
Partial Differential Equations III/IV

Exercise Sheet 4: Solutions

1. Green’s functions. By the Fundamental Theorem of Calculus, integrating u′′(y) = f(y) over [0, z], for
any z ∈ [0, 1], gives∫ z

0
u′′(y) dy = −

∫ z

0
f(y) dy ⇐⇒ u′(z) = u′(0)−

∫ z

0
f(y) dy = −

∫ z

0
f(y) dy,

where we have used the boundary condition u′(0) = 0. Integrating again, this time over [0, x], gives∫ x

0
u′(z) dz = −

∫ x

0

∫ z

0
f(y) dy dz ⇐⇒ u(x) = u(0)−

∫ x

0

∫ z

0
f(y) dydz.

Taking x = 1 and using the boundary condition u(1) = 0 yields

0 = u(0)−
∫ 1

0

∫ z

0
f(y) dydz ⇐⇒ u(0) =

∫ 1

0

∫ z

0
f(y) dydz.

Therefore

u(x) =

∫ 1

0

∫ z

0
f(y) dydz −

∫ x

0

∫ z

0
f(y) dydz.

By interchanging the order of integration we can write this as

u(x) =

∫ 1

0

∫ 1

y
f(y) dzdy −

∫ x

0

∫ x

y
f(y) dzdy

=

∫ 1

0
(1− y)f(y) dy −

∫ x

0
(x− y)f(y) dy

=

∫ x

0
(1− y)f(y) dy +

∫ 1

x
(1− y)f(y) dy −

∫ x

0
(x− y)f(y) dy

=

∫ x

0
(1− x)f(y) dy +

∫ 1

x
(1− y)f(y) dy.

Therefore

u(x) =

∫ 1

0
G(x, y)f(y) dy

with

G(x, y) =

{
1− x if y ≤ x,

1− y if y ≥ x.

2. Homogenization.

(i) Integrate (aε(y)uε(y))′ = −f(y) over y ∈ [0, z]:∫ z

0
(aε(y)u′ε(y))′ dy = −

∫ z

0
f(y) dy ⇐⇒ aε(z)u

′
ε(z)− aε(0)u′ε(0) = −

∫ z

0
f(y) dy

⇐⇒ u′ε(z) =
aε(0)u′ε(0)

aε(z)
− 1

aε(z)

∫ z

0
f(y) dy.



Now integrate over z ∈ [0, x]:∫ x

0
u′ε(z) dz =

∫ x

0

[
aε(0)u′ε(0)

aε(z)
− 1

aε(z)

∫ z

0
f(y) dy

]
dz ⇐⇒

uε(x) = uε(0)︸ ︷︷ ︸
=0

+aε(0)u′ε(0)

∫ x

0

1

aε(z)
dz −

∫ x

0

1

aε(z)

∫ z

0
f(y) dy dz. (1)

We determine u′ε(0) by evaluating this expression at x = 1:

uε(1)︸ ︷︷ ︸
=0

= aε(0)u′ε(0)

∫ 1

0

1

aε(z)
dz −

∫ 1

0

1

aε(z)

∫ z

0
f(y) dy dz ⇐⇒

aε(0)u′ε(0) =

(∫ 1

0

1

aε(z)
dz

)−1 ∫ 1

0

1

aε(z)

∫ z

0
f(y) dy dz.

Substituting this into (1) gives

uε(x) =

(∫ 1

0

1

aε(z)
dz

)−1 ∫ 1

0

1

aε(z)

∫ z

0
f(y) dy dz

∫ x

0

1

aε(z)
dz −

∫ x

0

1

aε(z)

∫ z

0
f(y) dy dz

as required.

(ii) Taking ε = εn = 1
n gives

uεn(x) =

(∫ 1

0

1

a(nz)
dz

)−1 ∫ 1

0

1

a(nz)

∫ z

0
f(y) dy dz

∫ x

0

1

a(nz)
dz −

∫ x

0

1

a(nz)

∫ z

0
f(y) dy dz.

We are told in the hint to use the Riemann-Lebesgue Lemma, which states that if g ∈ L∞(R) is
1–periodic, then for any interval [c, d] ⊆ R,

lim
n→∞

∫ d

c
g(nz)h(z) dz =

∫ d

c
g h(z) dz ∀ h ∈ L1(R) ∩ C1(R) (2)

Applying (2) with c = 0, d = 1, g(z) = 1/a(z), and h(z) = 1 on [c, d] gives

lim
n→∞

∫ 1

0

1

a(nz)
dz =

∫ 1

0

(
1

a

)
dz =

(
1

a

)
.

(Technical remark: We cannot take h(z) = 1 for all z ∈ R, else h /∈ L1(R). But we can take h to
be any function in L1(R) ∩ C1(R) such that h = 1 on [c, d]. The choice of h outside [c, d] does not
matter since it does not affect the integrals in (2).)

Applying (2) with c = 0, d = x, g(z) = 1/a(z) (since a is periodic and bounded below by a positive
constant, g is periodic and bounded), and h(z) = 1 on [c, d] gives

lim
n→∞

∫ x

0

1

a(nz)
dz =

∫ x

0

(
1

a

)
dz = x

(
1

a

)
.

Applying (2) with c = 0, d = 1, g(z) = 1/a(z), and h(z) =
∫ z

0 f(y) dy on [c, d] gives

lim
n→∞

∫ 1

0

1

a(nz)

∫ z

0
f(y) dy dz =

(
1

a

)∫ 1

0

∫ z

0
f(y) dy dz.
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Finally, applying (2) with c = 0, d = x, g(z) = 1/a(z), and h(z) =
∫ z

0 f(y) dy on [c, d] gives

lim
n→∞

∫ x

0

1

a(nz)

∫ z

0
f(y) dy dz =

(
1

a

)∫ x

0

∫ z

0
f(y) dy dz.

lim
n→∞

uεn(x) = u0(x) := x

(
1

a

)∫ 1

0

∫ z

0
f(y) dy dz −

(
1

a

)∫ x

0

∫ z

0
f(y) dy dz. (3)

(iii) This is simply a matter of interchanging the order of integration:

u0(x) = x

(
1

a

)∫ 1

0

∫ z

0
f(y) dy dz −

(
1

a

)∫ x

0

∫ z

0
f(y) dy dz

= x

(
1

a

)∫ 1

0

∫ 1

y
f(y) dz dy −

(
1

a

)∫ x

0

∫ x

y
f(y) dz dy

= x

(
1

a

)∫ 1

0
(1− y)f(y)dy −

(
1

a

)∫ x

0
(x− y)f(y) dy

=

(
1

a

){∫ x

0
[x(1− y)− (x− y)]f(y) dy +

∫ 1

x
x(1− y)f(y) dy

}
=

(
1

a

){∫ x

0
y(1− x)f(y) dy +

∫ 1

x
x(1− y)f(y) dy

}
=

∫ 1

0
G(x, y)f(y) dy

with

G(x, y) =



(
1

a

)
y(1− x) if y ≤ x,(

1

a

)
x(1− y) if y ≥ x.

(iv) Clearly u0 satisfies the boundary conditions. By the Fundamental Theorem of Calculus, differenti-
ating equation (3) gives

u′0(x) =

(
1

a

)∫ 1

0

∫ z

0
f(y) dy dz −

(
1

a

)∫ x

0
f(y) dy.

Differentiating again gives

u′′0(x) = −
(

1

a

)
f(x).

