Partial Differential Equations III/TV
Exercise Sheet 4: Solutions

1. Green’s functions. By the Fundamental Theorem of Calculus, integrating u”(y) = f(y) over [0, z], for
any z € [0, 1], gives

/OZ u’(y) dy = —/Ozf(y) dy <= u/(2)=1(0)— /Ozf(y) dy = —/Ozf(y) dy,

where we have used the boundary condition u/(0) = 0. Integrating again, this time over [0, z], gives

/Oxul(z)dz:—/oz/ozf(y)dydz = u(a:):u(O)—/Oz/Ozf(y)dde'

Taking = 1 and using the boundary condition u(1) = 0 yields

0=u)~ [ 1 /Ozf@)dydz = o= | 1 /Ozﬂy)dydz.

) = [ 1 / () dyds — / ' / ) dyds.

By interchanging the order of integration we can write this as

wr)= [ / ey~ [ [ s dsay
1 x

- / (1 - y)f(y) dy - / (z— ) (y) dy

0 0

Therefore

Therefore

with

1l—z ify<uz,

1—y ify>=x.

2. Homogenization.

(i) Integrate (a-(y)u:(y)) = —f(y) over y € [0, z]:

/ (el () dy = — / Cfdy e ac(2l(z) — a(0pl(0) = / " fy)dy
0 0 0
a:(0)ul(0) 1

£

((2) = o) _aa(z)/o fly)dy.

<~ U




(i)

Now integrate over z € [0, z]:

[ =[0G g ) fwa] e =
wle) = w0+ 0)it(0) [ e [ =/ ) dyde. 1)

=0

We determine u’.(0) by evaluating this expression at x = 1:

)= a o) [ ae [ [ =

—— as(z) as(z)

Substituting this into (1) gives

ue(w) = (/01a:(z)dz)_lfola:(z)/ozf<y>dydz/;ael(z)dz—/oxaj(z)/Ozf<y>dydz

as required.

Taking e = ¢, = % gives

ten (@) = </0 ) d) /0 o [, e [ [ [ rwavs

We are told in the hint to use the Riemann-Lebesgue Lemma, which states that if ¢ € L>°(R) is
1-periodic, then for any interval [c,d] C R,

d d
lim [ g(nz)h(z)dz = / gh(z)dz VheL'(R)NCYR) (2)

n—o0 c

Applying (2) with ¢ =0, d =1, g(z) = 1/a(z), and h(z) =1 on [c, d] gives

1 177\ 7N
lim b dz = / <1) dz = <1)
n—oo Jo a(nz) 0 \a a
(Technical remark: We cannot take h(z) = 1 for all z € R, else h ¢ L'(R). But we can take h to

be any function in L'(R) N C*(R) such that h = 1 on [¢,d]. The choice of h outside [c,d] does not
matter since it does not affect the integrals in (2).)

Applying (2) with ¢ =0, d = z, g(z) = 1/a(z) (since a is periodic and bounded below by a positive
constant, g is periodic and bounded), and h(z) = 1 on [c, d] gives

lim . dz = / 1 dz =z 1 .
n—oo Jo a(nz) 0o \a a
Applying (2) with ¢ =0, d =1, g(z) = 1/a(2), and h(z) = [; f(y) dy on [c,d] gives

Jim. 01 a(:w) /Ozf(y)dydz: (i) /Olfozf(y)dydz-




Finally, applying (2) with ¢ = 0, d = x, g(2) = 1/a(2), and h(z) = [; f(y) dy on [c,d] gives

dn [T [ waya - (i) I /0 () dy .
Tim u, () = (e < )/ [ rways - (i) | sy (3)

(iii) This is simply a matter of interchanging the order of integration:

(D /l/zf(y)dydz— <i> /Ox/:f(y)dydz
(i)/ / fly dzdy<cll /Ox/yxf(y)dzdy
( )/0 (L= y)fy)dy - <i> /Oz(x—y)f(y)dy
)

x 1
é /O[w(l—y)—(m—y)]f(y)dwaL fv(l—y)f(y)dy}

) { [ va-aswa+ [ (- ) f) dy}
G

(z,9)f(y) dy

I
8
S]

g

—

1
a

Il
S~ 7

1

with

G)y(l —xz) ify<uw,
<1>x(1 —y) ify>a

a

G(x,y) =

(iv) Clearly ug satisfies the boundary conditions. By the Fundamental Theorem of Calculus, differenti-

ating equation (3) gives
IV 1 [
~(2) [ [ (3) [“rwa

Differentiating again gives

Therefore

as required.



(v) By definition,

On the other hand,

ao—(/;a;@dx)*_ (/jm+[1dx)‘l_(;.2+;.1>1_ (g)l_ :

2

Therefore ag # @. In fact the Cauchy-Schwarz inequality can be used to show that
ag < a

for any choice of a.

(vi) Without loss of generality we can assume that ¢ > 0. Using the hint and integration by parts gives

[owomraz= [ [ ow dy)/ h(z) do
:Tll/om( dy h( / / y) dy M (2) dz. (4)

Let z € [¢,d],n € N and let |nz] € (nz — 1,nz] denote floor(nz), which is the largest integer less
than or equal to nz. Since a is 1-periodic,

/O”Zg () dy = /OM 9(y)dy + /L :J g(y)dy = |nz] /0 )y + /L :J g(y) dy. (5)

Observe that

1 nz—1 |nz] nz
z——= < —
n n n n

= Zz.

