸ ︷︷ ︸

=0

b′(t )

−w 2 (a(t ), t )︸ ︷︷ ︸
=0

a′(t ) =
ˆ b(t )

a(t )
∂t

(
w 2) (x, t )d x,
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which is justified since all the functions are smooth. We conclude that our equation can be
written as

d

d t

ˆ b(t )

a(t )
w 2 (x, t )d x =−2k

ˆ b(t )

a(t )
w 2

x (x, t )d x ≤ 0,

which implies that the energy

E(t ) = 1

2

ˆ b(t )

a(t )
w 2 (x, t )d x

is non-increasing. Consequently

0 ≤ E(t ) ≤ E(0) =
ˆ b(0)

a(0)
w 2 (x,0)d x = 0

from which we conclude that, since w is continuous, w (x, t ) = 0 on U or u1 ≡ u2.
Remark: We could have started by guessing (or being given) the energy and finding its deriva-
tive. Indeed, defining

E(t ) = 1

2

ˆ b(t )

a(t )
w 2 (x, t )d x

we find that (again, all the functions are smooth)

d

d t
E(t ) = 1

2

ˆ b(t )

a(t )
∂t

(
w 2) (x, t )d x + w 2 (b(t ), t )b′(t )

2︸ ︷︷ ︸
=0

− w 2 (a(t ), t ) a′(t )

2︸ ︷︷ ︸
=0

=
ˆ b(t )

a(t )
w (x, t ) wt (x, t )d x

= k

ˆ b(t )

a(t )
w (x, t ) wxx (x, t )d x = k w (b(t ), t )︸ ︷︷ ︸

=0

wx (b(t ), t )−k w (a(t ), t )︸ ︷︷ ︸
=0

wx (a(t ), t )

−k

ˆ b(t )

a(t )
w 2

x (x, t )d x =−k

ˆ b(t )

a(t )
w 2

x (x, t )d x ≤ 0.

Exercise 4 (Grönwall’s inequality). Another important inequality in the study of PDEs, in par-
ticular in the study of long time behaviour of solutions, is the so-called Grönwall’s inequality
which state that if y : [0,T ] → R is continuous and differentiable on (0,T ), and if there exists
λ ∈R such that

y ′(t ) ≤λy(t )

then we have that

y(t ) ≤ y(0)eλt .

Prove Grönwall’s inequality.
Remark: The above inequality can be generalised to show that if

y ′(t ) ≤λ(t )y(t )

then y(t ) ≤ y(0)e
´ t

0 λ(s)d s . There are additional important Grönwall inequalities which we won’t
mention at this point.
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Solution:
We note that we can write our inequality as

y ′(t )−λy(t ) ≤ 0.

Had we had equality, we would have used the integrating factor e
´

(−λ)d t = e−λt . This motivates
us to define z(t ) = e−λt y(t ). We find that

z ′(t ) = e−λt (
y ′(t )−λy(t )

)≤ 0.

Since z(t ) is differentiable on (0,T ) and continuous on [0,T ] (as y(t ) is) we conclude that z(t )
must be non-increasing on [0,T ]. Consequently, for any t ∈ [0,T ] we have that z(t ) ≤ z(0) = y(0)
which implies

y(t ) = z(t )eλt ≤ y(0)eλt .

Exercise 5. Let T > 0 be given and define

ΩT = (a,b)× (0,T ]

for a given −∞< a < b <∞.

(i) Show that there exists at most one solution u ∈C 2
1 (ΩT )∩C

(
ΩT

)
to the problem

(1)

{
ut −uxx = 1 (x, t ) ∈ΩT ,
u = 0 (x, t ) ∈ ΓT ,

where ΓT = (a,b)× {0}∪ {a}× [0,T ]∪ {b}× [0,T ].

(ii) Assume that u is a C 2
1 (ΩT )∩C

(
ΩT

)
solution to (1). Show that for any (x, t ) ∈ΩT

0 ≤ u(x, t ) ≤ t .

Solution:

(i) Assuming that there are two C 2
1 (ΩT )∩C

(
ΩT

)
solutions, u1 and u2, we define w = u1 −u2

which is also a function in C 2
1 (ΩT )∩C

(
ΩT

)
and satisfies the equation{

wt −wxx = 0 (x, t ) ∈ΩT ,
u = 0 (x, t ) ∈ ΓT ,

Using the weak maximum and weak minimum principles for the heat equation we find
that

max
ΩT

w(x, t ) = max
ΓT

w(x, t ) = 0

and
min
ΩT

w(x, t ) = min
ΓT

w(x, t ) = 0

which implies that w ≡ 0 onΩT , or equivalently that u1 ≡ u2.
(ii) We see that u satisfies

ut −uxx = 1 > 0

and consequently, according to the weak minimum principle,

min
ΩT

u(x, t ) = min
ΓT

u(x, t ) = 0

showing that u(x, t ) ≥ 0 onΩT .
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We can’t use the weak maximum principle on u but we notice that the second inequality
that we’d like to show, u(x, t ) ≤ t , can be rewritten as u(x, t )− t ≤ 0. This motivates us to
define w(x, t ) = u(x, t )− t . We find that w ∈C 2

1 (ΩT )∩C
(
ΩT

)
and it satisfies

wt −wxx = ut −1−uxx = 0

inΩT and
w = 0− t =−t

on ΓT . Using the weak maximum principle principle for w we find that

max
ΩT

w(x, t ) = max
ΓT

w(x, t ) = max
ΓT

(−t ) ≤ 0

which implies that for any x ∈ΩT

u(x, t ) = w(x, t )+ t ≤ t .