Therefore

−a0u
′′
0(x) = − 1(

1
a

) [−(1

a

)
f(x)

]
= f(x)

as required.
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(v) By definition,

a =

∫ 1

0
a(x) dx =

∫ 1
2

0

1

2
dx+

∫ 1

1
2

1 dx =
1

2
· 1

2
+

1

2
· 1 =

3

4

On the other hand,

a0 =

(∫ 1

0

1

a(x)
dx

)−1

=

(∫ 1
2

0
2 dx+

∫ 1

1
2

1 dx

)−1

=

(
1

2
· 2 +

1

2
· 1
)−1

=

(
3

2

)−1

=
2

3

Therefore a0 6= a. In fact the Cauchy-Schwarz inequality can be used to show that

a0 ≤ a

for any choice of a.

(vi) Without loss of generality we can assume that c > 0. Using the hint and integration by parts gives∫ d

c
g(nz)h(z) dz =

∫ d

c

(
1

n

∫ nz

0
g(y) dy

)′
h(z) dz

=
1

n

∫ nz

0
g(y) dy h(z)

∣∣∣∣d
c

−
∫ d

c

1

n

∫ nz

0
g(y) dy h′(z) dz. (4)

Let z ∈ [c, d], n ∈ N and let bnzc ∈ (nz − 1, nz] denote floor(nz), which is the largest integer less
than or equal to nz. Since a is 1–periodic,∫ nz

0
g(y) dy =

∫ bnzc
0

g(y) dy +

∫ nz

bnzc
g(y) dy = bnzc

∫ 1

0
g(y) dy +

∫ nz

bnzc
g(y) dy. (5)

Observe that

z − 1

n
=
nz − 1

n
<
bnzc
n
≤ nz

n
= z.

Therefore by the Pinching Lemma (Squeezing Lemma)

lim
n→∞

bnzc
n

= z. (6)

Also ∣∣∣∣∣ 1n
∫ nz

bnzc
g(y) dy

∣∣∣∣∣ ≤ 1

n
(nz − bnzc)‖g‖L∞(R) ≤

1

n
‖g‖L∞(R).

Therefore

lim
n→∞

1

n

∫ nz

bnzc
g(y) dy = 0. (7)

By combining equations (5), (6), (7) we find that

lim
n→∞

1

n

∫ nz

0
g(y) dy = z

∫ 1

0
g(y) dy. (8)

Therefore the limit of the first term on the right-hand side of equation (4) is

lim
n→∞

1

n

∫ nz

0
g(y) dy h(z)

∣∣∣∣d
c

= z

∫ 1

0
g(y) dy h(z)

∣∣∣∣d
c

. (9)
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Now we find the limit of the second term on the right-hand side of (4). By the computations above∣∣∣∣∫ d

c

1

n

∫ nz

0
g(y) dy h′(z) dz −

∫ d

c
z

∫ 1

0
g(y) dy h′(z) dz

∣∣∣∣
≤
∫ d

c

∣∣∣∣ 1n
∫ nz

0
g(y) dy − z

∫ 1

0
g(y) dy

∣∣∣∣ |h′(z)| dz
≤
∫ d

c

∣∣∣∣∣bnzcn
∫ 1

0
g(y) dy +

1

n

∫ nz

bnzc
g(y) dy − z

∫ 1

0
g(y) dy

∣∣∣∣∣ |h′(z)| dz
≤
∫ d

c

(∣∣∣∣bnzcn
∫ 1

0
g(y) dy − z

∫ 1

0
g(y) dy

∣∣∣∣+
1

n

∫ nz

bnzc
|g(y)| dy

)
|h′(z)| dz

≤
∫ d

c

∣∣∣∣bnzc − nzn

∫ 1

0
g(y) dy

∣∣∣∣ |h′(z)| dz +
1

n
‖g‖L∞(R)‖h′‖L1([c,d])

≤
∫ d

c

1

n

∫ 1

0
|g(y)| dy |h′(z)| dz +

1

n
‖g‖L∞(R)‖h′‖L1([c,d])

≤ 2

n
‖g‖L∞(R)‖h′‖L1([c,d]) → 0 as n→∞.

Therefore

lim
n→∞

∫ d

c

1

n

∫ nz

0
g(y) dy h′(z) dz =

∫ d

c
z

∫ 1

0
g(y) dy h′(z) dz. (10)

Combining (4), (9), (10) and then integrating by parts yields

lim
n→∞

∫ d

c
g(nz)h(z) dz = z

∫ 1

0
g(y) dy h(z)

∣∣∣∣d
c

−
∫ d

c
z

∫ 1

0
g(y) dy h′(z) dz

=

∫ d

c

∫ 1

0
g(y) dy h(z) dz

=

∫ d

c
g h(z) dz

as required.

3. Radial symmetry of Laplace’s equation on Rn. Let v : Rn → R be a harmonic function. Let R ∈ O(n,R)
and define w : Rn → R by w(x) := v(Rx). Then

wxi =

n∑
j=1

∂v

∂xj

∂(Rx)j
∂xi

=

n∑
j=1

∂v

∂xj

∂

∂xi

n∑
k=1

Rjkxk

=

n∑
j=1

∂v

∂xj

n∑
k=1

Rjk
∂xk
∂xi

=

n∑
j=1

∂v

∂xj

n∑
k=1

Rjkδki

=
n∑
j=1

∂v

∂xj
Rji.

To be precise

wxi(x) =
n∑
j=1

vxj (Rx)Rji.

(This can also be written as ∇w(x) = RT∇v(Rx).)
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Now we compute the second partial derivatives:

wxixi =
∂

∂xi

n∑
j=1

vxj (Rx)Rji

=

n∑
j=1

n∑
k=1

∂vxj
∂xk

∂(Rx)k
∂xi

Rji

=

n∑
j=1

n∑
k=1

vxjxkRji
∂

∂xi

n∑
l=1

Rklxl

=
n∑
j=1

n∑
k=1

vxjxkRji

n∑
l=1

Rkl
∂xl
∂xi

=
n∑
j=1

n∑
k=1

vxjxkRji

n∑
l=1

Rklδil

=

n∑
j=1

n∑
k=1

vxjxkRjiRki.

Therefore

∆w =

n∑
i=1

wxixi

=

n∑
i=1

n∑
j=1

n∑
k=1

vxjxkRjiRki

=

n∑
j=1

n∑
k=1

vxjxk

n∑
i=1

RjiRki

=
n∑
j=1

n∑
k=1

vxjxk

n∑
i=1

Rji(R
T )ik

=
n∑
j=1

n∑
k=1

vxjxk(RRT )jk

=
n∑
j=1

n∑
k=1

vxjxkIjk (11)

since R is an orthogonal matrix. There are two ways to conclude from here: If are are familiar with the
matrix inner product, then (11) gives

∆w = D2v : I = trace(D2v) = ∆v = 0

since v is harmonc. Otherwise we can continue from (11) using indices:

∆w =
n∑
j=1

n∑
k=1

vxjxkIjk =
n∑
j=1

n∑
k=1

vxjxkδjk =
n∑
j=1

vxjxj = ∆v = 0,

as required.
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4. Fundamental solution of Poisson’s equation in 3D.

