Partial Differential Equations III/IV Exercise Sheet 4: Solutions

1. Green's functions. By the Fundamental Theorem of Calculus, integrating $u^{\prime \prime}(y)=f(y)$ over $[0, z]$, for any $z \in[0,1]$, gives

$$
\int_{0}^{z} u^{\prime \prime}(y) d y=-\int_{0}^{z} f(y) d y \quad \Longleftrightarrow \quad u^{\prime}(z)=u^{\prime}(0)-\int_{0}^{z} f(y) d y=-\int_{0}^{z} f(y) d y
$$

where we have used the boundary condition $u^{\prime}(0)=0$. Integrating again, this time over $[0, x]$, gives

$$
\int_{0}^{x} u^{\prime}(z) d z=-\int_{0}^{x} \int_{0}^{z} f(y) d y d z \quad \Longleftrightarrow u(x)=u(0)-\int_{0}^{x} \int_{0}^{z} f(y) d y d z
$$

Taking $x=1$ and using the boundary condition $u(1)=0$ yields

$$
0=u(0)-\int_{0}^{1} \int_{0}^{z} f(y) d y d z \quad \Longleftrightarrow u(0)=\int_{0}^{1} \int_{0}^{z} f(y) d y d z
$$

Therefore

$$
u(x)=\int_{0}^{1} \int_{0}^{z} f(y) d y d z-\int_{0}^{x} \int_{0}^{z} f(y) d y d z
$$

By interchanging the order of integration we can write this as

$$
\begin{aligned}
u(x) & =\int_{0}^{1} \int_{y}^{1} f(y) d z d y-\int_{0}^{x} \int_{y}^{x} f(y) d z d y \\
& =\int_{0}^{1}(1-y) f(y) d y-\int_{0}^{x}(x-y) f(y) d y \\
& =\int_{0}^{x}(1-y) f(y) d y+\int_{x}^{1}(1-y) f(y) d y-\int_{0}^{x}(x-y) f(y) d y \\
& =\int_{0}^{x}(1-x) f(y) d y+\int_{x}^{1}(1-y) f(y) d y .
\end{aligned}
$$

Therefore

$$
u(x)=\int_{0}^{1} G(x, y) f(y) d y
$$

with

$$
G(x, y)= \begin{cases}1-x & \text { if } y \leq x \\ 1-y & \text { if } y \geq x\end{cases}
$$

2. Homogenization.
(i) Integrate $\left(a_{\varepsilon}(y) u_{\varepsilon}(y)\right)^{\prime}=-f(y)$ over $y \in[0, z]$:

$$
\begin{aligned}
\int_{0}^{z}\left(a_{\varepsilon}(y) u_{\varepsilon}^{\prime}(y)\right)^{\prime} d y=-\int_{0}^{z} f(y) d y & \Longleftrightarrow a_{\varepsilon}(z) u_{\varepsilon}^{\prime}(z)-a_{\varepsilon}(0) u_{\varepsilon}^{\prime}(0)=-\int_{0}^{z} f(y) d y \\
& \Longleftrightarrow u_{\varepsilon}^{\prime}(z)=\frac{a_{\varepsilon}(0) u_{\varepsilon}^{\prime}(0)}{a_{\varepsilon}(z)}-\frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y
\end{aligned}
$$

Now integrate over $z \in[0, x]$:

$$
\begin{gather*}
\int_{0}^{x} u_{\varepsilon}^{\prime}(z) d z=\int_{0}^{x}\left[\frac{a_{\varepsilon}(0) u_{\varepsilon}^{\prime}(0)}{a_{\varepsilon}(z)}-\frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y\right] d z \Longleftrightarrow \\
u_{\varepsilon}(x)=\underbrace{u_{\varepsilon}(0)}_{=0}+a_{\varepsilon}(0) u_{\varepsilon}^{\prime}(0) \int_{0}^{x} \frac{1}{a_{\varepsilon}(z)} d z-\int_{0}^{x} \frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y d z . \tag{1}
\end{gather*}
$$

We determine $u_{\varepsilon}^{\prime}(0)$ by evaluating this expression at $x=1$:

$$
\begin{gathered}
\underbrace{u_{\varepsilon}(1)}_{=0}=a_{\varepsilon}(0) u_{\varepsilon}^{\prime}(0) \int_{0}^{1} \frac{1}{a_{\varepsilon}(z)} d z-\int_{0}^{1} \frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y d z \Longleftrightarrow \\
a_{\varepsilon}(0) u_{\varepsilon}^{\prime}(0)=\left(\int_{0}^{1} \frac{1}{a_{\varepsilon}(z)} d z\right)^{-1} \int_{0}^{1} \frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y d z .
\end{gathered}
$$

Substituting this into (1) gives

$$
u_{\varepsilon}(x)=\left(\int_{0}^{1} \frac{1}{a_{\varepsilon}(z)} d z\right)^{-1} \int_{0}^{1} \frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y d z \int_{0}^{x} \frac{1}{a_{\varepsilon}(z)} d z-\int_{0}^{x} \frac{1}{a_{\varepsilon}(z)} \int_{0}^{z} f(y) d y d z
$$

as required.
(ii) Taking $\varepsilon=\varepsilon_{n}=\frac{1}{n}$ gives

$$
u_{\varepsilon_{n}}(x)=\left(\int_{0}^{1} \frac{1}{a(n z)} d z\right)^{-1} \int_{0}^{1} \frac{1}{a(n z)} \int_{0}^{z} f(y) d y d z \int_{0}^{x} \frac{1}{a(n z)} d z-\int_{0}^{x} \frac{1}{a(n z)} \int_{0}^{z} f(y) d y d z
$$

We are told in the hint to use the Riemann-Lebesgue Lemma, which states that if $g \in L^{\infty}(\mathbb{R})$ is 1 -periodic, then for any interval $[c, d] \subseteq \mathbb{R}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{c}^{d} g(n z) h(z) d z=\int_{c}^{d} \bar{g} h(z) d z \quad \forall h \in L^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R}) \tag{2}
\end{equation*}
$$

Applying (2) with $c=0, d=1, g(z)=1 / a(z)$, and $h(z)=1$ on $[c, d]$ gives

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1}{a(n z)} d z=\int_{0}^{1} \overline{\left(\frac{1}{a}\right)} d z=\overline{\left(\frac{1}{a}\right)}
$$

(Technical remark: We cannot take $h(z)=1$ for all $z \in \mathbb{R}$, else $h \notin L^{1}(\mathbb{R})$. But we can take h to be any function in $L^{1}(\mathbb{R}) \cap C^{1}(\mathbb{R})$ such that $h=1$ on $[c, d]$. The choice of h outside $[c, d]$ does not matter since it does not affect the integrals in (2).)
Applying (2) with $c=0, d=x, g(z)=1 / a(z)$ (since a is periodic and bounded below by a positive constant, g is periodic and bounded), and $h(z)=1$ on $[c, d]$ gives

$$
\lim _{n \rightarrow \infty} \int_{0}^{x} \frac{1}{a(n z)} d z=\int_{0}^{x} \overline{\left(\frac{1}{a}\right)} d z=x \overline{\left(\frac{1}{a}\right)} .
$$

Applying (2) with $c=0, d=1, g(z)=1 / a(z)$, and $h(z)=\int_{0}^{z} f(y) d y$ on $[c, d]$ gives

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1}{a(n z)} \int_{0}^{z} f(y) d y d z=\overline{\left(\frac{1}{a}\right)} \int_{0}^{1} \int_{0}^{z} f(y) d y d z
$$

Finally, applying (2) with $c=0, d=x, g(z)=1 / a(z)$, and $h(z)=\int_{0}^{z} f(y) d y$ on $[c, d]$ gives

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \int_{0}^{x} \frac{1}{a(n z)} \int_{0}^{z} f(y) d y d z=\overline{\left(\frac{1}{a}\right)} \int_{0}^{x} \int_{0}^{z} f(y) d y d z \\
\lim _{n \rightarrow \infty} u_{\varepsilon_{n}}(x)=u_{0}(x):=x \overline{\left(\frac{1}{a}\right)} \int_{0}^{1} \int_{0}^{z} f(y) d y d z-\overline{\left(\frac{1}{a}\right)} \int_{0}^{x} \int_{0}^{z} f(y) d y d z . \tag{3}
\end{gather*}
$$

(iii) This is simply a matter of interchanging the order of integration:

$$
\begin{aligned}
u_{0}(x) & =x \overline{\left(\frac{1}{a}\right)} \int_{0}^{1} \int_{0}^{z} f(y) d y d z-\overline{\left(\frac{1}{a}\right)} \int_{0}^{x} \int_{0}^{z} f(y) d y d z \\
& =x \overline{\left(\frac{1}{a}\right)} \int_{0}^{1} \int_{y}^{1} f(y) d z d y-\overline{\left(\frac{1}{a}\right)} \int_{0}^{x} \int_{y}^{x} f(y) d z d y \\
& =x \overline{\left(\frac{1}{a}\right)} \int_{0}^{1}(1-y) f(y) d y-\overline{\left(\frac{1}{a}\right)} \int_{0}^{x}(x-y) f(y) d y \\
& =\overline{\left(\frac{1}{a}\right)}\left\{\int_{0}^{x}[x(1-y)-(x-y)] f(y) d y+\int_{x}^{1} x(1-y) f(y) d y\right\} \\
& =\overline{\left(\frac{1}{a}\right)}\left\{\int_{0}^{x} y(1-x) f(y) d y+\int_{x}^{1} x(1-y) f(y) d y\right\} \\
& =\int_{0}^{1} G(x, y) f(y) d y
\end{aligned}
$$

with

$$
G(x, y)= \begin{cases}\overline{\left(\frac{1}{a}\right)} y(1-x) & \text { if } y \leq x \\ \overline{\left(\frac{1}{a}\right)} x(1-y) & \text { if } y \geq x\end{cases}
$$

(iv) Clearly u_{0} satisfies the boundary conditions. By the Fundamental Theorem of Calculus, differentiating equation (3) gives

$$
u_{0}^{\prime}(x)=\overline{\left(\frac{1}{a}\right)} \int_{0}^{1} \int_{0}^{z} f(y) d y d z-\overline{\left(\frac{1}{a}\right)} \int_{0}^{x} f(y) d y
$$

Differentiating again gives

$$
u_{0}^{\prime \prime}(x)=-\overline{\left(\frac{1}{a}\right)} f(x)
$$

Therefore

$$
-a_{0} u_{0}^{\prime \prime}(x)=-\frac{1}{\left(\frac{1}{a}\right)}\left[-\overline{\left(\frac{1}{a}\right)} f(x)\right]=f(x)
$$

as required.
(v) By definition,

$$
\bar{a}=\int_{0}^{1} a(x) d x=\int_{0}^{\frac{1}{2}} \frac{1}{2} d x+\int_{\frac{1}{2}}^{1} 1 d x=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot 1=\frac{3}{4}
$$