Therefore by the Pinching Lemma (Squeezing Lemma)

lim 2] = z. (6)

n—oo N

Also

1
(nz = [nzDlgllem < — gl @)-

Therefore

By combining equations (5), (6), (7) we find that

) 1 nz B 1
Jgﬂon/o 9(y) dy = Z/o 9(y) dy. (8)

Therefore the limit of the first term on the right-hand side of equation (4) is

d d

) 1 nz B 1
lim /0 9(y) dyh(z)| = Z/o 9(y) dy h(z)

n—oo N

C C



Now we find the limit of the second term on the right-hand side of (4). By the computations above

y)dy h'(2) dz—/ / y) dy h'(2)
n/o o)y = [ o)

1 nz 1
L [atar [ o= [ atay

nz 1 1 nz
LnJ/O g(y)dy—Z/O g(y)dy‘JrTlL/L JIg(y)ldy> W (2)| dz

|nz] —nz

(2)| d=

—1
<

|1 (2)| dz

1
1
[ st as| s+ ol 1 s

n
1 ! / 1 /
=/ - lg(y)| dy [P (2)| dz + = l|gll oo @) I1W[] 1 (fe )
0 n

2
< —Ngllzoe @ 1Al 2 (e.qpy = 0 as 1 — o0,

li_>m/ / y) dy h'(2) dz—/ / y)dy h'(2) (10)

Combining (4), (9), (10) and then integrating by parts yields

[ Lo

Therefore

d 1
lim g(nz)h(z)dz = z/ g(y)dy h(z

[
:/c h(z) dz

. Radial symmetry of Laplace’s equation on R™. Let v: R"™ — R be a harmonic function. Let R € O(n,R)
and define w : R” — R by w(x) := v(Rx). Then

Ov O(Rx);
Z (31:] COr; Z 8% ox; z:: BRjky

= Z Z jk 8x Z R]k:(skz
=1

Jkl

as required.

To be precise

J
(This can also be written as Vw(x) = RTVv(Rx).)



Now we compute the second partial derivatives:

a n

n 81}1
- Z Z axkj Rﬁ
7=1 k=1

n n a n
=>> ijkaﬁ% Z Ry

j—l k=1

= Z Z Ux]xk jt Z Rkl

]Ik,'l

= Z Z Vg jxy, R]z Z R4

]1/{,‘1

= Z Z Vg sy, Fji R

j=1 k=1

Therefore

n
Aw = Z Wz,
=1
n n n
= Z Z Z 'UzjmkRjiRki

i=1 j=1 k=1

n n
Z Vzjay, Z Rji Ry
i=1

1 k=1

[l
.
I M:
3

Vgjxy, Z R]z(RT)zk

1 =1

I
M=

k

.
ﬂ‘
s

I

<
I

—_

x

Vzjzy (RRT)jk

s
-

I
NE

ijzkjjk (11)
1k

<.
Il
Il

-

since R is an orthogonal matrix. There are two ways to conclude from here: If are are familiar with the
matrix inner product, then (11) gives

Aw = D?v : I = trace(D?v) = Av = 0

since v is harmonc. Otherwise we can continue from (11) using indices:

Aw_zzvxﬂck ]k—zzvxjxk ]k—zvx]x AU—O

7j=1k=1 j=1k=1

as required.



4. Fundamental solution of Poisson’s equation in 3D.

(1) One way of computing ||®[|11(p,(0)) is using spherical polar coordinates:

D71 :/ O (x)| dx
12l 21 (B (0)) BR(0)| (z)|

1 1
- —d
a7 g0 2l

/ / —r sm@drdﬁahb
0=0 Jr

27r
= — 1d¢>/ 51n9d9/

R2
2

Another way of computing ||®||;1(p,(0y) is as follows:

1122 o)) = / ()| da

y)|dS(y ))d

(o

[ )
L ([ )
L[ (weon 00 )
EINCEL
:/[)err
_| B

2

(ii) Let K C R3 be compact. Since K is bounded, there exists R > 0 such that K C Bg(0). Therefore

2
/ ® ()] d < / ®(@)| do = 2 < 0.
K Br(0) 2

Therefore ® € L] _(R?).

(iii) By part (i),
2
i [ L1(Br(o) = Jim - = +oo.

Therefore ® ¢ L!(R3).



(iv) By the Chain Rule

1 1 1 1 T 1 =«
d(z)= — (- S (N .
ve() 47r< ra:P)V‘x' 4w< ra:\?) @l = injaP

Let K C R? be compact. Since K is bounded, there exists R > 0 such that K C Bg(0). Therefore

/|V<P(:1:)dac</ VO(2)| da
K Br(0)
:/ i% dx
Bgr(0) 4T ||
1 27 T R 1 )
= — / / — rsinf drdfde
AT Jy=0 Jo=0 Jr=0 T

1 21 T R
= — 1d¢/ sin&d@/ 1ldr
4 Jo 0 0

=R

< 00.