(i) One way of computing ‖Φ‖L1(BR(0)) is using spherical polar coordinates:

‖Φ‖L1(BR(0)) =

∫
BR(0)

|Φ(x)| dx

=
1

4π

∫
BR(0)

1

|x|
dx

=
1

4π

∫ 2π

φ=0

∫ π

θ=0

∫ R

r=0

1

r
r2 sin θ drdθdφ

=
1

4π

∫ 2π

0
1 dφ

∫ π

0
sin θ dθ

∫ R

0
r dr

=
R2

2

Another way of computing ‖Φ‖L1(BR(0)) is as follows:

‖Φ‖L1(BR(0)) =

∫
BR(0)

|Φ(x)| dx

=

∫ R

0

(∫
∂Br(0)

|Φ(y)| dS(y)

)
dr

=

∫ R

0

(∫
∂Br(0)

1

4π

1

|y|
dS(y)

)
dr

=
1

4π

∫ R

0

(∫
∂Br(0)

1

r
dS(y)

)
dr

=
1

4π

∫ R

0

(
area(∂Br(0))

1

r

)
dr

=
1

4π

∫ R

0

(
4πr2 1

r

)
dr

=

∫ R

0
r dr

=
R2

2

(ii) Let K ⊂ R3 be compact. Since K is bounded, there exists R > 0 such that K ⊂ BR(0). Therefore∫
K
|Φ(x)| dx ≤

∫
BR(0)

|Φ(x)| dx =
R2

2
<∞.

Therefore Φ ∈ L1
loc(R3).

(iii) By part (i),

lim
R→∞

‖Φ‖L1(BR(0)) = lim
R→∞

R2

2
= +∞.

Therefore Φ /∈ L1(R3).
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(iv) By the Chain Rule

∇Φ(x) =
1

4π

(
− 1

|x|2

)
∇|x| = 1

4π

(
− 1

|x|2

)
x

|x|
= − 1

4π

x

|x|3
.

Let K ⊂ R3 be compact. Since K is bounded, there exists R > 0 such that K ⊂ BR(0). Therefore∫
K
|∇Φ(x)| dx ≤

∫
BR(0)

|∇Φ(x)| dx

=

∫
BR(0)

1

4π

1

|x|2
dx

=
1

4π

∫ 2π

φ=0

∫ π

θ=0

∫ R

r=0

1

r2
r2 sin θ drdθdφ

=
1

4π

∫ 2π

0
1 dφ

∫ π

0
sin θ dθ

∫ R

0
1 dr

= R

<∞.

Therefore ∇Φ ∈ L1
loc(R3).

5. Fundamental solution of Poisson’s equation in 1D. We compute

u′′(x) = (Φ ∗ f)′′(x)

= (f ∗ Φ)′′(x) (symmetry of convolution)

=
d2

dx2

∫ ∞
−∞

Φ(y)f(x− y) dy

=

∫ ∞
−∞

Φ(y)
d2

dx2
f(x− y) dy

=

∫ 0

−∞
y
d2

dx2
f(x− y) dy

=

∫ 0

−∞
y
d2

dy2
f(x− y) dy

= y
d

dy
f(x− y)

∣∣∣0
−∞
−
∫ 0

−∞

d

dy
f(x− y) dy (integration by parts)

= −f(x) (Fundamental Theorem of Calculus)

as required.

6. The function spaces L1 and L1
loc. Let f : R→ R, f(x) = |x|k, k ∈ R. By integrating we see that

(i) f ∈ L1((−R,R)) for k > −1,

(ii) f ∈ L1((R,∞)) for k < −1,

(iii) f ∈ L1
loc(R) for k > −1,

(iv) f /∈ L1(R) for any k (by parts (i),(ii)).

7. Properties of the convolution.

(i) Let ϕ ∈ L1
loc(R), f ∈ Cc(R) and let K = supp(f). Choose R > 0 such that K ⊂ [−R,R]. In

particular, f = 0 outside the interval [−R,R]. Therefore
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|(ϕ ∗ f)(x)| =
∣∣∣∣∫ ∞
−∞

ϕ(x− y)f(y) dy

∣∣∣∣
=

∣∣∣∣∫ R

−R
ϕ(x− y)f(y) dy

∣∣∣∣
≤
∫ R

−R
|ϕ(x− y)||f(y)| dy

≤ max
[−R,R]

|f |
∫ R

−R
|ϕ(x− y)| dy

= max
[−R,R]

|f |
∫ R−x

−R−x
|ϕ(z)| dz

<∞

since ϕ ∈ L1
loc(R) and [−R− x,R− x] is compact.

(ii) Now assume that ϕ ∈ L1(R). By Lemma 4.12, f ∈ L∞(R). Therefore

|(ϕ ∗ f)(x)| ≤
∫ ∞
−∞
|ϕ(x− y)||f(y)| dy

≤ sup
y∈R
|f(y)|

∫ ∞
−∞
|ϕ(x− y)| dy

= sup
y∈R
|f(y)|

∫ ∞
−∞
|ϕ(z)| dz

= ‖f‖L∞(R)‖ϕ‖L1(R).

Therefore
‖ϕ ∗ f‖L∞(R) = sup

x∈R
|(ϕ ∗ f)(x)| ≤ ‖f‖L∞(R)‖ϕ‖L1(R) <∞

and so ϕ ∗ f ∈ L∞(R), as required.

(iii) The convolution is commutative since

(ϕ ∗ f)(x) =

∫ ∞
−∞

ϕ(x− y)f(y) dy

=

∫ −∞
∞

ϕ(z)f(x− z)(−1)dz (z = x− y)

=

∫ ∞
−∞

ϕ(z)f(x− z)dz

= (f ∗ ϕ)(x)

as required.

8. The Poincaré inequality for functions that vanish on the boundary. Let f ∈ C1([a, b]) satisfy f(a) =
f(b) = 0. Then

f(x) = f(a) +

∫ x

a
f ′(y) dy =

∫ x

a
f ′(y) dy

since f(a) = 0. Therefore
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|f(x)| =
∣∣∣∣∫ x

a
f ′(y) dy

∣∣∣∣
=

∣∣∣∣∫ x

a
1 · f ′(y) dy

∣∣∣∣
≤
∣∣∣∣∫ x

a
12 dy

∣∣∣∣1/2 ∣∣∣∣∫ x

a
|f ′(y)|2 dy

∣∣∣∣1/2 (Cauchy-Schwarz)

≤ (x− a)1/2

(∫ b

a
|f ′(y)|2 dy

)1/2

.

Squaring and integrating gives∫ b

a
|f(x)|2 dx ≤

∫ b

a
(x− a)

∫ b

a
|f ′(y)|2 dy dx

=

∫ b

a
(x− a) dx

∫ b

a
|f ′(y)|2 dy

=
1

2
(x− a)2

∣∣∣b
a

∫ b

a
|f ′(y)|2 dy

=
1

2
(b− a)2

∫ b

a
|f ′(y)|2 dy.

This is the Poincaré inequality with C = 1
2(b− a)2.

9. The Poincaré inequality on unbounded domains.

(i) For n ∈ N, define fn : R→ R by

fn(x) =


0 if x ∈ (−∞,−n− 1],

(x− (−n− 1))2(x− (−n+ 1))2 if x ∈ [−n− 1,−n],
1 if x ∈ [−n, n],

(x− (n+ 1))2(x− (n− 1))2 if x ∈ [n, n+ 1],
0 if x ∈ [n+ 1,∞).

(Exercise: Sketch fn to get a better understanding of the example.) Observe that

fn(−n− 1) = fn(n+ 1) = 0,

fn(−n) = fn(n) = 1,

f ′n(−n− 1) = f ′n(−n) = f ′n(n) = f ′n(n+ 1) = 0.

Therefore fn ∈ C1(R). We also have fn ∈ L2(R) since

‖fn‖2L2(R) =

∫ ∞
−∞
|fn(x)|2 dx <

∫ n+1

−n−1
1 dx = 2(n+ 1).