On the other hand,

$$
a_{0}=\left(\int_{0}^{1} \frac{1}{a(x)} d x\right)^{-1}=\left(\int_{0}^{\frac{1}{2}} 2 d x+\int_{\frac{1}{2}}^{1} 1 d x\right)^{-1}=\left(\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1\right)^{-1}=\left(\frac{3}{2}\right)^{-1}=\frac{2}{3}
$$

Therefore $a_{0} \neq \bar{a}$. In fact the Cauchy-Schwarz inequality can be used to show that

$$
a_{0} \leq \bar{a}
$$

for any choice of a.
(vi) Without loss of generality we can assume that $c>0$. Using the hint and integration by parts gives

$$
\begin{align*}
\int_{c}^{d} g(n z) h(z) d z & =\int_{c}^{d}\left(\frac{1}{n} \int_{0}^{n z} g(y) d y\right)^{\prime} h(z) d z \\
& =\left.\frac{1}{n} \int_{0}^{n z} g(y) d y h(z)\right|_{c} ^{d}-\int_{c}^{d} \frac{1}{n} \int_{0}^{n z} g(y) d y h^{\prime}(z) d z \tag{4}
\end{align*}
$$

Let $z \in[c, d], n \in \mathbb{N}$ and let $\lfloor n z\rfloor \in(n z-1, n z]$ denote floor $(n z)$, which is the largest integer less than or equal to $n z$. Since a is 1 -periodic,

$$
\begin{equation*}
\int_{0}^{n z} g(y) d y=\int_{0}^{\lfloor n z\rfloor} g(y) d y+\int_{\lfloor n z\rfloor}^{n z} g(y) d y=\lfloor n z\rfloor \int_{0}^{1} g(y) d y+\int_{\lfloor n z\rfloor}^{n z} g(y) d y . \tag{5}
\end{equation*}
$$

Observe that

$$
z-\frac{1}{n}=\frac{n z-1}{n}<\frac{\lfloor n z\rfloor}{n} \leq \frac{n z}{n}=z .
$$

Therefore by the Pinching Lemma (Squeezing Lemma)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lfloor n z\rfloor}{n}=z . \tag{6}
\end{equation*}
$$

Also

$$
\left|\frac{1}{n} \int_{\lfloor n z\rfloor}^{n z} g(y) d y\right| \leq \frac{1}{n}(n z-\lfloor n z\rfloor)\|g\|_{L^{\infty}(\mathbb{R})} \leq \frac{1}{n}\|g\|_{L^{\infty}(\mathbb{R})} .
$$

Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{\lfloor n z\rfloor}^{n z} g(y) d y=0 \tag{7}
\end{equation*}
$$

By combining equations (5), (6), (7) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{n z} g(y) d y=z \int_{0}^{1} g(y) d y \tag{8}
\end{equation*}
$$

Therefore the limit of the first term on the right-hand side of equation (4) is

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{n z} g(y) d y h(z)\right|_{c} ^{d}=\left.z \int_{0}^{1} g(y) d y h(z)\right|_{c} ^{d} \tag{9}
\end{equation*}
$$

Now we find the limit of the second term on the right-hand side of (4). By the computations above

$$
\begin{aligned}
& \left|\int_{c}^{d} \frac{1}{n} \int_{0}^{n z} g(y) d y h^{\prime}(z) d z-\int_{c}^{d} z \int_{0}^{1} g(y) d y h^{\prime}(z) d z\right| \\
& \leq \int_{c}^{d}\left|\frac{1}{n} \int_{0}^{n z} g(y) d y-z \int_{0}^{1} g(y) d y\right|\left|h^{\prime}(z)\right| d z \\
& \leq \int_{c}^{d}\left|\frac{\lfloor n z\rfloor}{n} \int_{0}^{1} g(y) d y+\frac{1}{n} \int_{\lfloor n z\rfloor}^{n z} g(y) d y-z \int_{0}^{1} g(y) d y\right|\left|h^{\prime}(z)\right| d z \\
& \leq \int_{c}^{d}\left(\left|\frac{\lfloor n z\rfloor}{n} \int_{0}^{1} g(y) d y-z \int_{0}^{1} g(y) d y\right|+\frac{1}{n} \int_{\lfloor n z\rfloor}^{n z}|g(y)| d y\right)\left|h^{\prime}(z)\right| d z \\
& \leq \int_{c}^{d}\left|\frac{\lfloor n z\rfloor-n z}{n} \int_{0}^{1} g(y) d y\right|\left|h^{\prime}(z)\right| d z+\frac{1}{n}\|g\|_{L^{\infty}(\mathbb{R})}\left\|h^{\prime}\right\|_{L^{1}([c, d])} \\
& \leq \int_{c}^{d} \frac{1}{n} \int_{0}^{1}|g(y)| d y\left|h^{\prime}(z)\right| d z+\frac{1}{n}\|g\|_{L^{\infty}(\mathbb{R})}\left\|h^{\prime}\right\|_{L^{1}([c, d])} \\
& \leq \frac{2}{n}\|g\|_{L^{\infty}(\mathbb{R})}\left\|h^{\prime}\right\|_{L^{1}([c, d])} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{c}^{d} \frac{1}{n} \int_{0}^{n z} g(y) d y h^{\prime}(z) d z=\int_{c}^{d} z \int_{0}^{1} g(y) d y h^{\prime}(z) d z \tag{10}
\end{equation*}
$$

Combining (4), (9), (10) and then integrating by parts yields

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{c}^{d} g(n z) h(z) d z & =\left.z \int_{0}^{1} g(y) d y h(z)\right|_{c} ^{d}-\int_{c}^{d} z \int_{0}^{1} g(y) d y h^{\prime}(z) d z \\
& =\int_{c}^{d} \int_{0}^{1} g(y) d y h(z) d z \\
& =\int_{c}^{d} \bar{g} h(z) d z
\end{aligned}
$$

as required.
3. Radial symmetry of Laplace's equation on \mathbb{R}^{n}. Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a harmonic function. Let $R \in O(n, \mathbb{R})$ and define $w: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $w(\boldsymbol{x}):=v(R \boldsymbol{x})$. Then

$$
\begin{aligned}
w_{x_{i}} & =\sum_{j=1}^{n} \frac{\partial v}{\partial x_{j}} \frac{\partial(R \boldsymbol{x})_{j}}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial v}{\partial x_{j}} \frac{\partial}{\partial x_{i}} \sum_{k=1}^{n} R_{j k} x_{k} \\
& =\sum_{j=1}^{n} \frac{\partial v}{\partial x_{j}} \sum_{k=1}^{n} R_{j k} \frac{\partial x_{k}}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial v}{\partial x_{j}} \sum_{k=1}^{n} R_{j k} \delta_{k i} \\
& =\sum_{j=1}^{n} \frac{\partial v}{\partial x_{j}} R_{j i} .
\end{aligned}
$$

To be precise

$$
w_{x_{i}}(\boldsymbol{x})=\sum_{j=1}^{n} v_{x_{j}}(R \boldsymbol{x}) R_{j i} .
$$

(This can also be written as $\nabla w(\boldsymbol{x})=R^{T} \nabla v(R \boldsymbol{x})$.)

Now we compute the second partial derivatives:

$$
\begin{aligned}
w_{x_{i} x_{i}} & =\frac{\partial}{\partial x_{i}} \sum_{j=1}^{n} v_{x_{j}}(R x) R_{j i} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial v_{x_{j}}}{\partial x_{k}} \frac{\partial(R x)_{k}}{\partial x_{i}} R_{j i} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} R_{j i} \frac{\partial}{\partial x_{i}} \sum_{l=1}^{n} R_{k l} x_{l} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} R_{j i} \sum_{l=1}^{n} R_{k l} \frac{\partial x_{l}}{\partial x_{i}} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} R_{j i} \sum_{l=1}^{n} R_{k l} \delta_{i l} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} R_{j i} R_{k i} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\Delta w & =\sum_{i=1}^{n} w_{x_{i} x_{i}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} R_{j i} R_{k i} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} \sum_{i=1}^{n} R_{j i} R_{k i} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} \sum_{i=1}^{n} R_{j i}\left(R^{T}\right)_{i k} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}}\left(R R^{T}\right)_{j k} \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} I_{j k} \tag{11}
\end{align*}
$$

since R is an orthogonal matrix. There are two ways to conclude from here: If are are familiar with the matrix inner product, then (11) gives

$$
\Delta w=D^{2} v: I=\operatorname{trace}\left(D^{2} v\right)=\Delta v=0
$$

since v is harmonc. Otherwise we can continue from (11) using indices:

$$
\Delta w=\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} I_{j k}=\sum_{j=1}^{n} \sum_{k=1}^{n} v_{x_{j} x_{k}} \delta_{j k}=\sum_{j=1}^{n} v_{x_{j} x_{j}}=\Delta v=0,
$$

as required.
4. Fundamental solution of Poisson's equation in 3D.
(i) One way of computing $\|\Phi\|_{L^{1}\left(B_{R}(\mathbf{0})\right)}$ is using spherical polar coordinates:

$$
\begin{aligned}
\|\Phi\|_{L^{1}\left(B_{R}(\mathbf{0})\right)} & =\int_{B_{R}(\mathbf{0})}|\Phi(\boldsymbol{x})| d \boldsymbol{x} \\
& =\frac{1}{4 \pi} \int_{B_{R}(\mathbf{0})} \frac{1}{|\boldsymbol{x}|} d \boldsymbol{x} \\
& =\frac{1}{4 \pi} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{R} \frac{1}{r} r^{2} \sin \theta d r d \theta d \phi \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} 1 d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{R} r d r \\
& =\frac{R^{2}}{2}
\end{aligned}
$$

Another way of computing $\|\Phi\|_{L^{1}\left(B_{R}(\mathbf{0})\right)}$ is as follows:

$$
\begin{aligned}
\|\Phi\|_{L^{1}\left(B_{R}(\mathbf{0})\right)} & =\int_{B_{R}(\mathbf{0})}|\Phi(\boldsymbol{x})| d \boldsymbol{x} \\
& =\int_{0}^{R}\left(\int_{\partial B_{r}(\mathbf{0})}|\Phi(\boldsymbol{y})| d S(\boldsymbol{y})\right) d r \\
& =\int_{0}^{R}\left(\int_{\partial B_{r}(\mathbf{0})} \frac{1}{4 \pi} \frac{1}{|\boldsymbol{y}|} d S(\boldsymbol{y})\right) d r \\
& =\frac{1}{4 \pi} \int_{0}^{R}\left(\int_{\partial B_{r}(\mathbf{0})} \frac{1}{r} d S(\boldsymbol{y})\right) d r \\
& =\frac{1}{4 \pi} \int_{0}^{R}\left(\operatorname{area}\left(\partial B_{r}(\mathbf{0})\right) \frac{1}{r}\right) d r \\
& =\frac{1}{4 \pi} \int_{0}^{R}\left(4 \pi r^{2} \frac{1}{r}\right) d r \\
& =\int_{0}^{R} r d r \\
& =\frac{R^{2}}{2}
\end{aligned}
$$