Therefore V® € LL (R3).

loc

5. Fundamental solution of Poisson’s equation in 1D. We compute

u' (@) = (@« f)"(2)
= (f*®)"(2) (symmetry of convolution)

2 0o
— i | Wiy

—0o0

00 2
— [ o) oty

—0o0

0 d2
=/ y@f(w—y)dy

— 00

0 d2
=/ yTyzf(w—y)dy

d 0 0 d
=y @f(x — y)‘_oo — /_OO d—yf(x —y)dy (integration by parts)
= —f(x) (Fundamental Theorem of Calculus)

as required.

6. The function spaces L' and L}

oe- Let [ R =R, f(x) = |z|*, k € R. By integrating we see that
(i) f € LY((~R,R)) for k > —1,

(ii) f € LY((R,)) for k < —1,

(iii) f € LL.(R) for k > —1,

(iv) f ¢ L'(R) for any k (by parts (i),(ii)).

7. Properties of the convolution.

(i) Let ¢ € L (R), f € Cc(R) and let K = supp(f). Choose R > 0 such that K C [-R,R]. In
particular, f = 0 outside the interval [—R, R]. Therefore



(= f)(z \—‘/ (x—y )dy‘

|/ ot -vswy

< [ tote - vl
mx 171 [ lote =l

[ R,R]
:[mﬁﬁ]’f‘/ 2)ldz
< 0

since ¢ € LL (R) and [-R — z, R — 2] is compact.

(ii) Now assume that ¢ € L'(R). By Lemma 4.12, f € L°(R). Therefore

uwaﬂ@n</m\< 0)IIf (9)] dy
< sup | f(y r/ y)| dy

yeR

sttt [ 1o
yeR

= lfllzeem)llellr (m)

)| dz

Therefore
[ * fllpeo ) = Sup (e [)(@)] < I fllLee@)llell L@y < 00

and so ¢ * f € L*°(R), as required.

(iii) The convolution is commutative since

(@) = [ ele— sy

-/ o) f (- 2)(~1)dz (c=z—)
- [ w2
= (f*p)(x)

as required.

8. The Poincaré inequality for functions that vanish on the boundary. Let f € C'([a,b]) satisfy f(a) =

#(b) = 0. Then

+f " Py dy = / " () dy

since f(a) = 0. Therefore



@l =|[ 1wl
-|[ 1 rwal
/;12dy v /jlf’(y)IQdy
(¢ — )2 ( / b !f’(y)\Qdy>1/2-
Squaring and integrating gives
/yf ]2dx</ x_a/\f ()2 dy da
:/a r—a daz/ If' ()| dy
— e [
S0 [ )P dy.

This is the Poincaré inequality with C' = (b — a)?.

1/2

IN

(Cauchy-Schwarz)

IN

9. The Poincaré inequality on unbounded domains.

(i) For n € N, define f, : R — R by

0 if x € (—o0, —n — 1],
(x—(—n—1)*(x - (—n+1))? ifxe€[-n—1,-n],
fu(z) = 1 if x € [-n,n],
(x—(n+1))2(x—(n—1))> if:re[nn—l— 1],
0 if x € [n+1,00).

(Exercise: Sketch f, to get a better understanding of the example.) Observe that

fo(=n =1) = fa(n +1) =
j%(_’) fn( ) 17
fa(=n=1) = fi(=n) = fi(n) = fo(n+1) = 0.

Therefore f,, € C1(R). We also have f, € L*(R) since

9 B S 9 n+1 B
||fn”L2(R) = | fr(x)|* dz < lde=2(n+1).

—n—1

We compute



12, = / (@) de

n+1 2
Z/n LZJ(&? —(n+1)*(z—(n—1)>* dzx

n+1 9
2/ 2 — (n+ D)z — (n— 1)’ +2(x — (n+ 1)@ — (n—1))]* da

! 2
=2 [ lr- D+ 20— 02+ 1) dy P

which is independent of n. But

1l = [ @Pde> [ 1@ de = 20

Therefore
ﬁ
I/ ll2r) = constant, [ fullL2@) — oo

as required. This means that, given any C' > 0, we can choose N large enough so that

/ T iv(@)Pde > C / 1y (@) d,

which means that the Poincaré inequality on R does not hold. We constructed this counter example
using spreading; the support of f, spreads as n — oo without changing the L?-norm of f’.

(i) Let Q = (a,b) x (—o0,00). Let f € CY(Q) N L3(Q) with Vf € L?(Q) and with f(a,y) = f(b,y) =0
for all y € R. Then

[ I@) da - /Z </ab\f(:r,y)!2dw) dy

9] b

< / <C/ | folz, )2 dx) dy (Poincaré inequality in x)
70000 b(l

<c [ [t + 15 )P dedy

= a:Qm
—C/QIVf( )2d

as required.

10. The Poincaré constant depends on the domain. There exits C1 > 0 such that

1 1
/ f@)2de < Cy / (@) do (12)
0 0

for all f € C'(]0,1]) with f(0) = f(1) = 0. Let g € C*(]0, L]) with ¢g(0) = g(L) = 0. Then



L 1
/ l9(@)[? da = / 9(Ly)[PL dy (v =2/L)
0 0

1
- L/ 1F(y)? dy (f(y) = g(Ly))
0
1
<z [ 1Py (equation (12))
1
- LCl/O |Lg'(Ly)|* dy (f'(y) = Lg'(Ly))

1
=L301/0 g (Ly)|* dy

L
g / g (@)? da (y = /L)

0
L
e / ¢ (@)? da
0

with Cp, = L?C}, as desired.