We compute
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‖f ′n‖2L2(R) =

∫ ∞
−∞
|f ′n(x)|2 dx

= 2

∫ n+1

n

[
d

dx
(x− (n+ 1))2(x− (n− 1))2

]2

dx

= 2

∫ n+1

n

[
2(x− (n+ 1))(x− (n− 1))2 + 2(x− (n+ 1))2(x− (n− 1))

]2
dx

= 2

∫ 1

0

[
2(y − 1)(y + 1)2 + 2(y − 1)2(y + 1)

]2
dy (y = x− n)

which is independent of n. But

‖fn‖2L2(R) =

∫ ∞
−∞
|fn(x)|2 dx >

∫ n

−n
|fn(x)|2 dx = 2n.

Therefore
‖f ′n‖L2(R) = constant, ‖fn‖L2(R)

n→∞−→ ∞

as required. This means that, given any C > 0, we can choose N large enough so that∫ ∞
−∞
|fN (x)|2 dx > C

∫ ∞
−∞
|f ′N (x)|2 dx,

which means that the Poincaré inequality on R does not hold. We constructed this counter example
using spreading ; the support of fn spreads as n→∞ without changing the L2–norm of f ′n.

(ii) Let Ω = (a, b)× (−∞,∞). Let f ∈ C1(Ω) ∩ L2(Ω) with ∇f ∈ L2(Ω) and with f(a, y) = f(b, y) = 0
for all y ∈ R. Then∫

Ω
|f(x)|2 dx =

∫ ∞
−∞

(∫ b

a
|f(x, y)|2 dx

)
dy

≤
∫ ∞
−∞

(
C

∫ b

a
|fx(x, y)|2 dx

)
dy (Poincaré inequality in x)

≤ C
∫ ∞
−∞

∫ b

a
(|fx(x, y)|2 + |fy(x, y)|2) dxdy

= C

∫
Ω
|∇f(x)|2 dx

as required.

10. The Poincaré constant depends on the domain. There exits C1 > 0 such that∫ 1

0
|f(x)|2 dx ≤ C1

∫ 1

0
|f ′(x)|2 dx (12)

for all f ∈ C1([0, 1]) with f(0) = f(1) = 0. Let g ∈ C1([0, L]) with g(0) = g(L) = 0. Then
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∫ L

0
|g(x)|2 dx =

∫ 1

0
|g(Ly)|2Ldy (y = x/L)

= L

∫ 1

0
|f(y)|2 dy (f(y) := g(Ly))

≤ LC1

∫ 1

0
|f ′(y)|2 dy (equation (12))

= LC1

∫ 1

0
|Lg′(Ly)|2 dy (f ′(y) = Lg′(Ly))

= L3C1

∫ 1

0
|g′(Ly)|2 dy

= L2C1

∫ L

0
|g′(x)|2 dx (y = x/L)

= CL

∫ L

0
|g′(x)|2 dx

with CL = L2C1, as desired.

11. Eigenvalues of −∆: Can you hear the shape of a drum? Multiply the PDE −∆u = λu by u (the complex
conjugate of u) and integrate over Ω:

−
∫

Ω
u∆u dx = λ

∫
Ω
uu dx ⇐⇒ −

∫
∂Ω
u∇u · n dL+

∫
Ω
∇u · ∇u dx = λ

∫
Ω
|u|2 dx.

The boundary condition u = 0 on ∂Ω implies that u = 0 on ∂Ω and so∫
Ω
∇u · ∇u dx = λ

∫
Ω
|u|2 dx ⇐⇒

∫
Ω
|∇u|2 dx = λ

∫
Ω
|u|2 dx

⇐⇒ λ =

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

> 0

as required.

12. The optimal Poincaré constant and eigenvalues of −∆.

(i) Multiply the PDE −∆u = λu by u and integrate over Ω:

−
∫

Ω
u∆u dx = λ

∫
Ω
u2 dx ⇐⇒

∫
Ω
|∇u|2 dx = λ

∫
Ω
u2 dx

since u = 0 on ∂Ω. Rearranging gives

λ =

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

.

(ii) Let u ∈ C2(Ω)∩ V minimise E. Let ϕ ∈ V . Define uε = u+ εϕ ∈ V and define g(ε) = E[uε], ε ∈ R.
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Since E is minimised by u, then g is minimised by 0. It follows that

0 = g′(0)

=
d

dε

∣∣∣
ε=0

E[uε]

=
d

dε

∣∣∣
ε=0

∫
Ω
|∇uε|2 dx∫

Ω
|uε|2 dx

=

2

∫
Ω
∇u · ∇ϕdx

∫
Ω
|u|2 dx− 2

∫
Ω
|∇u|2 dx

∫
Ω
uϕdx(∫

Ω
|u|2 dx

)2 .

The numerator must be zero. Rearranging gives

∫
Ω
∇u · ∇ϕdx =


∫

Ω
|∇u|2 dx∫

Ω
|u|2 dx

∫
Ω
uϕdx.

Integrating by parts gives

−
∫

Ω
∆uϕdx =


∫

Ω
|∇u|2 dx∫

Ω
|u|2 dx

∫
Ω
uϕdx.

Since this holds for all ϕ ∈ V , the Fundamental Lemma of the Calculus of Variations implies that

−∆u =


∫

Ω
|∇u|2 dx∫

Ω
|u|2 dx

u in Ω.

If we define

λ =

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

,

then
−∆u = λu in Ω.

In other words, u is an eigenfunction of −∆. By definition

E[u] =

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

= λ.

Since u minimises E, then λ must be the smallest eigenvalue of −∆ on V , i.e., λ = λ1, otherwise we
obtain a contradiction. Therefore E[u] = λ1, as required.
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(iii) Let C > 0 satisfy
‖f‖L2(Ω) ≤ C‖∇f‖L2(Ω)

for all f ∈ C1(Ω) with f = 0 on ∂Ω. Then

1

C
≤
‖∇f‖L2(Ω)

‖f‖L2(Ω)

for all f ∈ V and so
1

C
≤ inf

f∈V

‖∇f‖L2(Ω)

‖f‖L2(Ω)
.

The smallest value of C satisfying this inequality is C = CP where

1

CP
= inf

f∈V

‖∇f‖L2(Ω)

‖f‖L2(Ω)
.

(iv) Combining parts (ii) and (iii) gives

1

CP
= inf

f∈V

‖∇f‖L2(Ω)

‖f‖L2(Ω)
= inf

f∈V
E[v]1/2 =

(
inf
f∈V

E[v]

)1/2

=
√
λ1.

Therefore

CP =
1√
λ1

as desired.

(v) If Ω = (0, 2π), then the corresponding eigenvalue problem is

−u′′ = λu in (0, 2π), u(0) = u(2π) = 0.

The eigenfunctions are un(x) = sin
(
nx
2

)
(see Exercise Sheet 5, Q16) and the corresponding eigen-

values are λn = n2/4, n ∈ N. Therefore λ1 = 1/4 and CP = 1/
√

1/4 = 2. In Q8 we obtained the
Poincaré constant (b − a)/

√
2 =

√
2π, which is obviously much bigger than the optimal constant

CP = 2.

13. Uniqueness for Poisson’s equation with Robin boundary conditions. Let u1 and u2 be solutions of

−∆u = f in Ω,

∇u · n + αu = g on ∂Ω.

Let w = u1 − u2. Since the PDE is linear, subtracting the equations satisfied by u1 and u2 gives

−∆w = 0 in Ω,

∇w · n + αw = 0 on ∂Ω.