(ii) Let $K \subset \mathbb{R}^{3}$ be compact. Since K is bounded, there exists $R>0$ such that $K \subset B_{R}(\mathbf{0})$. Therefore

$$
\int_{K}|\Phi(\boldsymbol{x})| d \boldsymbol{x} \leq \int_{B_{R}(\mathbf{0})}|\Phi(\boldsymbol{x})| d \boldsymbol{x}=\frac{R^{2}}{2}<\infty .
$$

Therefore $\Phi \in L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$.
(iii) By part (i),

$$
\lim _{R \rightarrow \infty}\|\Phi\|_{L^{1}\left(B_{R}(\mathbf{0})\right)}=\lim _{R \rightarrow \infty} \frac{R^{2}}{2}=+\infty
$$

Therefore $\Phi \notin L^{1}\left(\mathbb{R}^{3}\right)$.
(iv) By the Chain Rule

$$
\nabla \Phi(\boldsymbol{x})=\frac{1}{4 \pi}\left(-\frac{1}{|\boldsymbol{x}|^{2}}\right) \nabla|\boldsymbol{x}|=\frac{1}{4 \pi}\left(-\frac{1}{|\boldsymbol{x}|^{2}}\right) \frac{\boldsymbol{x}}{|\boldsymbol{x}|}=-\frac{1}{4 \pi} \frac{\boldsymbol{x}}{|\boldsymbol{x}|^{3}} .
$$

Let $K \subset \mathbb{R}^{3}$ be compact. Since K is bounded, there exists $R>0$ such that $K \subset B_{R}(\mathbf{0})$. Therefore

$$
\begin{aligned}
\int_{K}|\nabla \Phi(\boldsymbol{x})| d \boldsymbol{x} & \leq \int_{B_{R}(\mathbf{0})}|\nabla \Phi(\boldsymbol{x})| d \boldsymbol{x} \\
& =\int_{B_{R}(\mathbf{0})} \frac{1}{4 \pi} \frac{1}{|\boldsymbol{x}|^{2}} d \boldsymbol{x} \\
& =\frac{1}{4 \pi} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{R} \frac{1}{r^{2}} r^{2} \sin \theta d r d \theta d \phi \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} 1 d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{R} 1 d r \\
& =R \\
& <\infty
\end{aligned}
$$

Therefore $\nabla \Phi \in L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$.
5. Fundamental solution of Poisson's equation in $1 D$. We compute

$$
\begin{aligned}
& u^{\prime \prime}(x)=(\Phi * f)^{\prime \prime}(x) \\
&=(f * \Phi)^{\prime \prime}(x) \\
&=\frac{d^{2}}{d x^{2}} \int_{-\infty}^{\infty} \Phi(y) f(x-y) d y \\
&=\int_{-\infty}^{\infty} \Phi(y) \frac{d^{2}}{d x^{2}} f(x-y) d y \\
&=\int_{-\infty}^{0} y \frac{d^{2}}{d x^{2}} f(x-y) d y \\
&=\int_{-\infty}^{0} y \frac{d^{2}}{d y^{2}} f(x-y) d y \\
&=\left.y \frac{d}{d y} f(x-y)\right|_{-\infty} ^{0}-\int_{-\infty}^{0} \frac{d}{d y} f(x-y) d y \\
&=-f(x) \quad \text { (symmetry of convolution) } \\
& \text { (integration by parts) } \\
& \text { (Fundamental Theorem of Calculus) }
\end{aligned}
$$

as required.
6. The function spaces L^{1} and $L_{\text {loc }}^{1}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|^{k}, k \in \mathbb{R}$. By integrating we see that
(i) $f \in L^{1}((-R, R))$ for $k>-1$,
(ii) $f \in L^{1}((R, \infty))$ for $k<-1$,
(iii) $f \in L_{\text {loc }}^{1}(\mathbb{R})$ for $k>-1$,
(iv) $f \notin L^{1}(\mathbb{R})$ for any k (by parts (i),(ii)).
7. Properties of the convolution.
(i) Let $\varphi \in L_{\text {loc }}^{1}(\mathbb{R}), f \in C_{c}(\mathbb{R})$ and let $K=\operatorname{supp}(f)$. Choose $R>0$ such that $K \subset[-R, R]$. In particular, $f=0$ outside the interval $[-R, R]$. Therefore

$$
\begin{aligned}
|(\varphi * f)(x)| & =\left|\int_{-\infty}^{\infty} \varphi(x-y) f(y) d y\right| \\
& =\left|\int_{-R}^{R} \varphi(x-y) f(y) d y\right| \\
& \leq \int_{-R}^{R}|\varphi(x-y)||f(y)| d y \\
& \leq \max _{[-R, R]}|f| \int_{-R}^{R}|\varphi(x-y)| d y \\
& =\max _{[-R, R]}|f| \int_{-R-x}^{R-x}|\varphi(z)| d z \\
& <\infty
\end{aligned}
$$

since $\varphi \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ and $[-R-x, R-x]$ is compact.
(ii) Now assume that $\varphi \in L^{1}(\mathbb{R})$. By Lemma 4.12, $f \in L^{\infty}(\mathbb{R})$. Therefore

$$
\begin{aligned}
|(\varphi * f)(x)| & \leq \int_{-\infty}^{\infty}|\varphi(x-y)||f(y)| d y \\
& \leq \sup _{y \in \mathbb{R}}|f(y)| \int_{-\infty}^{\infty}|\varphi(x-y)| d y \\
& =\sup _{y \in \mathbb{R}}|f(y)| \int_{-\infty}^{\infty}|\varphi(z)| d z \\
& =\|f\|_{L^{\infty}(\mathbb{R})}\|\varphi\|_{L^{1}(\mathbb{R})} .
\end{aligned}
$$

Therefore

$$
\|\varphi * f\|_{L^{\infty}(\mathbb{R})}=\sup _{x \in \mathbb{R}}|(\varphi * f)(x)| \leq\|f\|_{L^{\infty}(\mathbb{R})}\|\varphi\|_{L^{1}(\mathbb{R})}<\infty
$$

and so $\varphi * f \in L^{\infty}(\mathbb{R})$, as required.
(iii) The convolution is commutative since

$$
\begin{aligned}
(\varphi * f)(x) & =\int_{-\infty}^{\infty} \varphi(x-y) f(y) d y \\
& =\int_{\infty}^{\infty} \varphi(z) f(x-z)(-1) d z \\
& =\int_{-\infty}^{\infty} \varphi(z) f(x-z) d z \\
& =(f * \varphi)(x)
\end{aligned}
$$

as required.
8. The Poincaré inequality for functions that vanish on the boundary. Let $f \in C^{1}([a, b])$ satisfy $f(a)=$ $f(b)=0$. Then

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(y) d y=\int_{a}^{x} f^{\prime}(y) d y
$$

since $f(a)=0$. Therefore

$$
\begin{align*}
|f(x)| & =\left|\int_{a}^{x} f^{\prime}(y) d y\right| \\
& =\left|\int_{a}^{x} 1 \cdot f^{\prime}(y) d y\right| \\
& \leq\left.\left.\left|\int_{a}^{x} 1^{2} d y\right|^{1 / 2}\left|\int_{a}^{x}\right| f^{\prime}(y)\right|^{2} d y\right|^{1 / 2} \tag{Cauchy-Schwarz}\\
& \leq(x-a)^{1 / 2}\left(\int_{a}^{b}\left|f^{\prime}(y)\right|^{2} d y\right)^{1 / 2}
\end{align*}
$$

Squaring and integrating gives

$$
\begin{aligned}
\int_{a}^{b}|f(x)|^{2} d x & \leq \int_{a}^{b}(x-a) \int_{a}^{b}\left|f^{\prime}(y)\right|^{2} d y d x \\
& =\int_{a}^{b}(x-a) d x \int_{a}^{b}\left|f^{\prime}(y)\right|^{2} d y \\
& =\left.\frac{1}{2}(x-a)^{2}\right|_{a} ^{b} \int_{a}^{b}\left|f^{\prime}(y)\right|^{2} d y \\
& =\frac{1}{2}(b-a)^{2} \int_{a}^{b}\left|f^{\prime}(y)\right|^{2} d y .
\end{aligned}
$$

This is the Poincaré inequality with $C=\frac{1}{2}(b-a)^{2}$.
9. The Poincaré inequality on unbounded domains.
(i) For $n \in \mathbb{N}$, define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in(-\infty,-n-1], \\
(x-(-n-1))^{2}(x-(-n+1))^{2} & \text { if } x \in[-n-1,-n], \\
1 & \text { if } x \in[-n, n], \\
(x-(n+1))^{2}(x-(n-1))^{2} & \text { if } x \in[n, n+1], \\
0 & \text { if } x \in[n+1, \infty) .
\end{array}\right.
$$

(Exercise: Sketch f_{n} to get a better understanding of the example.) Observe that

$$
\begin{gathered}
f_{n}(-n-1)=f_{n}(n+1)=0 \\
f_{n}(-n)=f_{n}(n)=1, \\
f_{n}^{\prime}(-n-1)=f_{n}^{\prime}(-n)=f_{n}^{\prime}(n)=f_{n}^{\prime}(n+1)=0
\end{gathered}
$$

Therefore $f_{n} \in C^{1}(\mathbb{R})$. We also have $f_{n} \in L^{2}(\mathbb{R})$ since

$$
\left\|f_{n}\right\|_{L^{2}(\mathbb{R})}^{2}=\int_{-\infty}^{\infty}\left|f_{n}(x)\right|^{2} d x<\int_{-n-1}^{n+1} 1 d x=2(n+1)
$$

We compute

$$
\begin{aligned}
\left\|f_{n}^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2} & =\int_{-\infty}^{\infty}\left|f_{n}^{\prime}(x)\right|^{2} d x \\
& =2 \int_{n}^{n+1}\left[\frac{d}{d x}(x-(n+1))^{2}(x-(n-1))^{2}\right]^{2} d x \\
& =2 \int_{n}^{n+1}\left[2(x-(n+1))(x-(n-1))^{2}+2(x-(n+1))^{2}(x-(n-1))\right]^{2} d x \\
& =2 \int_{0}^{1}\left[2(y-1)(y+1)^{2}+2(y-1)^{2}(y+1)\right]^{2} d y
\end{aligned} \quad(y=x-n)
$$

which is independent of n. But

$$
\left\|f_{n}\right\|_{L^{2}(\mathbb{R})}^{2}=\int_{-\infty}^{\infty}\left|f_{n}(x)\right|^{2} d x>\int_{-n}^{n}\left|f_{n}(x)\right|^{2} d x=2 n
$$