11. Eigenvalues of —A: Can you hear the shape of a drum? Multiply the PDE —Au = Au by @ (the complex
conjugate of u) and integrate over )

—/uAud:c:)\/uudac = - uvu-ndL+/vu.vudx:A/ lul? dac.
Q Q o0 Q Q

The boundary condition u = 0 on 052 implies that w = 0 on 92 and so

/Vu-vudmzx/\uﬁda; — /Vu|2da::)\/|u|2dm
Q Q
/yvu|2dm
/]u\Qdm

as required.
12. The optimal Poincaré constant and eigenvalues of —A.

(i) Multiply the PDE —Awu = Au by u and integrate over 2:

—/uAud:U:)\/u2dw — /yvu|2dm:A/u2dm
Q Q Q Q

since © = 0 on Jf). Rearranging gives
/ |Vu|? dx
A=

/ lu|? da
Q

(i) Let u € C?(Q2) NV minimise E. Let ¢ € V. Define u. = u+ep € V and define g(¢) = Efu.], ¢ € R.



Since E is minimised by u, then g is minimised by 0. It follows that

0=g'(0)
_d
de

€:OE[U€]

/]Vu5]2d:c
[l i
2/Vu~V<pd:c/ |u|2dm—2/ ]Vu|2d:c/ug0dac
Q Q Q Q
= 5 .
(/ |u|2daz>
Q

The numerator must be zero. Rearranging gives

/|Vu|2dac
/VU'V(pdCC: EAS T /wpda}.
Q /|u|2d:c Q

Q

Integrating by parts gives

|Vu|? dx

—/Augpdaz: S /ugpdm.
Q /|u]2d:1: Q
Q

Since this holds for all ¢ € V', the Fundamental Lemma of the Calculus of Variations implies that

/ |Vu|? de
—Au = Q

=L | u in Q.
/]u\zd:c
Q
If we define
/|Vu\2das
/|u dx
then
—Au =M u in Q.

In other words, u is an eigenfunction of —A. By definition

/ \Vu|? dz
Elu =2 =\

/ lul? dx
Q

Since u minimises E, then A must be the smallest eigenvalue of —A on V, i.e., A = A1, otherwise we
obtain a contradiction. Therefore E[u] = A1, as required.



(iii) Let C' > 0 satisfy
1 fllz2) < ClIV 2@

for all f € C*(Q) with f =0 on 0Q. Then

1. IV fllr2
C = |flle2@
for all f € V and so
\Y
Ly IV 22

C = rev Ifllee)
The smallest value of C' satisfying this inequality is C' = Cp where

1 IVl
- = lnf —_— .
Cr  fev |[fllr2(e)

(iv) Combining parts (ii) and (iii) gives
1 IV fllz2 @) 1 1/2
— = inf ——=) — inf Q]2 = ( inf E =1
Co = e — o) <}‘év M) VA

Therefore

as desired.
(v) If Q = (0,27), then the corresponding eigenvalue problem is
—u” = Xu in (0,27), u(0) = u(27) = 0.

The eigenfunctions are u,(x) = sin (%) (see Exercise Sheet 5, Q16) and the corresponding eigen-

values are \, = n%/4, n € N. Therefore \; = 1/4 and Cp = 1/1/1/4 = 2. In Q8 we obtained the
Poincaré constant (b — a)/v/2 = +/27, which is obviously much bigger than the optimal constant
Cp = 2.

13. Uniqueness for Poisson’s equation with Robin boundary conditions. Let w1 and us be solutions of

—Au=f inQ,
Vu-n+au=g ondf.

Let w = u; — us. Since the PDE is linear, subtracting the equations satisfied by u; and uy gives

—Aw =0 in{,
Vw-n+aw=0 on 0f.

Multiply —Aw = 0 by w and integrate by parts over {2:

—/wAwdw:O = - wVw'ndS—l—/|Vw\2dw:0
Q Q

oN
= a/ w2d5+/|Vw]2da::0
89 Q

since Vw - n = —aw on 0f). But o > 0. Therefore



/ w? dS = 0, /|Vw\2dac:0.
o9 Q

The second equation implies that Vw = 0 and hence w = constant (or at least constant on each connected
component of ). The first equation implies that this constant must be zero. Therefore w = 0 and
u1 = U9, as required.

14. Uniqueness for a more general elliptic problem. Consider the linear, second-order, elliptic PDE

—div(AVu)+b-Vu+cu=f inQ,

(13)
u=g¢g on Jf.