Multiply −∆w = 0 by w and integrate by parts over Ω:

−
∫

Ω
w∆w dx = 0 ⇐⇒ −

∫
∂Ω
w∇w · n dS +

∫
Ω
|∇w|2 dx = 0

⇐⇒ α

∫
∂Ω
w2 dS +

∫
Ω
|∇w|2 dx = 0

since ∇w · n = −αw on ∂Ω. But α > 0. Therefore
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∫
∂Ω
w2 dS = 0,

∫
Ω
|∇w|2 dx = 0.

The second equation implies that ∇w = 0 and hence w = constant (or at least constant on each connected
component of Ω). The first equation implies that this constant must be zero. Therefore w = 0 and
u1 = u2, as required.

14. Uniqueness for a more general elliptic problem. Consider the linear, second-order, elliptic PDE

−div(A∇u) + b · ∇u+ cu = f in Ω,

u = g on ∂Ω.
(13)

(i) Suppose that u1, u2 ∈ C2(Ω) satisfy (13). Let w = u1 − u2. Since the PDE is linear, subtracting the
equations satisfied by u1 and u2 gives

−div(A∇w) + b · ∇w + cw = 0 in Ω,

w = 0 on ∂Ω.
(14)

Clearly w = 0 satisfies (14). We want to show that it is the only solution. Multiply the PDE for w by w
and integrate over Ω:

0 =

∫
Ω
w(−div(A∇w) + b · ∇w + cw) dx

= −
∫

Ω
w div(A∇w) dx +

∫
Ω
w b · ∇w dx +

∫
Ω
cw2 dx

= −
∫
∂Ω
w(A∇w) · n dS +

∫
Ω
∇w · (A∇w) dx +

∫
Ω
w b · ∇w dx +

∫
Ω
cw2 dx

=

∫
Ω
∇w · (A∇w) dx +

∫
Ω
w b · ∇w dx +

∫
Ω
cw2 dx (15)

since w = 0 on ∂Ω. Observe that∫
Ω
∇w · (A∇w) dx =

∫
Ω

(∇w)TA∇w dx ≥ α
∫

Ω
|∇w|2 dx (16)

by the assumption that A is uniformly positive definite (take y = ∇w in yTA(x)y ≥ α|y|2). Integrating
by parts gives∫

Ω
w b · ∇w dx =

∫
∂Ω
w2 b · n dS −

∫
Ω
w div(wb) dx

= −
∫

Ω
w div(wb) dx (w = 0 on ∂Ω)

= −
∫

Ω
w (∇w · b + w divb) dx (product rule)

= −
∫

Ω
w b · ∇w dx

by the assumption that div b = 0. Therefore∫
Ω
w b · ∇w dx = −

∫
Ω
w b · ∇w dx ⇐⇒

∫
Ω
w b · ∇w dx = 0. (17)
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Combining (15), (16), (17) yields

α

∫
Ω
|∇w|2 dx +

∫
Ω
cw2 dx ≤ 0.

But c ≥ 0 by assumption. Therefore

α

∫
Ω
|∇w|2 dx = 0

and so ∇w = 0 in Ω. Hence w is constant (or at least constant on each connected component of Ω). But
w = 0 on ∂Ω. Therefore w = 0, as required.

(ii) The idea is the same as for (i). Let un be the unique solution to the PDE with An and let u be the
unique solution to the PDE with the matrix A. Define wn := un− u. We need to show that ∇wn → 0 in
L2(Ω) as n → +∞. Taking the two PDEs, subtracting them and multiplying the resulting PDE by wn,
we obtain

0 =

∫
Ω
wn(−div(An∇un) + div(A∇u) + b · ∇wn + cwn) dx. (18)

Proceeding exactly as in (i), we find ∫
Ω
wnb · ∇wn dx = 0.

Moreover, we compute (using integration by parts, since wn = 0 on ∂Ω)∫
Ω
wn[−div(An∇un) + div(A∇u)] dx

=

∫
Ω
wn[−div(An∇un) + div(An∇u)− div(An∇u) + div(A∇u)] dx

=

∫
Ω
wn[−div(An (∇un −∇u))− div((An −A)∇u)] dx

=

∫
Ω

[∇wn · (An∇wn) +∇wn · ((An −A)∇u)] dx

≥
∫

Ω
[α|∇wn|2 +∇wn · ((An −A)∇u)] dx

So, all these arguments yield∫
Ω

[α|∇wn|2 +∇wn · ((An −A)∇u) + cw2
n] dx ≤ 0.

Now, for any ε > 0, Young’s inequality yields∫
Ω
∇wn · ((An −A)∇u) dx = −ε

2

∫
Ω
|∇wn|2 dx−

∫
Ω

1

2ε
|An −A|2|∇u|2 dx.

By setting ε := α, the previous two identities imply∫
Ω

[α
2
|∇wn|2 + cw2

n

]
dx ≤ 1

2α
‖An −A‖2L∞

∫
Ω
|∇u|2 dx.

And by the non-negative property of c, one has∫
Ω

α

2
|∇wn|2 dx ≤

1

2α
‖An −A‖2L∞

∫
Ω
|∇u|2 dx.

We conclude by the facts that
∫

Ω |∇u|
2 dx is bounded and ‖An −A‖L∞ → 0, as n→ +∞.
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15. Uniqueness for a degenerate diffusion equation. Clearly u = π satisfies

∆um = 0 in Ω,

u = π on ∂Ω.

We use the energy method to show that it is the only positive solution. Let v be any positive solution.
Subtracting the PDE for u from the PDE for v and multiplying by (v − u) gives

0 = (v − u)(∆vm −∆um) = (v − π)(∆vm −∆πm) = (v − π)∆vm.

Now integrate over Ω:

0 =

∫
Ω

(v − π)∆vm dx

=

∫
Ω

(v − π) div∇(vm) dx (∆ = div∇)

=

∫
Ω

(v − π) div(mvm−1∇v) dx (Chain Rule)

=

∫
∂Ω

(v − π)︸ ︷︷ ︸
=0

mvm−1∇v · n dS −
∫

Ω
∇(v − π)︸ ︷︷ ︸

=∇v

·mvm−1∇v dx (Integration by parts)

= −
∫

Ω
mvm−1|∇v|2 dx.

Therefore ∫
Ω
mvm−1|∇v|2 dx = 0.

But v > 0, by assumption. Hence ∇v = 0 in Ω and so v is constant in Ω. Since v = π on ∂Ω, we conclude
that v = π everywhere, as required.

16. The H1
0 and H1 norms.

(i) We need to check that ‖ · ‖L2([a,b]) satisfies the three properties of a norm: positivity, 1–homogeneity,
and the triangle inequality. First we prove positivity. Let f ∈ C([a, b]). Clearly ‖f‖L2([a,b]) ≥ 0.
Suppose that ‖f‖L2([a,b]) = 0 and assume for contradiction that f 6= 0. Since f is continuous, then
there exists x0 ∈ (a, b), h > 0 and ε > 0 such that |f(x)| > ε for all x ∈ (x0 − h, x0 + h). Therefore

‖f‖2L2([a,b]) ≥
∫ x0+h

x0−h
|f(x)|2 dx ≥

∫ x0+h

x0−h
ε2 dx = 2hε2 > 0,

which is a contradiction. Second we check that ‖ · ‖L2([a,b]) is 1–homogeneous. Let λ ∈ R. Then
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‖λf‖L2([a,b]) =

(∫ b

a
|λf(x)|2

)1/2

= |λ|
(∫ b

a
|f(x)|2

)1/2

= |λ| ‖f‖L2([a,b])

as required. Finally, we prove the triangle inequality. Let f, g ∈ C([a, b]). Then

‖f + g‖2L2([a,b]) =

∫ b

a
(f(x) + g(x))2 dx

=

∫ b

a
f(x)2 dx+ 2

∫ b

a
f(x)g(x) dx+

∫ b

a
g(x)2 dx

≤
∫ b

a
f(x)2 dx+ 2

(∫ b

a
f(x)2 dx

)1/2(∫ b

a
g(x)2 dx

)1/2

+

∫ b

a
g(x)2 dx

(by the Cauchy-Schwarz inequality)

= ‖f‖2L2([a,b]) + 2‖f‖L2([a,b]) ‖g‖L2([a,b]) + ‖g‖2L2([a,b])

=
(
‖f‖L2([a,b]) + ‖g‖L2([a,b])

)2
.