Therefore

$$
\left\|f_{n}^{\prime}\right\|_{L^{2}(\mathbb{R})}=\text { constant }, \quad\left\|f_{n}\right\|_{L^{2}(\mathbb{R})} \xrightarrow{n \rightarrow \infty} \infty
$$

as required. This means that, given any $C>0$, we can choose N large enough so that

$$
\int_{-\infty}^{\infty}\left|f_{N}(x)\right|^{2} d x>C \int_{-\infty}^{\infty}\left|f_{N}^{\prime}(x)\right|^{2} d x
$$

which means that the Poincaré inequality on \mathbb{R} does not hold. We constructed this counter example using spreading; the support of f_{n} spreads as $n \rightarrow \infty$ without changing the $L^{2}-$ norm of f_{n}^{\prime}.
(ii) Let $\Omega=(a, b) \times(-\infty, \infty)$. Let $f \in C^{1}(\bar{\Omega}) \cap L^{2}(\Omega)$ with $\nabla f \in L^{2}(\Omega)$ and with $f(a, y)=f(b, y)=0$ for all $y \in \mathbb{R}$. Then

$$
\begin{aligned}
\int_{\Omega}|f(\boldsymbol{x})|^{2} d \boldsymbol{x} & =\int_{-\infty}^{\infty}\left(\int_{a}^{b}|f(x, y)|^{2} d x\right) d y \\
& \leq \int_{-\infty}^{\infty}\left(C \int_{a}^{b}\left|f_{x}(x, y)\right|^{2} d x\right) d y \quad \text { (Poincaré inequality in } x \text {) } \\
& \leq C \int_{-\infty}^{\infty} \int_{a}^{b}\left(\left|f_{x}(x, y)\right|^{2}+\left|f_{y}(x, y)\right|^{2}\right) d x d y \\
& =C \int_{\Omega}|\nabla f(\boldsymbol{x})|^{2} d \boldsymbol{x}
\end{aligned}
$$

as required.
10. The Poincaré constant depends on the domain. There exits $C_{1}>0$ such that

$$
\begin{equation*}
\int_{0}^{1}|f(x)|^{2} d x \leq C_{1} \int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x \tag{12}
\end{equation*}
$$

for all $f \in C^{1}([0,1])$ with $f(0)=f(1)=0$. Let $g \in C^{1}([0, L])$ with $g(0)=g(L)=0$. Then

$$
\begin{array}{rlr}
\int_{0}^{L}|g(x)|^{2} d x & =\int_{0}^{1}|g(L y)|^{2} L d y & (y=x / L) \\
& =L \int_{0}^{1}|f(y)|^{2} d y & (f(y):=g(L y)) \\
& \leq L C_{1} \int_{0}^{1}\left|f^{\prime}(y)\right|^{2} d y & \text { (equation (12)) } \\
& =L C_{1} \int_{0}^{1}\left|L g^{\prime}(L y)\right|^{2} d y & \left(f^{\prime}(y)=L g^{\prime}(L y)\right) \\
& =L^{3} C_{1} \int_{0}^{1}\left|g^{\prime}(L y)\right|^{2} d y & \tag{12}\\
& =L^{2} C_{1} \int_{0}^{L}\left|g^{\prime}(x)\right|^{2} d x & (y=x / L) \\
& =C_{L} \int_{0}^{L}\left|g^{\prime}(x)\right|^{2} d x &
\end{array}
$$

with $C_{L}=L^{2} C_{1}$, as desired.
11. Eigenvalues of $-\Delta$: Can you hear the shape of a drum? Multiply the PDE $-\Delta u=\lambda u$ by \bar{u} (the complex conjugate of u) and integrate over Ω :

$$
-\int_{\Omega} \bar{u} \Delta u d \boldsymbol{x}=\lambda \int_{\Omega} \bar{u} u d \boldsymbol{x} \quad \Longleftrightarrow \quad-\int_{\partial \Omega} \bar{u} \nabla u \cdot \boldsymbol{n} d L+\int_{\Omega} \nabla \bar{u} \cdot \nabla u d \boldsymbol{x}=\lambda \int_{\Omega}|u|^{2} d \boldsymbol{x} .
$$

The boundary condition $u=0$ on $\partial \Omega$ implies that $\bar{u}=0$ on $\partial \Omega$ and so

$$
\begin{aligned}
\int_{\Omega} \overline{\nabla u} \cdot \nabla u d \boldsymbol{x}=\lambda \int_{\Omega}|u|^{2} d \boldsymbol{x} & \Longleftrightarrow \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}=\lambda \int_{\Omega}|u|^{2} d \boldsymbol{x} \\
& \Longleftrightarrow \lambda=\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}}>0
\end{aligned}
$$

as required.
12. The optimal Poincaré constant and eigenvalues of $-\Delta$.
(i) Multiply the $\operatorname{PDE}-\Delta u=\lambda u$ by u and integrate over Ω :

$$
-\int_{\Omega} u \Delta u d \boldsymbol{x}=\lambda \int_{\Omega} u^{2} d \boldsymbol{x} \quad \Longleftrightarrow \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}=\lambda \int_{\Omega} u^{2} d \boldsymbol{x}
$$

since $u=0$ on $\partial \Omega$. Rearranging gives

$$
\lambda=\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}} .
$$

(ii) Let $u \in C^{2}(\bar{\Omega}) \cap V$ minimise E. Let $\varphi \in V$. Define $u_{\varepsilon}=u+\varepsilon \varphi \in V$ and define $g(\varepsilon)=E\left[u_{\varepsilon}\right], \varepsilon \in \mathbb{R}$.

Since E is minimised by u, then g is minimised by 0 . It follows that

$$
\begin{aligned}
0 & =g^{\prime}(0) \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E\left[u_{\varepsilon}\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \frac{\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d \boldsymbol{x}}{\int_{\Omega}\left|u_{\varepsilon}\right|^{2} d \boldsymbol{x}} \\
& =\frac{2 \int_{\Omega} \nabla u \cdot \nabla \varphi d \boldsymbol{x} \int_{\Omega}|u|^{2} d \boldsymbol{x}-2 \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x} \int_{\Omega} u \varphi d \boldsymbol{x}}{\left(\int_{\Omega}|u|^{2} d \boldsymbol{x}\right)^{2}}
\end{aligned}
$$

The numerator must be zero. Rearranging gives

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi d \boldsymbol{x}=\left(\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}}\right) \int_{\Omega} u \varphi d \boldsymbol{x}
$$

Integrating by parts gives

$$
-\int_{\Omega} \Delta u \varphi d \boldsymbol{x}=\left(\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}}\right) \int_{\Omega} u \varphi d \boldsymbol{x}
$$

Since this holds for all $\varphi \in V$, the Fundamental Lemma of the Calculus of Variations implies that

$$
-\Delta u=\left(\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}}\right) u \text { in } \Omega .
$$

If we define

$$
\lambda=\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}}
$$

then

$$
-\Delta u=\lambda u \quad \text { in } \Omega .
$$

In other words, u is an eigenfunction of $-\Delta$. By definition

$$
E[u]=\frac{\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}}{\int_{\Omega}|u|^{2} d \boldsymbol{x}}=\lambda .
$$

Since u minimises E, then λ must be the smallest eigenvalue of $-\Delta$ on V, i.e., $\lambda=\lambda_{1}$, otherwise we obtain a contradiction. Therefore $E[u]=\lambda_{1}$, as required.
(iii) Let $C>0$ satisfy

$$
\|f\|_{L^{2}(\Omega)} \leq C\|\nabla f\|_{L^{2}(\Omega)}
$$

for all $f \in C^{1}(\bar{\Omega})$ with $f=0$ on $\partial \Omega$. Then

$$
\frac{1}{C} \leq \frac{\|\nabla f\|_{L^{2}(\Omega)}}{\|f\|_{L^{2}(\Omega)}}
$$

for all $f \in V$ and so

$$
\frac{1}{C} \leq \inf _{f \in V} \frac{\|\nabla f\|_{L^{2}(\Omega)}}{\|f\|_{L^{2}(\Omega)}}
$$

The smallest value of C satisfying this inequality is $C=C_{\mathrm{P}}$ where

$$
\frac{1}{C_{\mathrm{P}}}=\inf _{f \in V} \frac{\|\nabla f\|_{L^{2}(\Omega)}}{\|f\|_{L^{2}(\Omega)}}
$$

(iv) Combining parts (ii) and (iii) gives

$$
\frac{1}{C_{\mathrm{P}}}=\inf _{f \in V} \frac{\|\nabla f\|_{L^{2}(\Omega)}}{\|f\|_{L^{2}(\Omega)}}=\inf _{f \in V} E[v]^{1 / 2}=\left(\inf _{f \in V} E[v]\right)^{1 / 2}=\sqrt{\lambda_{1}}
$$

Therefore

$$
C_{\mathrm{P}}=\frac{1}{\sqrt{\lambda_{1}}}
$$

as desired.
(v) If $\Omega=(0,2 \pi)$, then the corresponding eigenvalue problem is

$$
-u^{\prime \prime}=\lambda u \quad \text { in }(0,2 \pi), \quad u(0)=u(2 \pi)=0 .
$$

The eigenfunctions are $u_{n}(x)=\sin \left(\frac{n x}{2}\right)$ (see Exercise Sheet 5, Q16) and the corresponding eigenvalues are $\lambda_{n}=n^{2} / 4, n \in \mathbb{N}$. Therefore $\lambda_{1}=1 / 4$ and $C_{\mathrm{P}}=1 / \sqrt{1 / 4}=2$. In Q8 we obtained the Poincaré constant $(b-a) / \sqrt{2}=\sqrt{2} \pi$, which is obviously much bigger than the optimal constant $C_{\mathrm{P}}=2$.
13. Uniqueness for Poisson's equation with Robin boundary conditions. Let u_{1} and u_{2} be solutions of

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega, \\
\nabla u \cdot \boldsymbol{n}+\alpha u=g & \text { on } \partial \Omega .
\end{aligned}
$$

Let $w=u_{1}-u_{2}$. Since the PDE is linear, subtracting the equations satisfied by u_{1} and u_{2} gives

$$
\begin{aligned}
-\Delta w=0 & \text { in } \Omega, \\
\nabla w \cdot \boldsymbol{n}+\alpha w=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Multiply $-\Delta w=0$ by w and integrate by parts over Ω :

$$
\begin{aligned}
-\int_{\Omega} w \Delta w d \boldsymbol{x}=0 & \Longleftrightarrow-\int_{\partial \Omega} w \nabla w \cdot \boldsymbol{n} d S+\int_{\Omega}|\nabla w|^{2} d \boldsymbol{x}=0 \\
& \Longleftrightarrow \alpha \int_{\partial \Omega} w^{2} d S+\int_{\Omega}|\nabla w|^{2} d \boldsymbol{x}=0
\end{aligned}
$$

since $\nabla w \cdot \boldsymbol{n}=-\alpha w$ on $\partial \Omega$. But $\alpha>0$. Therefore

$$
\int_{\partial \Omega} w^{2} d S=0, \quad \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x}=0 .
$$