(i) Suppose that uy,us € C?(Q) satisfy (13). Let w = u; — uz. Since the PDE is linear, subtracting the
equations satisfied by u; and uo gives

—div(AVw) +b-Vw+cw =0 1in Q,

(14)
w=0 on 0N

Clearly w = 0 satisfies (14). We want to show that it is the only solution. Multiply the PDE for w by w
and integrate over €):

0= / w(—div(AVw) + b - Vw + cw) dx
Q

:—/wdiv(AVw)da:+/wb-dem+/cw2dcc
Q Q Q

:—/ w(AVw)-ndS—l—/Vw-(AVw)d:c—l—/wb-dem—l—/chdm
o0 Q Q Q

:/Vw-(AVw)dm+/wb‘de:c—F/chdaz (15)
Q Q Q

since w = 0 on 9. Observe that
/ Vw - (AVw)dx = /(Vw)TA Vwdx > a/ \Vw|? dx (16)
Q Q Q

by the assumption that A is uniformly positive definite (take y = Vw in y* A(x)y > aly|?). Integrating
by parts gives

/wb-deac:/ w2b-nd5’—/wdiv(wb)dw
Q o0 Q

= —/ wdiv(wb) d (w =10 on 0N)
Q

= —/ w (Vw - b+ wdivb) dx (product rule)
Q

= —/ wb - Vwdx
Q

by the assumption that divb = 0. Therefore

/wb-dea::—/wb-decc = /wb-dea::O. (17)
Q Q Q



Combining (15), (16), (17) yields

a/ |Vw\2dac+/cw2dac§0.
Q Q
a/ IVw|*dx =0
Q

But ¢ > 0 by assumption. Therefore

and so Vw = 0 in Q. Hence w is constant (or at least constant on each connected component of 2). But

w = 0 on 0f). Therefore w = 0, as required.

(ii) The idea is the same as for (i). Let wu, be the unique solution to the PDE with A,, and let u be the
unique solution to the PDE with the matrix A. Define w,, := u, —u. We need to show that Vw, — 0 in
L?(Q) as n — +oo. Taking the two PDEs, subtracting them and multiplying the resulting PDE by wy,,

we obtain
0= / wp (—div(Ay, Vuy,) + div(A Vu) + b - Vw, + cwy,) dz.
Q

Proceeding exactly as in (i), we find

/ wpb - Vw, de = 0.
Q

Moreover, we compute (using integration by parts, since w, = 0 on 9Q)

/Q wy [—div(Ay, Vuy,) + div(A Vu)| de

- /Q wn[—div(Ap Vi) + div(An Vi) — div(Ay V) + div(A Vu)) da

_ /Q W —div( A (Vi — V) — div((An — A) Va)] da

_ /Q (Vawn - (A Vo) + Vi, - (An — A) V) da

> /Q[Q\any? + VYV, - (A, — A) Vu)] dz
So, all these arguments yield

[ a1+ V- (4, = ) V) + ol da < 0
Now, for any € > 0, Young’s inequality yields
/ Vi - (An — A) Vu) da = —/ Vw2 d — /Q 2—1€|An APVl da.
By setting € := «, the previous two identities imply
/Q [ IVw, |* + cw ] da < —||A — A /Q \Vul|? da.

And by the non-negative property of ¢, one has

a 2 1 2 2
—|Vw,|*de < —||A,, — Al|7 Vul* dx.

We conclude by the facts that [, [Vu|? dx is bounded and [|4, — A||ze — 0, as n — +o0.

(18)



15. Uniqueness for a degenerate diffusion equation. Clearly u = 7 satisfies

Au™ =0 in Q,

u=m on Of.

We use the energy method to show that it is the only positive solution. Let v be any positive solution.
Subtracting the PDE for u from the PDE for v and multiplying by (v — u) gives

0=(v—u)(Av"™ — Au™) = (v —m)(AV™ — An™) = (v — ) Av™.

Now integrate over €Q:

0= / (v—m)Av™ dx
Q

- / (v — 1) divV (™) da (A = divy)
Q

= / (v — 7)) div(mv™ Vo) da (Chain Rule)
Q

= / (v—m) mv™ Vv -ndS — [ V(v—n)-mv™ 'Vode (Integration by parts)

:—/mvm1|Vv|2dw.
Q

Therefore
/ mv™ | Vol? de = 0.
Q

But v > 0, by assumption. Hence Vv = 0 in (2 and so v is constant in 2. Since v = 7 on 92, we conclude
that v = m everywhere, as required.

16. The H& and H' norms.

(i) We need to check that |- || £2((4,p)) satisfies the three properties of a norm: positivity, 1-homogeneity,
and the triangle inequality. First we prove positivity. Let f € C([a,b]). Clearly ||f|r2(ap) > O
Suppose that || f||z2(jq,s)) = 0 and assume for contradiction that f # 0. Since f is continuous, then
there exists z9 € (a,b), h > 0 and € > 0 such that |f(z)| > € for all x € (xg — h,x0 + h). Therefore

zo+h xo+h
T / @) de > / & d = 2he” > 0,

xo—h xo—h

which is a contradiction. Second we check that || - [[12(jq,)) is 1-homogeneous. Let A € R. Then



1/2

1/2
nvumm:(/uﬂ>) M(/u F) = NI e2es)

as required. Finally, we prove the triangle inequality. Let f, g € C([a,b]). Then

b
1F + 012 s —/(ﬂ)+d)Vd

/f d:p+2/ f(x dx+/ab (z)? da
/f dw+2</f dx>1/2 </abg(:r)2d:c>l/2+/abg(x)2dx

(by the Cauchy-Schwarz inequality)
= Hpr([a,b]) + 2[1 £l 2 (ap)) 19N £2((a,e)) + H9H%2([a,b})
2
= (Il 2oy + gl z2(ae) ™ -

Taking the square root gives the triangle inequality.
Remark: An alternative proof is to prove that the function (-,-) : C([a,b]) x C([a,b]) = R

- [ e ao

is an inner product on C([a, b]). It then follows that || f|| := /(f, f) is a norm on C([a, b]) (the norm
induced by the inner product; see Definition A.16 in the lecture notes). But this is just the L?-norm

I 1122 (fa,b))-
Remark: The Cauchy-Schwarz inequality can be proved by considering the quadratic polynomial

ter p(t) = |1f + gl 72 a -

Since p is non-negative, then it must have non-positive discriminant, i.e., if p(t) = at? + 8t ++, then
% — 4ary < 0. Tt is easy to check that this condition is exactly the Cauchy-Schwarz inequality.