Taking the square root gives the triangle inequality.

Remark: An alternative proof is to prove that the function (·, ·) : C([a, b])× C([a, b])→ R,

(f, g) =

∫ b

a
f(x)g(x) dx,

is an inner product on C([a, b]). It then follows that ‖f‖ :=
√

(f, f) is a norm on C([a, b]) (the norm
induced by the inner product; see Definition A.16 in the lecture notes). But this is just the L2–norm
‖ · ‖L2([a,b]).

Remark: The Cauchy-Schwarz inequality can be proved by considering the quadratic polynomial

t 7→ p(t) := ‖f + tg‖2L2([a,b]).

Since p is non-negative, then it must have non-positive discriminant, i.e., if p(t) = αt2 +βt+γ, then
β2 − 4αγ ≤ 0. It is easy to check that this condition is exactly the Cauchy-Schwarz inequality.

(ii) We will prove that the function (·, ·)H1 : C1([a, b])× C1([a, b])→ R defined by

(f, g)H1 :=

∫ b

a
f(x)g(x) dx+

∫ b

a
f ′(x)g′(x) dx

is an inner product on C1([a, b]). It then follows that

‖f‖H1([a,b]) =
√

(f, f)H1

is a norm on C1([a, b]) (see Definition A.16 in the lecture notes). It is clear that (·, ·)H1 is sym-
metric and bilinear and that (f, f)H1 ≥ 0 for all f ∈ C1([a, b]). Suppose that (f, f)H1 = 0. Then
‖f‖H1([a,b]) = 0 and in particular ‖f‖L2([a,b]) = 0. Therefore f = 0 by part (i).

(iii) This is similar to part (ii). We will prove that the function (·, ·)H1
0

: V × V → R defined by

(f, g)H1
0

:=

∫ b

a
f ′(x)g′(x) dx

is an inner product on V . It is clear that (·, ·)H1
0

is symmetric and bilinear and that (f, f)H1
0
≥ 0

for all f ∈ V . Suppose that (f, f)H1
0

= 0. Then ‖f‖H1
0 ([a,b]) = 0 and in particular ‖f ′‖L2([a,b]) = 0.

Therefore f ′ = 0 by part (i) and so f is a constant function. But f(a) = f(b) = 0 and hence f = 0,
as required.
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(iv) We need to find constants c, C > 0 such that

c‖f‖H1
0 ([a,b]) ≤ ‖f‖H1([a,b]) ≤ C‖f‖H1

0 ([a,b]) ∀ f ∈ V.

Let f ∈ V . We have

‖f‖H1
0 ([a,b]) = ‖f ′‖L2([a,b]) ≤

(
‖f‖2L2([a,b]) + ‖f ′‖2L2([a,b])

)1/2
= ‖f‖H1([a,b]).

Therefore c = 1. On the other hand,

‖f‖2H1([a,b]) = ‖f‖2L2([a,b]) + ‖f ′‖2L2([a,b]) ≤ C
2
P‖f ′‖2L2([a,b]) + ‖f ′‖2L2([a,b])

where CP is the Poincaré constant. Therefore we can take C = (C2
P + 1)1/2.

17. Continuous dependence. Let u ∈ C2(Ω) satisfy

−div(A∇u) + cu = f in Ω,

u = 0 on ∂Ω.

Multiplying the PDE by u and integrating over Ω gives∫
Ω
fu dx =

∫
Ω
u (−div(A∇u) + cu) dx

= −
∫

Ω
udiv(A∇u) dx + c

∫
Ω
u2 dx

= −
∫
∂Ω
u (A∇u) · n dS +

∫
Ω
∇u · (A∇u) dx + c

∫
Ω
u2 dx

=

∫
Ω

(∇u)TA∇u dx + c

∫
Ω
u2 dx (u = 0 on ∂Ω)

≥ α
∫

Ω
|∇u|2 dx + c

∫
Ω
u2 dx (A is uniformly positive definite)

≥ min{α, c}
(∫

Ω
|∇u|2 dx +

∫
Ω
u2 dx

)
= min{α, c} ‖u‖2H1(Ω)

by definition of the H1–norm. Therefore

min{α, c} ‖u‖2H1(Ω) ≤
∫

Ω
fu dx ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖H1(Ω)

where we have used the Cauchy-Schwarz inequality and the fact that ‖v‖L2(Ω) ≤ ‖v‖H1(Ω) for all v ∈
C1(Ω). Cancelling one power of ‖u‖H1(Ω) from both sides gives the desired result:

‖u‖H1(Ω) ≤ C‖f‖L2(Ω)

with C = 1/min{α, c}.
Remark: Note that this estimate degenerates as c tends to 0 (C → +∞ as c→ 0). If c = 0 or c is small
then a better estimate can be obtained using the Poincaré inequality: As above∫

Ω
fu dx ≥ α

∫
Ω
|∇u|2 dx + c

∫
Ω
u2 dx ≥ α

∫
Ω
|∇u|2 dx = α‖u‖2H1

0 (Ω).

Therefore
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α‖u‖2H1
0 (Ω) ≤

∫
Ω
fu dx ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ CP‖f‖L2(Ω)‖∇u‖L2(Ω) = CP‖f‖L2(Ω)‖u‖H1

0 (Ω)

where CP(Ω) is the Poincaré constant. Cancelling one power of ‖u‖H1
0 (Ω) from both sides gives

‖u‖H1
0 (Ω) ≤ C‖f‖L2(Ω)

with C = CP/α.

18. Continuous dependence with a first-order term.

(a) Let u ∈ C2(Ω) satisfy
−k∆u+ b · ∇u+ cu = f in Ω,

u = 0 on ∂Ω.
(19)

Multiply the PDE by u and integrate over Ω:

− k
∫

Ω
u∆u dx +

∫
Ω
u b · ∇u dx +

∫
Ω
cu2 dx =

∫
Ω
fu dx

⇐⇒ −k
[∫

∂Ω
u∇u · n dS −

∫
Ω
|∇u|2 dx

]
+

∫
Ω
u b · ∇u dx +

∫
Ω
cu2 dx =

∫
Ω
fu dx

⇐⇒ k‖∇u‖2L2(Ω) +

∫
Ω

(b · ∇u)u dx + c‖u‖2L2(Ω) =

∫
Ω
fu dx ≤ ‖f‖L2(Ω)‖u‖L2(Ω)

by the Cauchy-Schwarz inequality.

(b) Let ε > 0. Then∣∣∣∣∫
Ω

(b · ∇u)u dx

∣∣∣∣ ≤ ‖b‖L∞(Ω)

∫
Ω
|∇u| |u| dx

≤ ‖b‖L∞(Ω)‖∇u‖L2(Ω)‖u‖L2(Ω) (Cauchy-Schwarz)

= ‖b‖L∞(Ω)

(√
2ε ‖∇u‖L2(Ω)

)( 1√
2ε
‖u‖L2(Ω)

)
≤ ‖b‖L∞(Ω)

(
ε‖∇u‖2L2(Ω) +

1

4ε
‖u‖2L2(Ω)

)
by the Young inequality.