The second equation implies that $\nabla w=\mathbf{0}$ and hence $w=$ constant (or at least constant on each connected component of Ω). The first equation implies that this constant must be zero. Therefore $w=0$ and $u_{1}=u_{2}$, as required.
14. Uniqueness for a more general elliptic problem. Consider the linear, second-order, elliptic PDE

$$
\begin{align*}
-\operatorname{div}(A \nabla u)+\boldsymbol{b} \cdot \nabla u+c u & =f & & \text { in } \Omega, \tag{13}\\
u & =g & & \text { on } \partial \Omega .
\end{align*}
$$

(i) Suppose that $u_{1}, u_{2} \in C^{2}(\bar{\Omega})$ satisfy (13). Let $w=u_{1}-u_{2}$. Since the PDE is linear, subtracting the equations satisfied by u_{1} and u_{2} gives

$$
\begin{align*}
-\operatorname{div}(A \nabla w)+\boldsymbol{b} \cdot \nabla w+c w & =0 & & \text { in } \Omega, \tag{14}\\
w & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

Clearly $w=0$ satisfies (14). We want to show that it is the only solution. Multiply the PDE for w by w and integrate over Ω :

$$
\begin{align*}
0 & =\int_{\Omega} w(-\operatorname{div}(A \nabla w)+\boldsymbol{b} \cdot \nabla w+c w) d \boldsymbol{x} \\
& =-\int_{\Omega} w \operatorname{div}(A \nabla w) d \boldsymbol{x}+\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x}+\int_{\Omega} c w^{2} d \boldsymbol{x} \\
& =-\int_{\partial \Omega} w(A \nabla w) \cdot \boldsymbol{n} d S+\int_{\Omega} \nabla w \cdot(A \nabla w) d \boldsymbol{x}+\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x}+\int_{\Omega} c w^{2} d \boldsymbol{x} \\
& =\int_{\Omega} \nabla w \cdot(A \nabla w) d \boldsymbol{x}+\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x}+\int_{\Omega} c w^{2} d \boldsymbol{x} \tag{15}
\end{align*}
$$

since $w=0$ on $\partial \Omega$. Observe that

$$
\begin{equation*}
\int_{\Omega} \nabla w \cdot(A \nabla w) d \boldsymbol{x}=\int_{\Omega}(\nabla w)^{\mathrm{T}} A \nabla w d \boldsymbol{x} \geq \alpha \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x} \tag{16}
\end{equation*}
$$

by the assumption that A is uniformly positive definite (take $\boldsymbol{y}=\nabla w$ in $\boldsymbol{y}^{\mathrm{T}} A(\boldsymbol{x}) \boldsymbol{y} \geq \alpha|\boldsymbol{y}|^{2}$). Integrating by parts gives

$$
\begin{array}{rlrl}
\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x} & =\int_{\partial \Omega} w^{2} \boldsymbol{b} \cdot \boldsymbol{n} d S-\int_{\Omega} w \operatorname{div}(w \boldsymbol{b}) d \boldsymbol{x} & \\
& =-\int_{\Omega} w \operatorname{div}(w \boldsymbol{b}) d \boldsymbol{x} & & (w=0 \text { on } \partial \Omega) \\
& =-\int_{\Omega} w(\nabla w \cdot \boldsymbol{b}+w \operatorname{div} \boldsymbol{b}) d \boldsymbol{x} & & \text { (product rule) } \\
& =-\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x} &
\end{array}
$$

by the assumption that $\operatorname{div} \boldsymbol{b}=0$. Therefore

$$
\begin{equation*}
\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x}=-\int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x} \quad \Longleftrightarrow \quad \int_{\Omega} w \boldsymbol{b} \cdot \nabla w d \boldsymbol{x}=0 . \tag{17}
\end{equation*}
$$

Combining (15), (16), (17) yields

$$
\alpha \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x}+\int_{\Omega} c w^{2} d \boldsymbol{x} \leq 0 .
$$

But $c \geq 0$ by assumption. Therefore

$$
\alpha \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x}=0
$$

and so $\nabla w=\mathbf{0}$ in Ω. Hence w is constant (or at least constant on each connected component of Ω). But $w=0$ on $\partial \Omega$. Therefore $w=0$, as required.
(ii) The idea is the same as for (i). Let u_{n} be the unique solution to the PDE with A_{n} and let u be the unique solution to the PDE with the matrix A. Define $w_{n}:=u_{n}-u$. We need to show that $\nabla w_{n} \rightarrow 0$ in $L^{2}(\Omega)$ as $n \rightarrow+\infty$. Taking the two PDEs, subtracting them and multiplying the resulting PDE by w_{n}, we obtain

$$
\begin{equation*}
0=\int_{\Omega} w_{n}\left(-\operatorname{div}\left(A_{n} \nabla u_{n}\right)+\operatorname{div}(A \nabla u)+\boldsymbol{b} \cdot \nabla w_{n}+c w_{n}\right) d \boldsymbol{x} . \tag{18}
\end{equation*}
$$

Proceeding exactly as in (i), we find

$$
\int_{\Omega} w_{n} \boldsymbol{b} \cdot \nabla w_{n} d \boldsymbol{x}=0 .
$$

Moreover, we compute (using integration by parts, since $w_{n}=0$ on $\partial \Omega$)

$$
\begin{aligned}
& \int_{\Omega} w_{n}\left[-\operatorname{div}\left(A_{n} \nabla u_{n}\right)+\operatorname{div}(A \nabla u)\right] d \boldsymbol{x} \\
& =\int_{\Omega} w_{n}\left[-\operatorname{div}\left(A_{n} \nabla u_{n}\right)+\operatorname{div}\left(A_{n} \nabla u\right)-\operatorname{div}\left(A_{n} \nabla u\right)+\operatorname{div}(A \nabla u)\right] d \boldsymbol{x} \\
& =\int_{\Omega} w_{n}\left[-\operatorname{div}\left(A_{n}\left(\nabla u_{n}-\nabla u\right)\right)-\operatorname{div}\left(\left(A_{n}-A\right) \nabla u\right)\right] d \boldsymbol{x} \\
& =\int_{\Omega}\left[\nabla w_{n} \cdot\left(A_{n} \nabla w_{n}\right)+\nabla w_{n} \cdot\left(\left(A_{n}-A\right) \nabla u\right)\right] d \boldsymbol{x} \\
& \geq \int_{\Omega}\left[\alpha\left|\nabla w_{n}\right|^{2}+\nabla w_{n} \cdot\left(\left(A_{n}-A\right) \nabla u\right)\right] d \boldsymbol{x}
\end{aligned}
$$

So, all these arguments yield

$$
\int_{\Omega}\left[\alpha\left|\nabla w_{n}\right|^{2}+\nabla w_{n} \cdot\left(\left(A_{n}-A\right) \nabla u\right)+c w_{n}^{2}\right] d \boldsymbol{x} \leq 0
$$

Now, for any $\varepsilon>0$, Young's inequality yields

$$
\int_{\Omega} \nabla w_{n} \cdot\left(\left(A_{n}-A\right) \nabla u\right) d \boldsymbol{x}=-\frac{\varepsilon}{2} \int_{\Omega}\left|\nabla w_{n}\right|^{2} d \boldsymbol{x}-\int_{\Omega} \frac{1}{2 \varepsilon}\left|A_{n}-A\right|^{2}|\nabla u|^{2} d \boldsymbol{x} .
$$

By setting $\varepsilon:=\alpha$, the previous two identities imply

$$
\int_{\Omega}\left[\frac{\alpha}{2}\left|\nabla w_{n}\right|^{2}+c w_{n}^{2}\right] d \boldsymbol{x} \leq \frac{1}{2 \alpha}\left\|A_{n}-A\right\|_{L^{\infty}}^{2} \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x} .
$$

And by the non-negative property of c, one has

$$
\int_{\Omega} \frac{\alpha}{2}\left|\nabla w_{n}\right|^{2} d \boldsymbol{x} \leq \frac{1}{2 \alpha}\left\|A_{n}-A\right\|_{L^{\infty}}^{2} \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x} .
$$

We conclude by the facts that $\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}$ is bounded and $\left\|A_{n}-A\right\|_{L^{\infty}} \rightarrow 0$, as $n \rightarrow+\infty$.
15. Uniqueness for a degenerate diffusion equation. Clearly $u=\pi$ satisfies

$$
\begin{aligned}
\Delta u^{m} & =0 & & \text { in } \Omega, \\
u & =\pi & & \text { on } \partial \Omega .
\end{aligned}
$$

We use the energy method to show that it is the only positive solution. Let v be any positive solution. Subtracting the PDE for u from the PDE for v and multiplying by $(v-u)$ gives

$$
0=(v-u)\left(\Delta v^{m}-\Delta u^{m}\right)=(v-\pi)\left(\Delta v^{m}-\Delta \pi^{m}\right)=(v-\pi) \Delta v^{m} .
$$

Now integrate over Ω :

$$
\begin{array}{rrr}
0 & =\int_{\Omega}(v-\pi) \Delta v^{m} d \boldsymbol{x} & \\
& =\int_{\Omega}(v-\pi) \operatorname{div} \nabla\left(v^{m}\right) d \boldsymbol{x} & (\Delta=\operatorname{div} \nabla) \\
& =\int_{\Omega}(v-\pi) \operatorname{div}\left(m v^{m-1} \nabla v\right) d \boldsymbol{x} & \text { (Chain Rule) } \tag{ChainRule}\\
& =\int_{\partial \Omega} \underbrace{(v-\pi)}_{=0} m v^{m-1} \nabla v \cdot \boldsymbol{n} d S-\int_{\Omega} \underbrace{\nabla(v-\pi)}_{=\nabla v} \cdot m v^{m-1} \nabla v d \boldsymbol{x} & \text { (Integration by parts) } \\
& =-\int_{\Omega} m v^{m-1}|\nabla v|^{2} d \boldsymbol{x} . &
\end{array}
$$