(ii) We will prove that the function (-,-)g1 : C1([a,b]) x C([a,b]) — R defined by

b b
mmm:/wamw+/ﬁmﬂ@m

is an inner product on C'([a,b]). It then follows that

1 f 1 (ap)) = V (F5 )

is a norm on C'([a,b]) (see Definition A.16 in the lecture notes). It is clear that (-,-)y1 is sym-
metric and bilinear and that (f, f)z1 > 0 for all f € C1([a,b]). Suppose that (f, f)g1 = 0. Then
Il &1 (ja,5)) = O and in particular || f[|z2((q,5)) = 0. Therefore f = 0 by part (i).

(iii) This is similar to part (ii). We will prove that the function (-, ) g oV XV — R defined by

b
(F9)y = [ @)/ (x)da

is an inner product on V. It is clear that (-, ')Hg is symmetric and bilinear and that (f, f)Hg >0
for all f € V. Suppose that (f, f)g1 = 0. Then || f||g1(ae) = 0 and in particular £l 22 (jae)) = O-
Therefore f' = 0 by part (i) and so f is a constant function. But f(a) = f(b) = 0 and hence f =0,
as required.



(iv) We need to find constants ¢, C' > 0 such that

ll g apny < 1oy < Clfla ey ¥ FEV-
Let f € V. We have

1/2
1 ez taery = NNl 22 (a)) < (\|f||%2([a,b}) + ”f,H%?([a,b})) = lfl e (fa,))-
Therefore ¢ = 1. On the other hand,
11 oy = 1122 qainy + 1 1 Z2aey < CBIF 2 any + 1 122 0
where Cp is the Poincaré constant. Therefore we can take C' = (C3 4 1)/2.
17. Continuous dependence. Let u € C?(§2) satisfy

—div(AVu)+cu=f inQ,
u=0 on J.

Multiplying the PDE by u and integrating over ) gives
/ fudx = / u (—div(A Vu) + cu) de
Q Q
= —/ udiv(A Vu) dx + c/ u? de
Q Q
= —/ u(AVu)‘ndS—i—/ Vu-(AVu)da:—i—c/ u® dx
o0 Q Q

:/(VU)TAVudw—i—c/ u? dx (u=0 on 09)

Q Q

> a/ |Vul|? de + c/ u® dx (A is uniformly positive definite)
Q Q

> min{a, c} (/ |Vu2da:+/ qu:L'>
Q Q

= min{a, ¢} [[u]| 31 (o

by definition of the H'-norm. Therefore

min{e, c} [|ullF1 gy < /qudw < 2@ lullz@) < f 2@ llullmr e

where we have used the Cauchy-Schwarz inequality and the fact that [[v| 2y < [[v][g1(q) for all v €
C*(Q). Cancelling one power of ||ul| m1(0) from both sides gives the desired result:

ullzr ) < Clfllzz)
with C' = 1/ min{e, c}.

Remark: Note that this estimate degenerates as ¢ tends to 0 (C' — +o00 as ¢ — 0). If ¢ =0 or ¢ is small
then a better estimate can be obtained using the Poincaré inequality: As above

/qudac > a/Q|Vu|2da:+c/Qu2dw > oz/Q|Vu|2da: :a||u||§{é(m.

Therefore



allullf ) < /qudw < 2@ llullzz) < Cpllfllz@)IVulli2@) = Cellfllzz@) lull a0
where Cp(€2) is the Poincaré constant. Cancelling one power of ||ul] i (@) from both sides gives
lull g ) < Cliflz2 @
with C = Cp/Oz.
18. Continuous dependence with a first-order term.

(a) Let u € C?(Q) satisfy
—kAu+b-Vu+cu=f in Q,

19
u=0 on JfN. (19)

Multiply the PDE by u and integrate over 2:

—k/uAudm+/ub-Vudm+/cu2dm:/fuda:
Q Q Q Q

= -k [/ uVu-ndS—/]Vu|2dw]+/ub~Vudm+/cu2d:c:/fudw
Gi9) Q Q Q Q

A k”qu%Q(Q) + /Q(b' Vu) udz + CH“H%Q(Q) = /QfUde < I fllez2e llull 2o

by the Cauchy-Schwarz inequality.
(b) Let € > 0. Then

/Q(b-Vu)udac < |\b||Loo(Q)/vau| | da

< bl oo @) I Vull 20 [lull 2 (Cauchy-Schwarz)
1
~bll~i0) (V2= 1 ullo) (i el

1
< Bl (2l + 1ol

by the Young inequality.
(c) Combining parts (a) and (b) gives

1o el oy = KlIVul2a0) + /Q (b- V) udz + cllula

+ CHUH%z(Q)

> kHVUH%Q(Q) - '/(b-Vu)udw
Q
1
> KVl = Bl (I Vula + 1Nl ) + lulizy

0] o< (@)
= (k= el IVl + (= ) JulE



(d) Let e > 0 satisfy k — €[[b]| () > 0, i.e., let

k
0<e< . (20)
6] o< (@)

o 1]l
_ PlLe ()
Co = Az .