(c) Combining parts (a) and (b) gives

‖f‖L2(Ω)‖u‖L2(Ω) ≥ k‖∇u‖2L2(Ω) +

∫
Ω

(b · ∇u)u dx + c‖u‖2L2(Ω)

≥ k‖∇u‖2L2(Ω) −
∣∣∣∣∫

Ω
(b · ∇u)u dx

∣∣∣∣+ c‖u‖2L2(Ω)

≥ k‖∇u‖2L2(Ω) − ‖b‖L∞(Ω)

(
ε‖∇u‖2L2(Ω) +

1

4ε
‖u‖2L2(Ω)

)
+ c‖u‖2L2(Ω)

=
(
k − ε‖b‖L∞(Ω)

)
‖∇u‖2L2(Ω) +

(
c−
‖b‖L∞(Ω)

4ε

)
‖u‖2L2(Ω).
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(d) Let ε > 0 satisfy k − ε‖b‖L∞(Ω) > 0, i.e., let

0 < ε <
k

‖b‖L∞(Ω)
. (20)

Let

c0 =
‖b‖L∞(Ω)

4ε
.

If c > c0, then

c−
‖b‖L∞(Ω)

4ε
> 0.

Therefore if c > c0 and ε satisfies (20), then

k − ε‖b‖L∞(Ω) > 0, c−
‖b‖L∞(Ω)

4ε
> 0

and so by part (c)

‖f‖L2(Ω)‖u‖H1(Ω) ≥ ‖f‖L2(Ω)‖u‖L2(Ω)

≥ min

{
k − ε‖b‖L∞(Ω), c−

‖b‖L∞(Ω)

4ε

}(
‖∇u‖2L2(Ω) + ‖u‖2L2(Ω)

)
= min

{
k − ε‖b‖L∞(Ω), c−

‖b‖L∞(Ω)

4ε

}
‖u‖2H1(Ω).

Therefore if c > c0 and ε satisfies (20), then

‖u‖H1(Ω) ≤M‖f‖L2(Ω)

with

M =
1

min
{
k − ε‖b‖L∞(Ω), c−

‖b‖L∞(Ω)

4ε

} .
For example, if we choose

ε =
1

2

k

‖b‖L∞(Ω)
,

then

c0 =
‖b‖L∞(Ω)

2k
, M =

1

min {k/2, c− c0}
= max

{
2

k
,

1

c− c0

}
.

(e) Let v ∈ C2(Ω) satisfy (19). Then w = u− v satisfies (19) with f = 0. Therefore by part (d)

‖w‖H1(Ω) ≤ 0

and so w = 0 and u = v, as required.

19. Neumann boundary conditions for variational problems.

(i) Let u ∈ C1(Ω) be a minimiser of E. For any ϕ ∈ V , ε ∈ R, define uε = u + εϕ. Then uε ∈ C1(Ω)
since the sum of C1 functions is C1. Let g(ε) = E[uε]. Note that uε = u when ε = 0. Therefore g is
minimised by ε = 0 since E is minimised by u. Hence
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0 = g′(0) =
d

dε

∣∣∣∣
ε=0

E[uε]

=
d

dε

∣∣∣∣
ε=0

[
1

2

∫
Ω
|∇uε|2 dx−

∫
Ω
fuε dx

]

=
d

dε

∣∣∣∣
ε=0

[
1

2

∫
Ω

(∇u+ ε∇ϕ) · (∇u+ ε∇ϕ) dx−
∫

Ω
f(u+ εϕ) dx

]

=
1

2

∫
Ω

d

dε

∣∣∣∣
ε=0

[(∇u+ ε∇ϕ) · (∇u+ ε∇ϕ)] dx−
∫

Ω
f
d

dε

∣∣∣∣
ε=0

(u+ εϕ) dx

=
1

2

∫
Ω

[∇ϕ · (∇u+ ε∇ϕ) + (∇u+ ε∇ϕ) · ∇ϕ]

∣∣∣∣
ε=0

dx−
∫

Ω
fϕ dx

=

∫
Ω
∇u · ∇ϕdx−

∫
Ω
fϕ dx.

Therefore ∫
Ω
∇u · ∇ϕdx =

∫
Ω
fϕ dx for all ϕ ∈ C1(Ω) (21)

as required.

(ii) First choose a test function ϕ ∈ C1(Ω) such that ϕ = 0 on ∂Ω. Since u ∈ C2(Ω), we can integrate
by parts in (21) to obtain∫

∂Ω
∇uϕ · n dS −

∫
Ω

div∇u︸ ︷︷ ︸
=∆u

ϕdx =

∫
Ω
fϕ dx ⇐⇒

∫
Ω

(−∆u− f)ϕdx = 0

because ϕ = 0 on ∂Ω. Since this holds for all test functions ϕ ∈ C1(Ω) such that ϕ = 0 on ∂Ω, the
Fundamental Lemma of the Calculus of Variations implies that

−∆u− f = 0 in Ω (22)

as required. We still need to show that u satisfies the Neumann boundary condition. Now take any
test function ϕ ∈ C1(Ω) in (21) and integrate by parts as before to obtain∫

∂Ω
∇uϕ · n dS −

∫
Ω

∆uϕdx =

∫
Ω
fϕ dx ⇐⇒

∫
∂Ω
∇uϕ · n dS +

∫
Ω

(−∆u− f)︸ ︷︷ ︸
=0 by (22)

ϕdx = 0

⇐⇒
∫
∂Ω
∇u · nϕdS = 0.

Since this holds for all ϕ ∈ C1(Ω), then ∇u · n = 0 on ∂Ω, as required.

20. The p–Laplacian operator.

(i) Let u ∈ C2(Ω) ∩ V minimise Ep. For any ϕ ∈ V , ε ∈ R, define uε = u + εϕ. Observe that uε
vanishes on the boundary of Ω since both u and ϕ vanish there. Also uε ∈ C1(Ω) since the sum of
C1 functions is C1. Hence uε ∈ V . Define g(ε) = Ep[uε]. Now uε = u when ε = 0. Therefore g is
minimised by ε = 0 since Ep is minimised by u. We have reduced the problem of minimising the
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functional Ep to minimising the function of one variable g. Since g is minimised at ε = 0,

0 = g′(0)

=
d

dε

∣∣∣∣
ε=0

Ep[uε]

=
d

dε

∣∣∣∣
ε=0

[
1

p

∫
Ω
|∇uε|p dx−

∫
Ω
fuε dx

]

=
1

p

∫
Ω

d

dε

∣∣∣∣
ε=0

|∇u+ ε∇ϕ|p dx−
∫

Ω
f
d

dε

∣∣∣∣
ε=0

(u+ εϕ) dx

=
1

p

∫
Ω
p|∇u+ ε∇ϕ|p−1 ∇u+ ε∇ϕ

|∇u+ ε∇ϕ|
· ∇ϕ

∣∣∣∣
ε=0

dx−
∫

Ω
fϕ dx

=

∫
Ω
|∇u|p−2∇u · ∇ϕdx−

∫
Ω
fϕ dx (23)

where the differentiation was performed using the Chain Rule and the fact that

d

dx
xp = pxp−1, ∇y |y| =

y

|y|
,

d

dε
(∇u+ ε∇ϕ) = ∇ϕ.

Recall the integration by parts formula∫
Ω
g · ∇h dx =

∫
∂Ω

gh · n dS −
∫

Ω
hdiv g dx.