Therefore

$$
\int_{\Omega} m v^{m-1}|\nabla v|^{2} d \boldsymbol{x}=0 .
$$

But $v>0$, by assumption. Hence $\nabla v=\mathbf{0}$ in Ω and so v is constant in Ω. Since $v=\pi$ on $\partial \Omega$, we conclude that $v=\pi$ everywhere, as required.
16. The H_{0}^{1} and H^{1} norms.
(i) We need to check that $\|\cdot\|_{L^{2}([a, b])}$ satisfies the three properties of a norm: positivity, 1-homogeneity, and the triangle inequality. First we prove positivity. Let $f \in C([a, b])$. Clearly $\|f\|_{L^{2}([a, b])} \geq 0$. Suppose that $\|f\|_{L^{2}([a, b])}=0$ and assume for contradiction that $f \neq 0$. Since f is continuous, then there exists $x_{0} \in(a, b), h>0$ and $\varepsilon>0$ such that $|f(x)|>\varepsilon$ for all $x \in\left(x_{0}-h, x_{0}+h\right)$. Therefore

$$
\|f\|_{L^{2}([a, b])}^{2} \geq \int_{x_{0}-h}^{x_{0}+h}|f(x)|^{2} d x \geq \int_{x_{0}-h}^{x_{0}+h} \varepsilon^{2} d x=2 h \varepsilon^{2}>0,
$$

which is a contradiction. Second we check that $\|\cdot\|_{L^{2}([a, b])}$ is 1 -homogeneous. Let $\lambda \in \mathbb{R}$. Then

$$
\|\lambda f\|_{L^{2}([a, b])}=\left(\int_{a}^{b}|\lambda f(x)|^{2}\right)^{1 / 2}=|\lambda|\left(\int_{a}^{b}|f(x)|^{2}\right)^{1 / 2}=|\lambda|\|f\|_{L^{2}([a, b])}
$$

as required. Finally, we prove the triangle inequality. Let $f, g \in C([a, b])$. Then

$$
\begin{aligned}
\|f+g\|_{L^{2}([a, b])}^{2} & =\int_{a}^{b}(f(x)+g(x))^{2} d x \\
& =\int_{a}^{b} f(x)^{2} d x+2 \int_{a}^{b} f(x) g(x) d x+\int_{a}^{b} g(x)^{2} d x \\
& \leq \int_{a}^{b} f(x)^{2} d x+2\left(\int_{a}^{b} f(x)^{2} d x\right)^{1 / 2}\left(\int_{a}^{b} g(x)^{2} d x\right)^{1 / 2}+\int_{a}^{b} g(x)^{2} d x
\end{aligned}
$$

(by the Cauchy-Schwarz inequality)

$$
=\|f\|_{L^{2}([a, b])}^{2}+2\|f\|_{L^{2}([a, b])}\|g\|_{L^{2}([a, b])}+\|g\|_{L^{2}([a, b])}^{2}
$$

$$
=\left(\|f\|_{L^{2}([a, b])}+\|g\|_{L^{2}([a, b])}\right)^{2} .
$$

Taking the square root gives the triangle inequality.
Remark: An alternative proof is to prove that the function $(\cdot, \cdot): C([a, b]) \times C([a, b]) \rightarrow \mathbb{R}$,

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

is an inner product on $C([a, b])$. It then follows that $\|f\|:=\sqrt{(f, f)}$ is a norm on $C([a, b])$ (the norm induced by the inner product; see Definition A. 16 in the lecture notes). But this is just the $L^{2}-$ norm $\|\cdot\|_{L^{2}([a, b])}$.
Remark: The Cauchy-Schwarz inequality can be proved by considering the quadratic polynomial

$$
t \mapsto p(t):=\|f+t g\|_{L^{2}([a, b])}^{2} .
$$

Since p is non-negative, then it must have non-positive discriminant, i.e., if $p(t)=\alpha t^{2}+\beta t+\gamma$, then $\beta^{2}-4 \alpha \gamma \leq 0$. It is easy to check that this condition is exactly the Cauchy-Schwarz inequality.
(ii) We will prove that the function $(\cdot, \cdot)_{H^{1}}: C^{1}([a, b]) \times C^{1}([a, b]) \rightarrow \mathbb{R}$ defined by

$$
(f, g)_{H^{1}}:=\int_{a}^{b} f(x) g(x) d x+\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x
$$

is an inner product on $C^{1}([a, b])$. It then follows that

$$
\|f\|_{H^{1}([a, b])}=\sqrt{(f, f)_{H^{1}}}
$$

is a norm on $C^{1}([a, b])$ (see Definition A. 16 in the lecture notes). It is clear that $(\cdot, \cdot)_{H^{1}}$ is symmetric and bilinear and that $(f, f)_{H^{1}} \geq 0$ for all $f \in C^{1}([a, b])$. Suppose that $(f, f)_{H^{1}}=0$. Then $\|f\|_{H^{1}([a, b])}=0$ and in particular $\|f\|_{L^{2}([a, b])}=0$. Therefore $f=0$ by part (i).
(iii) This is similar to part (ii). We will prove that the function $(\cdot, \cdot)_{H_{0}^{1}}: V \times V \rightarrow \mathbb{R}$ defined by

$$
(f, g)_{H_{0}^{1}}:=\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x
$$

is an inner product on V. It is clear that $(\cdot, \cdot)_{H_{0}^{1}}$ is symmetric and bilinear and that $(f, f)_{H_{0}^{1}} \geq 0$ for all $f \in V$. Suppose that $(f, f)_{H_{0}^{1}}=0$. Then $\|f\|_{H_{0}^{1}([a, b])}=0$ and in particular $\left\|f^{\prime}\right\|_{L^{2}([a, b])}=0$. Therefore $f^{\prime}=0$ by part (i) and so f is a constant function. But $f(a)=f(b)=0$ and hence $f=0$, as required.
(iv) We need to find constants $c, C>0$ such that

$$
c\|f\|_{H_{0}^{1}([a, b])} \leq\|f\|_{H^{1}([a, b])} \leq C\|f\|_{H_{0}^{1}([a, b])} \quad \forall f \in V
$$

Let $f \in V$. We have

$$
\|f\|_{H_{0}^{1}([a, b])}=\left\|f^{\prime}\right\|_{L^{2}([a, b])} \leq\left(\|f\|_{L^{2}([a, b])}^{2}+\left\|f^{\prime}\right\|_{L^{2}([a, b])}^{2}\right)^{1 / 2}=\|f\|_{H^{1}([a, b])}
$$

Therefore $c=1$. On the other hand,

$$
\|f\|_{H^{1}([a, b])}^{2}=\|f\|_{L^{2}([a, b])}^{2}+\left\|f^{\prime}\right\|_{L^{2}([a, b])}^{2} \leq C_{\mathrm{P}}^{2}\left\|f^{\prime}\right\|_{L^{2}([a, b])}^{2}+\left\|f^{\prime}\right\|_{L^{2}([a, b])}^{2}
$$

where C_{P} is the Poincaré constant. Therefore we can take $C=\left(C_{\mathrm{P}}^{2}+1\right)^{1 / 2}$.
17. Continuous dependence. Let $u \in C^{2}(\bar{\Omega})$ satisfy

$$
\begin{aligned}
-\operatorname{div}(A \nabla u)+c u & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Multiplying the PDE by u and integrating over Ω gives

$$
\begin{array}{rlr}
\int_{\Omega} f u d \boldsymbol{x} & =\int_{\Omega} u(-\operatorname{div}(A \nabla u)+c u) d \boldsymbol{x} \\
& =-\int_{\Omega} u \operatorname{div}(A \nabla u) d \boldsymbol{x}+c \int_{\Omega} u^{2} d \boldsymbol{x} \\
& =-\int_{\partial \Omega} u(A \nabla u) \cdot \boldsymbol{n} d S+\int_{\Omega} \nabla u \cdot(A \nabla u) d \boldsymbol{x}+c \int_{\Omega} u^{2} d \boldsymbol{x} \\
& =\int_{\Omega}(\nabla u)^{\mathrm{T}} A \nabla u d \boldsymbol{x}+c \int_{\Omega} u^{2} d \boldsymbol{x} \\
& \geq \alpha \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}+c \int_{\Omega} u^{2} d \boldsymbol{x} \\
& \geq \min \{\alpha, c\}\left(\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}+\int_{\Omega} u^{2} d \boldsymbol{x}\right) \quad(u=0 \text { on } \partial \Omega) \text {) } \\
& =\min \{\alpha, c\}\|u\|_{H^{1}(\Omega)}^{2} & \text { (A is uniformly positive definite) })
\end{array}
$$

by definition of the H^{1}-norm. Therefore

$$
\min \{\alpha, c\}\|u\|_{H^{1}(\Omega)}^{2} \leq \int_{\Omega} f u d \boldsymbol{x} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)}
$$

where we have used the Cauchy-Schwarz inequality and the fact that $\|v\|_{L^{2}(\Omega)} \leq\|v\|_{H^{1}(\Omega)}$ for all $v \in$ $C^{1}(\bar{\Omega})$. Cancelling one power of $\|u\|_{H^{1}(\Omega)}$ from both sides gives the desired result:

$$
\|u\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
$$

with $C=1 / \min \{\alpha, c\}$.
Remark: Note that this estimate degenerates as c tends to $0(C \rightarrow+\infty$ as $c \rightarrow 0)$. If $c=0$ or c is small then a better estimate can be obtained using the Poincaré inequality: As above

$$
\int_{\Omega} f u d \boldsymbol{x} \geq \alpha \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}+c \int_{\Omega} u^{2} d \boldsymbol{x} \geq \alpha \int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}=\alpha\|u\|_{H_{0}^{1}(\Omega)}^{2} .
$$

Therefore

$$
\alpha\|u\|_{H_{0}^{1}(\Omega)}^{2} \leq \int_{\Omega} f u d \boldsymbol{x} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \leq C_{\mathrm{P}}\|f\|_{L^{2}(\Omega)}\|\nabla u\|_{L^{2}(\Omega)}=C_{\mathrm{P}}\|f\|_{L^{2}(\Omega)}\|u\|_{H_{0}^{1}(\Omega)}
$$

where $C_{\mathrm{P}}(\Omega)$ is the Poincaré constant. Cancelling one power of $\|u\|_{H_{0}^{1}(\Omega)}$ from both sides gives

$$
\|u\|_{H_{0}^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
$$

with $C=C_{\mathrm{P}} / \alpha$.
18. Continuous dependence with a first-order term.
(a) Let $u \in C^{2}(\bar{\Omega})$ satisfy

$$
\begin{align*}
&-k \Delta u+\boldsymbol{b} \cdot \nabla u+c u=f \text { in } \Omega \tag{19}\\
& u=0 \\
& \text { on } \partial \Omega .
\end{align*}
$$