If ¢ > ¢g, then
16| o< ()
———=>0.
c ie >

Therefore if ¢ > ¢o and ¢ satisfies (20), then

bl
bl

0
4e

k —e||bl| e (o) > 0,
and so by part (c)
Il zllwll mr )y = 1z llvll L2 @)

. 6] o< () 5 2
> min {k — e[|l oo (), € — 45} (HVUHL2(Q) + ||UHL2(Q)>

, 1Bl 20 (02)
= min {k - é‘HbHLoo(Q), Cc— 48} HUHip(Q)

Therefore if ¢ > ¢o and ¢ satisfies (20), then

lull gy < M| fllz2 @)

with 1
M=—r RO
min ell ||L°°(Q)7C — 4

For example, if we choose

1 k

€= -,

2 |b]| oo ()

then 18
Loo(Q) 1 2 1
“ 2k 7 min {k/2,c — co} max{k’c—co

(e) Let v € C?(Q) satisfy (19). Then w = u — v satisfies (19) with f = 0. Therefore by part (d)
w1 <0
and so w = 0 and u = v, as required.

19. Neumann boundary conditions for variational problems.

(i) Let u € C1(Q2) be a minimiser of E. For any ¢ € V, ¢ € R, define u. = u + ep. Then u. € C1(Q)
since the sum of C! functions is C!. Let g(¢) = E[uc]. Note that u. = u when & = 0. Therefore g is
minimised by € = 0 since E is minimised by u. Hence



d
_ —_
0=g0)= 7| Pl
d 1
d— [ / \Vu|? de — /que dw}
d 1
d— [ /(Vu—i—chp) (Vu+eVy) dw—/fu+ag0)d:1:]
Q
1 d d
= / — [(Vu+eVe) - (Vu+eVy)|de — / f = (u+ ep) dx
2 Q de e=0 Q d e=0
1
/[V<p (Vu+eVep)+ (Vu+eVy) - Vo da:—/fgoda:
=0 Q
/Vu Vgod:n—/fgodm
Therefore
/ Vu-Vedr = / fodz for all p € C1(Q) (21)
Q Q

as required.

(i) First choose a test function ¢ € C*(Q) such that ¢ = 0 on 9. Since u € C?(2), we can integrate
by parts in (21) to obtain

Vugo-ndS—/divVu gpdw:/fgodw = / —Au — flode =0
/asz QT Q Q( )

because ¢ = 0 on 9. Since this holds for all test functions ¢ € C1(Q) such that ¢ = 0 on 95, the
Fundamental Lemma of the Calculus of Variations implies that

—Au—f=0 inQ (22)

as required. We still need to show that u satisfies the Neumann boundary condition. Now take any
test function ¢ € C*(Q) in (21) and integrate by parts as before to obtain

/ Vugo-ndS—/Augpda::/fgoda: — Vugp-ndS’—i—/(—Au—f)(pdm:O
15)9) Q Q o0 QW

= Vu-npdS =0.
a0

Since this holds for all ¢ € C1(Q2), then Vu -n = 0 on 99, as required.
20. The p—Laplacian operator.

(i) Let u € C*(Q) NV minimise E,. For any ¢ € V, ¢ € R, define u. = u + p. Observe that u.
vanishes on the boundary of €2 since both u and ¢ vanish there. Also u. € C'(Q) since the sum of
C! functions is C'. Hence u. € V. Define g(¢) = Ep[u.]. Now u. = u when ¢ = 0. Therefore g is
minimised by € = 0 since E, is minimised by u. We have reduced the problem of minimising the



functional E), to minimising the function of one variable g. Since g is minimised at € = 0,

0=g'(0)

d

T 4 - Ep[ue]

1

_ 4 {/ \Vua\pda:—/fugdw]
de|._o P Ja Q
1 d d

:/ — \Vu+6V<p\pda:—/f (u+ep) dx
p Jo de|._, Q" de|._g
1/ _1 Vu+¢eVyp

=— | plVu+eVpll™ ' ——— - Vo de — | fedx
P Ja | i [Vu+ eV e=0 )

= / [VulP~2Vu - Vo de — / fodz
Q Q
where the differentiation was performed using the Chain Rule and the fact that

d _ Yy d
D _ Pl - < _ = .
o & =t Vy |y iyl I (Vu+eVy) =V

Recall the integration by parts formula

/g-Vhd:B:/ gh‘ndS—/hdivgda;.
Q [2}9] Q

By applying this with h = ¢, g = |[Vu|P~2Vu, we can rewrite equation (23) as
0= / |VulP2Vup-ndS — / @ div(|VulP~2Vu) dz — / feodx.
o0 Q Q
But ¢ = 0 on 012 since ¢ € V. Therefore
0= / [div(|VulP~2Vu) + flpdx  for all p € V.
Q