By applying this with h = ϕ, g = |∇u|p−2∇u, we can rewrite equation (23) as

0 =

∫
∂Ω
|∇u|p−2∇uϕ · n dS −

∫
Ω
ϕdiv(|∇u|p−2∇u) dx−

∫
Ω
fϕ dx.

But ϕ = 0 on ∂Ω since ϕ ∈ V . Therefore

0 =

∫
Ω

[div(|∇u|p−2∇u) + f ]ϕdx for all ϕ ∈ V.

Since ϕ is arbitrary, the Fundamental Lemma of the Calculus of Variations gives

div(|∇u|p−2∇u) + f = 0 in Ω.

Therefore
−div(|∇u|p−2∇u)︸ ︷︷ ︸

=∆pu

= f in Ω

as required. Note that u = 0 on ∂Ω by definition of V .

(ii) Multiply the PDE −div(|∇u|p−2∇u) = f by u and integrate by parts over Ω to obtain

−
∫

Ω
u div(|∇u|p−2∇u) dx =

∫
Ω
fu dx

⇐⇒ −
∫
∂Ω
u(|∇u|p−2∇u) · n dS +

∫
Ω
|∇u|p−2∇u · ∇u dx =

∫
Ω
fu dx

⇐⇒
∫

Ω
|∇u|p dx =

∫
Ω
fu dx (24)
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since u = 0 on ∂Ω. Therefore

Ep[u] =
1

p

∫
Ω
|∇u|p dx−

∫
Ω
fu dx

=
1

p

∫
Ω
|∇u|p dx−

∫
Ω
|∇u|p dx (by equation (24))

=
1− p
p

∫
Ω
|∇u|p dx

=
1− p
p

∫
Ω
fu dx (by equation (24))

as required.

21. The minimal surface equation: PDEs and soap films. Let u ∈ C2(Ω)∩ V be a minimiser of A. Let ε ∈ R
and ϕ ∈ C1(Ω) with ϕ = 0 on ∂Ω. Define uε = u + εϕ. Then uε ∈ V since the sum of continuously
differential functions is continuously differentiable and, if x ∈ ∂Ω, then

uε(x) = u(x) + εϕ(x) = g(x) + ε · 0 = g(x)

as required. Define h : R→ R by h(ε) = A[uε]. Then h(0) = A[u] and so 0 is a minimum point of h since
u is a minimum point of A. Therefore

0 = h′(0)

=
d

dε

∣∣∣∣
ε=0

A[uε]

=
d

dε

∣∣∣∣
ε=0

∫
Ω

√
1 + |∇uε|2 dx

=

∫
Ω

d

dε

∣∣∣∣
ε=0

√
1 + |∇u+ ε∇ϕ|2 dx

=

∫
Ω

1
2(1 + |∇u+ ε∇ϕ|2)−1/2 2|∇u+ ε∇ϕ| ∇u+ ε∇ϕ

|∇u+ ε∇ϕ|
· ∇ϕ

∣∣∣∣
ε=0

dx

=

∫
Ω

∇u√
1 + |∇u|2

· ∇ϕdx.

This means that u is a weak solution of the minimal surface equation. Since u ∈ C2(Ω), then we can
integrate by parts to obtain

0 =

∫
Ω

∇u√
1 + |∇u|2

· ∇ϕdx

=

∫
∂Ω
ϕ

∇u√
1 + |∇u|2

· n dS −
∫

Ω
div

(
∇u√

1 + |∇u|2

)
ϕdx

= −
∫

Ω
div

(
∇u√

1 + |∇u|2

)
ϕdx

since ϕ = 0 on ∂Ω. This holds for all ϕ ∈ C1(Ω) with ϕ = 0. Therefore u satisfies the minimal surface
equation

div

(
∇u√

1 + |∇u|2

)
= 0 in Ω.

by the Fundamental Lemma of the Calculus of Variations (Lemma 3.20).
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22. Homogenization and the calculus of variations.

(i) Let u ∈ C2([0, 1])∩V minimise E. For any ε ∈ R and any ϕ ∈ C1([0, 1]) such that ϕ(0) = ϕ(1) = 0,
define uε = u+ εϕ. Then

uε(0) = u(0) + εϕ(0) = l + ε · 0 = l

and similarly uε(1) = r. Therefore uε ∈ V . Define F (ε) = E[uε]. Now uε = u when ε = 0. Therefore
the minimum of F is attained at 0 since the minimum of E is attained at u. We have reduced the
problem of minimising the functional E to minimising the function of one variable F . Since F is
minimised at 0,

0 = F ′(0)

=
d

dε

∣∣∣∣
ε=0

E[uε]

=
d

dε

∣∣∣∣
ε=0

[
1

2

∫ 1

0
a(x)|u′ε(x)|2 dx−

∫ 1

0
f(x)uε(x) dx

]

=
d

dε

∣∣∣∣
ε=0

[
1

2

∫ 1

0
a(x)(u′(x) + εϕ′(x))2 dx−

∫ 1

0
f(x)(u(x) + εϕ(x)) dx

]
=

∫ 1

0
a(x)u′(x)ϕ′(x) dx−

∫ 1

0
f(x)ϕ(x) dx. (25)

Since u ∈ C2([0, 1]), we can use integration by parts to rewrite equation (25) as

0 = a(x)u′(x)ϕ(x)
∣∣∣1
0
−
∫ 1

0
(a(x)u′(x))′ϕ(x) dx−

∫ 1

0
f(x)ϕ(x) dx = −

∫ 1

0
[(a(x)u′(x))′+ f(x)]ϕ(x) dx.

But this holds for all ϕ ∈ C1([0, 1]) such that ϕ(0) = ϕ(1) = 0. Therefore by the Fundamental
Lemma of the Calculus of Variations

(a(x)u′(x))′ + f(x) = 0, x ∈ (0, 1),

as required. Note that u satisfies the Dirichlet boundary conditions by definition of V .

(ii) Recall from Q2(ii) that if g ∈ L∞(R) is 1–periodic, then for any interval [c, d] ⊆ R,

lim
n→∞

∫ d

c
g(nx)h(x) dx =

∫ d

c
g h(x) dx ∀ h ∈ L1(R). (26)

Applying (26) with c = 0, d = 1, g(x) = a(x), h(x) = 1
2 |v
′(x)|2 on [0, 1], gives the desired result:

lim
n→∞

En[v] =
1

2

∫ 1

0
a |v′(x)|2 dx−

∫ 1

0
f(x)v(x) dx =: E∞[v].

(iii) Observe that E∞ is just the one-dimensional Dirichlet energy with an additional constant a in the
first term. It follows from Dirichlet’s Principle (see the lecture notes) that u∞ satisfies the Poisson
equation

− a u′′∞(x) = f(x), x ∈ (0, 1),

u∞(0) = u∞(1) = 0.

In Q2 we showed that limn→∞ un(x) = u0(x), where u0 satisfies
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− a0u
′′
0(x) = f(x), x ∈ (0, 1),

u0(0) = u0(1) = 0,

where

a0 =
1(
1
a

) .
Since a0 6= a in general, it follows that u0 6= u∞ and hence

lim
n→∞

un(x) = u0(x) 6= u∞(x),

as required.

In fact it can be shown that a0 ≤ a as follows:

1 =

[∫ 1

0

√
a(x)

1√
a(x)

dx

]2

≤

[(∫ 1

0
a(x) dx

)1/2(∫ 1

0

1

a(x)
dx

)1/2
]2

= a

(
1

a

)
= a a−1

0

where we have used the Cauchy-Schwarz inequality. It follows that the Γ–limit E0 is less than or
equal to the pointwise limit E∞.
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