Multiply the PDE by u and integrate over Ω :

$$
\begin{aligned}
& -k \int_{\Omega} u \Delta u d \boldsymbol{x}+\int_{\Omega} u \boldsymbol{b} \cdot \nabla u d \boldsymbol{x}+\int_{\Omega} c u^{2} d \boldsymbol{x}=\int_{\Omega} f u d \boldsymbol{x} \\
& \Longleftrightarrow \quad-k\left[\int_{\partial \Omega} u \nabla u \cdot \boldsymbol{n} d S-\int_{\Omega}|\nabla u|^{2} d \boldsymbol{x}\right]+\int_{\Omega} u \boldsymbol{b} \cdot \nabla u d \boldsymbol{x}+\int_{\Omega} c u^{2} d \boldsymbol{x}=\int_{\Omega} f u d \boldsymbol{x} \\
& \Longleftrightarrow \quad k\|\nabla u\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}(\boldsymbol{b} \cdot \nabla u) u d \boldsymbol{x}+c\|u\|_{L^{2}(\Omega)}^{2}=\int_{\Omega} f u d \boldsymbol{x} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)}
\end{aligned}
$$

by the Cauchy-Schwarz inequality.
(b) Let $\varepsilon>0$. Then

$$
\begin{aligned}
\left|\int_{\Omega}(\boldsymbol{b} \cdot \nabla u) u d \boldsymbol{x}\right| & \leq\|\boldsymbol{b}\|_{L^{\infty}(\Omega)} \int_{\Omega}|\nabla u||u| d \boldsymbol{x} \\
& \leq\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}\|\nabla u\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \\
& =\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}\left(\sqrt{2 \varepsilon}\|\nabla u\|_{L^{2}(\Omega)}\right)\left(\frac{1}{\sqrt{2 \varepsilon}}\|u\|_{L^{2}(\Omega)}\right) \\
& \leq\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}\left(\varepsilon\|\nabla u\|_{L^{2}(\Omega)}^{2}+\frac{1}{4 \varepsilon}\|u\|_{L^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

by the Young inequality.
(c) Combining parts (a) and (b) gives

$$
\begin{aligned}
\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} & \geq k\|\nabla u\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}(\boldsymbol{b} \cdot \nabla u) u d \boldsymbol{x}+c\|u\|_{L^{2}(\Omega)}^{2} \\
& \geq k\|\nabla u\|_{L^{2}(\Omega)}^{2}-\left|\int_{\Omega}(\boldsymbol{b} \cdot \nabla u) u d \boldsymbol{x}\right|+c\|u\|_{L^{2}(\Omega)}^{2} \\
& \geq k\|\nabla u\|_{L^{2}(\Omega)}^{2}-\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}\left(\varepsilon\|\nabla u\|_{L^{2}(\Omega)}^{2}+\frac{1}{4 \varepsilon}\|u\|_{L^{2}(\Omega)}^{2}\right)+c\|u\|_{L^{2}(\Omega)}^{2} \\
& =\left(k-\varepsilon\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}\right)\|\nabla u\|_{L^{2}(\Omega)}^{2}+\left(c-\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon}\right)\|u\|_{L^{2}(\Omega)}^{2} .
\end{aligned}
$$

(d) Let $\varepsilon>0$ satisfy $k-\varepsilon\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}>0$, i.e., let

$$
\begin{equation*}
0<\varepsilon<\frac{k}{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}} \tag{20}
\end{equation*}
$$

Let

$$
c_{0}=\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon} .
$$

If $c>c_{0}$, then

$$
c-\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon}>0 .
$$

Therefore if $c>c_{0}$ and ε satisfies (20), then

$$
k-\varepsilon\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}>0, \quad c-\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon}>0
$$

and so by part (c)

$$
\begin{aligned}
\|f\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)} & \geq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \\
& \geq \min \left\{k-\varepsilon\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}, c-\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon}\right\}\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right) \\
& =\min \left\{k-\varepsilon\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}, c-\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon}\right\}\|u\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

Therefore if $c>c_{0}$ and ε satisfies (20), then

$$
\|u\|_{H^{1}(\Omega)} \leq M\|f\|_{L^{2}(\Omega)}
$$

with

$$
M=\frac{1}{\min \left\{k-\varepsilon\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}, c-\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{4 \varepsilon}\right\}} .
$$

For example, if we choose

$$
\varepsilon=\frac{1}{2} \frac{k}{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}},
$$

then

$$
c_{0}=\frac{\|\boldsymbol{b}\|_{L^{\infty}(\Omega)}}{2 k}, \quad M=\frac{1}{\min \left\{k / 2, c-c_{0}\right\}}=\max \left\{\frac{2}{k}, \frac{1}{c-c_{0}}\right\} .
$$

(e) Let $v \in C^{2}(\bar{\Omega})$ satisfy (19). Then $w=u-v$ satisfies (19) with $f=0$. Therefore by part (d)

$$
\|w\|_{H^{1}(\Omega)} \leq 0
$$

and so $w=0$ and $u=v$, as required.
19. Neumann boundary conditions for variational problems.
(i) Let $u \in C^{1}(\bar{\Omega})$ be a minimiser of E. For any $\varphi \in V, \varepsilon \in \mathbb{R}$, define $u_{\varepsilon}=u+\varepsilon \varphi$. Then $u_{\varepsilon} \in C^{1}(\bar{\Omega})$ since the sum of C^{1} functions is C^{1}. Let $g(\varepsilon)=E\left[u_{\varepsilon}\right]$. Note that $u_{\varepsilon}=u$ when $\varepsilon=0$. Therefore g is minimised by $\varepsilon=0$ since E is minimised by u. Hence

$$
\begin{aligned}
0 & =g^{\prime}(0)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E\left[u_{\varepsilon}\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\frac{1}{2} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d \boldsymbol{x}-\int_{\Omega} f u_{\varepsilon} d \boldsymbol{x}\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\frac{1}{2} \int_{\Omega}(\nabla u+\varepsilon \nabla \varphi) \cdot(\nabla u+\varepsilon \nabla \varphi) d \boldsymbol{x}-\int_{\Omega} f(u+\varepsilon \varphi) d \boldsymbol{x}\right] \\
& =\left.\frac{1}{2} \int_{\Omega} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}[(\nabla u+\varepsilon \nabla \varphi) \cdot(\nabla u+\varepsilon \nabla \varphi)] d \boldsymbol{x}-\left.\int_{\Omega} f \frac{d}{d \varepsilon}\right|_{\varepsilon=0}(u+\varepsilon \varphi) d \boldsymbol{x} \\
& =\left.\frac{1}{2} \int_{\Omega}[\nabla \varphi \cdot(\nabla u+\varepsilon \nabla \varphi)+(\nabla u+\varepsilon \nabla \varphi) \cdot \nabla \varphi]\right|_{\varepsilon=0} d \boldsymbol{x}-\int_{\Omega} f \varphi d \boldsymbol{x} \\
& =\int_{\Omega} \nabla u \cdot \nabla \varphi d \boldsymbol{x}-\int_{\Omega} f \varphi d \boldsymbol{x} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \varphi d \boldsymbol{x}=\int_{\Omega} f \varphi d \boldsymbol{x} \quad \text { for all } \varphi \in C^{1}(\bar{\Omega}) \tag{21}
\end{equation*}
$$

as required.
(ii) First choose a test function $\varphi \in C^{1}(\bar{\Omega})$ such that $\varphi=0$ on $\partial \Omega$. Since $u \in C^{2}(\bar{\Omega})$, we can integrate by parts in (21) to obtain

$$
\int_{\partial \Omega} \nabla u \varphi \cdot \boldsymbol{n} d S-\int_{\Omega} \underbrace{\operatorname{div} \nabla u}_{=\Delta u} \varphi d \boldsymbol{x}=\int_{\Omega} f \varphi d \boldsymbol{x} \quad \Longleftrightarrow \quad \int_{\Omega}(-\Delta u-f) \varphi d \boldsymbol{x}=0
$$

because $\varphi=0$ on $\partial \Omega$. Since this holds for all test functions $\varphi \in C^{1}(\bar{\Omega})$ such that $\varphi=0$ on $\partial \Omega$, the Fundamental Lemma of the Calculus of Variations implies that

$$
\begin{equation*}
-\Delta u-f=0 \quad \text { in } \Omega \tag{22}
\end{equation*}
$$

as required. We still need to show that u satisfies the Neumann boundary condition. Now take any test function $\varphi \in C^{1}(\bar{\Omega})$ in (21) and integrate by parts as before to obtain

$$
\begin{aligned}
\int_{\partial \Omega} \nabla u \varphi \cdot \boldsymbol{n} d S-\int_{\Omega} \Delta u \varphi d \boldsymbol{x}=\int_{\Omega} f \varphi d \boldsymbol{x} & \Longleftrightarrow \int_{\partial \Omega} \nabla u \varphi \cdot \boldsymbol{n} d S+\int_{\Omega} \underbrace{(-\Delta u-f)}_{=0 \text { by }(22)} \varphi d \boldsymbol{x}=0 \\
& \Longleftrightarrow \int_{\partial \Omega} \nabla u \cdot \boldsymbol{n} \varphi d S=0
\end{aligned}
$$

Since this holds for all $\varphi \in C^{1}(\bar{\Omega})$, then $\nabla u \cdot \boldsymbol{n}=0$ on $\partial \Omega$, as required.
20. The p-Laplacian operator.
(i) Let $u \in C^{2}(\bar{\Omega}) \cap V$ minimise E_{p}. For any $\varphi \in V, \varepsilon \in \mathbb{R}$, define $u_{\varepsilon}=u+\varepsilon \varphi$. Observe that u_{ε} vanishes on the boundary of Ω since both u and φ vanish there. Also $u_{\varepsilon} \in C^{1}(\bar{\Omega})$ since the sum of C^{1} functions is C^{1}. Hence $u_{\varepsilon} \in V$. Define $g(\varepsilon)=E_{p}\left[u_{\varepsilon}\right]$. Now $u_{\varepsilon}=u$ when $\varepsilon=0$. Therefore g is minimised by $\varepsilon=0$ since E_{p} is minimised by u. We have reduced the problem of minimising the
functional E_{p} to minimising the function of one variable g. Since g is minimised at $\varepsilon=0$,

$$
\begin{align*}
0 & =g^{\prime}(0) \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E_{p}\left[u_{\varepsilon}\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\frac{1}{p} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p} d \boldsymbol{x}-\int_{\Omega} f u_{\varepsilon} d \boldsymbol{x}\right] \\
& =\left.\frac{1}{p} \int_{\Omega} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}|\nabla u+\varepsilon \nabla \varphi|^{p} d \boldsymbol{x}-\left.\int_{\Omega} f \frac{d}{d \varepsilon}\right|_{\varepsilon=0}(u+\varepsilon \varphi) d \boldsymbol{x} \\
& =\left.\frac{1}{p} \int_{\Omega} p|\nabla u+\varepsilon \nabla \varphi|^{p-1} \frac{\nabla u+\varepsilon \nabla \varphi}{|\nabla u+\varepsilon \nabla \varphi|} \cdot \nabla \varphi\right|_{\varepsilon=0} d \boldsymbol{x}-\int_{\Omega} f \varphi d \boldsymbol{x} \\
& =\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d \boldsymbol{x}-\int_{\Omega} f \varphi d \boldsymbol{x} \tag{23}
\end{align*}
$$

where the differentiation was performed using the Chain Rule and the fact that

$$
\frac{d}{d x} x^{p}=p x^{p-1}, \quad \nabla_{\boldsymbol{y}}|\boldsymbol{y}|=\frac{\boldsymbol{y}}{|\boldsymbol{y}|}, \quad \frac{d}{d \varepsilon}(\nabla u+\varepsilon \nabla \varphi)=\nabla \varphi .
$$