Since ¢ is arbitrary, the Fundamental Lemma of the Calculus of Variations gives
div(|VuP™2Vu) + f =0 in Q.
Therefore
—div(|VuP™2Vu) = f in Q
=Apu
as required. Note that u = 0 on 92 by definition of V.
(i) Multiply the PDE —div(|Vu[P~2Vu) = f by u and integrate by parts over 2 to obtain

—/udiv(Vu|p_2Vu)dac—/fudw
Q Q

= —/ u(|Vu|p_2Vu)~ndS+/ |Vup_2Vu-Vuda::/fudm
09 Q Q

= /|Vu|pd:c:/fudm
Q Q

(24)



since u = 0 on 0f). Therefore

1
Ep[u]:p/Q\Vu|pdm/qudm

1
= / |VulP de —/ |Vul? de (by equation (24))
PJa Q
1—
= p/ |Vul? de
p Q
l-p .
= / fudx (by equation (24))
P Ja

as required.

21. The minimal surface equation: PDEs and soap films. Let u € C2(Q2) NV be a minimiser of A. Let ¢ € R
and ¢ € C1(Q) with ¢ = 0 on 9Q. Define u. = u + ep. Then u. € V since the sum of continuously
differential functions is continuously differentiable and, if € 02, then

us(x) = u(x) + ep(x) = g(x) +¢-0 = g(z)

as required. Define h : R — R by h(e) = A[u.]. Then h(0) = Afu] and so 0 is a minimum point of h since
u is a minimum point of A. Therefore

0= 1(0)
d
=21 4
d€ —o [ue]
d
= — / V1+|Vu|? de
de e=0JQ

_/d
_QdE

= [0+ Tut Vo) 22 Tu eV
Q

V14 [Vu+ eVl de
0

e=
Vu+eVep

. d
|Vu+ eVl 14 0 *

_/Vu Vo da
Q1+ |Vul|? .

This means that u is a weak solution of the minimal surface equation. Since u € C?(€2), then we can
integrate by parts to obtain

Vu
0:/ ——— - Vpdx
Q1+ |Vul?

Y Vu ndS / di Vu pdx
= —_— — V -
90 /14 |Vul|? Q V14 |Vul?

/di Vu pdx
= — V| ——
Q V14 |Vul?

since ¢ = 0 on 9. This holds for all ¢ € C'(Q) with ¢ = 0. Therefore u satisfies the minimal surface
equation

v L =0 in{)
V1+[Vul|? .

by the Fundamental Lemma of the Calculus of Variations (Lemma 3.20).



22. Homogenization and the calculus of variations.

(i) Let u € C%(]0,1]) NV minimise E. For any ¢ € R and any ¢ € C*(]0,1]) such that ¢(0) = ¢(1) = 0,
define ue = u 4+ ep. Then

ue(0) = u(0) +ep(0) =1l+ec-0=1

and similarly u.(1) = r. Therefore u. € V. Define F'(¢) = E[uc]. Now u. = u when € = 0. Therefore
the minimum of F' is attained at 0 since the minimum of F is attained at u. We have reduced the
problem of minimising the functional E to minimising the function of one variable F. Since F' is
minimised at 0,

0= F'(0)

=Y B
de e=0

-4 B [; / @)l () d / ' Fuela) daz}

ol 5[ o+ et@an - [ + ot ad

:/ a(a:)u’(x)go/(a:)d:c—/ f(z)p(x) du. (25)
0 0

Since u € C2([0,1]), we can use integration by parts to rewrite equation (25) as

1 1 1
0= a@ (D)o@ - [ el @)ola) da— [ f@)e@yde = = [ a@p'@) + @)le(e) de

But this holds for all ¢ € C*(]0,1]) such that »(0) = (1) = 0. Therefore by the Fundamental
Lemma of the Calculus of Variations

(a(z)u/(z)) + f(x) =0, x€(0,1),

as required. Note that u satisfies the Dirichlet boundary conditions by definition of V.
(ii) Recall from Q2(ii) that if g € L*>°(R) is 1-periodic, then for any interval [¢,d] C R,

d d
lim g(nx)h(z)dr = / gh(z)dx Y h e LY(R). (26)

n—0o0 c

Applying (26) with ¢ =0, d =1, g(z) = a(z), h(z) = [v'(x)|* on [0,1], gives the desired result:

Tim Eyfo] = / al (@ de—/f ) dz = Bolu].

(iii) Observe that E is just the one-dimensional Dirichlet energy with an additional constant @ in the
first term. It follows from Dirichlet’s Principle (see the lecture notes) that wu., satisfies the Poisson
equation

—au,(z) = f(z), z€(0,1),
Uoo(0) = uso(1) = 0.

In Q2 we showed that lim,, oo un(x) = ug(x), where wug satisfies



where
1
1
()
Since ag # @ in general, it follows that ug # us and hence

nlgr;o Un () = up(x) # Uso(),

as required.

In fact it can be shown that ag < @ as follows:

[ o] <[ () ([ ) T o

where we have used the Cauchy-Schwarz inequality. It follows that the I'-limit Ej is less than or
equal to the pointwise limit F.

)