Recall the integration by parts formula

$$
\int_{\Omega} \boldsymbol{g} \cdot \nabla h d \boldsymbol{x}=\int_{\partial \Omega} \boldsymbol{g} h \cdot \boldsymbol{n} d S-\int_{\Omega} h \operatorname{div} \boldsymbol{g} d \boldsymbol{x} .
$$

By applying this with $h=\varphi, \boldsymbol{g}=|\nabla u|^{p-2} \nabla u$, we can rewrite equation (23) as

$$
0=\int_{\partial \Omega}|\nabla u|^{p-2} \nabla u \varphi \cdot \boldsymbol{n} d S-\int_{\Omega} \varphi \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) d \boldsymbol{x}-\int_{\Omega} f \varphi d \boldsymbol{x} .
$$

But $\varphi=0$ on $\partial \Omega$ since $\varphi \in V$. Therefore

$$
0=\int_{\Omega}\left[\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f\right] \varphi d \boldsymbol{x} \quad \text { for all } \varphi \in V
$$

Since φ is arbitrary, the Fundamental Lemma of the Calculus of Variations gives

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f=0 \quad \text { in } \Omega .
$$

Therefore

$$
-\underbrace{\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)}_{=\Delta_{p} u}=f \quad \text { in } \Omega
$$

as required. Note that $u=0$ on $\partial \Omega$ by definition of V.
(ii) Multiply the PDE $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f$ by u and integrate by parts over Ω to obtain

$$
\begin{align*}
& -\int_{\Omega} u \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) d \boldsymbol{x}=\int_{\Omega} f u d \boldsymbol{x} \\
& \Longleftrightarrow \quad-\int_{\partial \Omega} u\left(|\nabla u|^{p-2} \nabla u\right) \cdot \boldsymbol{n} d S+\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla u d \boldsymbol{x}=\int_{\Omega} f u d \boldsymbol{x} \\
& \Longleftrightarrow \quad \int_{\Omega}|\nabla u|^{p} d \boldsymbol{x}=\int_{\Omega} f u d \boldsymbol{x} \tag{24}
\end{align*}
$$

since $u=0$ on $\partial \Omega$. Therefore

$$
\begin{align*}
E_{p}[u] & =\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d \boldsymbol{x}-\int_{\Omega} f u d \boldsymbol{x} \\
& =\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d \boldsymbol{x}-\int_{\Omega}|\nabla u|^{p} d \boldsymbol{x} \tag{24}\\
& =\frac{1-p}{p} \int_{\Omega}|\nabla u|^{p} d \boldsymbol{x} \\
& =\frac{1-p}{p} \int_{\Omega} f u d \boldsymbol{x}
\end{align*}
$$

(by equation (24))
as required.
21. The minimal surface equation: PDEs and soap films. Let $u \in C^{2}(\bar{\Omega}) \cap V$ be a minimiser of A. Let $\varepsilon \in \mathbb{R}$ and $\varphi \in C^{1}(\bar{\Omega})$ with $\varphi=0$ on $\partial \Omega$. Define $u_{\varepsilon}=u+\varepsilon \varphi$. Then $u_{\varepsilon} \in V$ since the sum of continuously differential functions is continuously differentiable and, if $\boldsymbol{x} \in \partial \Omega$, then

$$
u_{\varepsilon}(\boldsymbol{x})=u(\boldsymbol{x})+\varepsilon \varphi(\boldsymbol{x})=g(\boldsymbol{x})+\varepsilon \cdot 0=g(\boldsymbol{x})
$$

as required. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(\varepsilon)=A\left[u_{\varepsilon}\right]$. Then $h(0)=A[u]$ and so 0 is a minimum point of h since u is a minimum point of A. Therefore

$$
\begin{aligned}
0 & =h^{\prime}(0) \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} A\left[u_{\varepsilon}\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{\Omega} \sqrt{1+\left|\nabla u_{\varepsilon}\right|^{2}} d \boldsymbol{x} \\
& =\left.\int_{\Omega} \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \sqrt{1+|\nabla u+\varepsilon \nabla \varphi|^{2}} d \boldsymbol{x} \\
& =\left.\int_{\Omega} \frac{1}{2}\left(1+|\nabla u+\varepsilon \nabla \varphi|^{2}\right)^{-1 / 2} 2|\nabla u+\varepsilon \nabla \varphi| \frac{\nabla u+\varepsilon \nabla \varphi}{|\nabla u+\varepsilon \nabla \varphi|} \cdot \nabla \varphi\right|_{\varepsilon=0} d \boldsymbol{x} \\
& =\int_{\Omega} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}} \cdot \nabla \varphi d \boldsymbol{x}
\end{aligned}
$$

This means that u is a weak solution of the minimal surface equation. Since $u \in C^{2}(\bar{\Omega})$, then we can integrate by parts to obtain

$$
\begin{aligned}
0 & =\int_{\Omega} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}} \cdot \nabla \varphi d \boldsymbol{x} \\
& =\int_{\partial \Omega} \varphi \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}} \cdot \boldsymbol{n} d S-\int_{\Omega} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \varphi d \boldsymbol{x} \\
& =-\int_{\Omega} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \varphi d \boldsymbol{x}
\end{aligned}
$$

since $\varphi=0$ on $\partial \Omega$. This holds for all $\varphi \in C^{1}(\bar{\Omega})$ with $\varphi=0$. Therefore u satisfies the minimal surface equation

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \quad \text { in } \Omega
$$

by the Fundamental Lemma of the Calculus of Variations (Lemma 3.20).
22. Homogenization and the calculus of variations.
(i) Let $u \in C^{2}([0,1]) \cap V$ minimise E. For any $\varepsilon \in \mathbb{R}$ and any $\varphi \in C^{1}([0,1])$ such that $\varphi(0)=\varphi(1)=0$, define $u_{\varepsilon}=u+\varepsilon \varphi$. Then

$$
u_{\varepsilon}(0)=u(0)+\varepsilon \varphi(0)=l+\varepsilon \cdot 0=l
$$

and similarly $u_{\varepsilon}(1)=r$. Therefore $u_{\varepsilon} \in V$. Define $F(\varepsilon)=E\left[u_{\varepsilon}\right]$. Now $u_{\varepsilon}=u$ when $\varepsilon=0$. Therefore the minimum of F is attained at 0 since the minimum of E is attained at u. We have reduced the problem of minimising the functional E to minimising the function of one variable F. Since F is minimised at 0 ,

$$
\begin{align*}
0 & =F^{\prime}(0) \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E\left[u_{\varepsilon}\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\frac{1}{2} \int_{0}^{1} a(x)\left|u_{\varepsilon}^{\prime}(x)\right|^{2} d x-\int_{0}^{1} f(x) u_{\varepsilon}(x) d x\right] \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[\frac{1}{2} \int_{0}^{1} a(x)\left(u^{\prime}(x)+\varepsilon \varphi^{\prime}(x)\right)^{2} d x-\int_{0}^{1} f(x)(u(x)+\varepsilon \varphi(x)) d x\right] \\
& =\int_{0}^{1} a(x) u^{\prime}(x) \varphi^{\prime}(x) d x-\int_{0}^{1} f(x) \varphi(x) d x . \tag{25}
\end{align*}
$$

Since $u \in C^{2}([0,1])$, we can use integration by parts to rewrite equation (25) as
$0=\left.a(x) u^{\prime}(x) \varphi(x)\right|_{0} ^{1}-\int_{0}^{1}\left(a(x) u^{\prime}(x)\right)^{\prime} \varphi(x) d x-\int_{0}^{1} f(x) \varphi(x) d x=-\int_{0}^{1}\left[\left(a(x) u^{\prime}(x)\right)^{\prime}+f(x)\right] \varphi(x) d x$.
But this holds for all $\varphi \in C^{1}([0,1])$ such that $\varphi(0)=\varphi(1)=0$. Therefore by the Fundamental Lemma of the Calculus of Variations

$$
\left(a(x) u^{\prime}(x)\right)^{\prime}+f(x)=0, \quad x \in(0,1),
$$

as required. Note that u satisfies the Dirichlet boundary conditions by definition of V.
(ii) Recall from Q2(ii) that if $g \in L^{\infty}(\mathbb{R})$ is 1 -periodic, then for any interval $[c, d] \subseteq \mathbb{R}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{c}^{d} g(n x) h(x) d x=\int_{c}^{d} \bar{g} h(x) d x \quad \forall h \in L^{1}(\mathbb{R}) . \tag{26}
\end{equation*}
$$

Applying (26) with $c=0, d=1, g(x)=a(x), h(x)=\frac{1}{2}\left|v^{\prime}(x)\right|^{2}$ on $[0,1]$, gives the desired result:

$$
\lim _{n \rightarrow \infty} E_{n}[v]=\frac{1}{2} \int_{0}^{1} \bar{a}\left|v^{\prime}(x)\right|^{2} d x-\int_{0}^{1} f(x) v(x) d x=: E_{\infty}[v] .
$$

(iii) Observe that E_{∞} is just the one-dimensional Dirichlet energy with an additional constant \bar{a} in the first term. It follows from Dirichlet's Principle (see the lecture notes) that u_{∞} satisfies the Poisson equation

$$
\begin{gathered}
-\bar{a} u_{\infty}^{\prime \prime}(x)=f(x), \quad x \in(0,1), \\
u_{\infty}(0)=u_{\infty}(1)=0
\end{gathered}
$$

In Q2 we showed that $\lim _{n \rightarrow \infty} u_{n}(x)=u_{0}(x)$, where u_{0} satisfies

$$
\begin{gathered}
-a_{0} u_{0}^{\prime \prime}(x)=f(x), \quad x \in(0,1) \\
u_{0}(0)=u_{0}(1)=0
\end{gathered}
$$

where

$$
a_{0}=\frac{1}{\left(\frac{1}{a}\right)}
$$

Since $a_{0} \neq \bar{a}$ in general, it follows that $u_{0} \neq u_{\infty}$ and hence

$$
\lim _{n \rightarrow \infty} u_{n}(x)=u_{0}(x) \neq u_{\infty}(x)
$$

as required.
In fact it can be shown that $a_{0} \leq \bar{a}$ as follows:

$$
1=\left[\int_{0}^{1} \sqrt{a(x)} \frac{1}{\sqrt{a(x)}} d x\right]^{2} \leq\left[\left(\int_{0}^{1} a(x) d x\right)^{1 / 2}\left(\int_{0}^{1} \frac{1}{a(x)} d x\right)^{1 / 2}\right]^{2}=\bar{a} \overline{\left(\frac{1}{a}\right)}=\bar{a} a_{0}^{-1}
$$

where we have used the Cauchy-Schwarz inequality. It follows that the Γ-limit E_{0} is less than or equal to the pointwise limit E_{∞}.

