
Partial Differential Equations III/IV

Exercise Sheet 5

1. Mean-value formula =⇒ harmonic. Let Ω ⊆ R2 be open. Let u ∈ C2(Ω) satisfy the mean-value formula

u(x) = −
∫
∂Br(x)

u(y) dL(y)

for all balls Br(x) ⊂ Ω. Show that u is harmonic in Ω.
Hint: The proof is very similar to the proof of the converse statement.
Remark: It is actually enough to assume only that u ∈ C(Ω). From the solution of Q10, we see that if
u ∈ C(Ω) satisfies the mean-value formula, then u ∈ C∞(Ω). Therefore u is harmonic by Q1.

2. Subharmonic functions. Let Ω ⊂ R2 be open, bounded and connected. We say that u ∈ C2(Ω)∩C(Ω) is
subharmonic in Ω if

−∆u ≤ 0 in Ω.

(i) Prove that subharmonic functions satisfy the mean-value formula

u(x) ≤ −
∫
Br(x)

u(y) dy

for all balls Br(x) ⊂ Ω.

(ii) Prove that subharmonic functions satisfy the maximum principle

max
Ω

u = max
∂Ω

u.

(iii) Do subharmonic functions satisfy the minimum principle

min
Ω
u = min

∂Ω
u ?

Hint: Think about the one-dimensional case.

3. Strong maximum principle =⇒ weak maximum principle. Use the strong maximum principle for
Laplace’s equation to prove the weak maximum principle. To be precise, let Ω ⊂ Rn be open, bounded
and connected, and let u ∈ C2(Ω)∩C(Ω) be harmonic in Ω. The strong maximum principle asserts that
if u attains its maximum in Ω, then u is constant, i.e., if there exists x0 ∈ Ω such that

u(x0) = max
Ω

u

then u is constant in Ω. Use this to prove the weak maximum principle:

max
Ω

u = max
∂Ω

u.

4. The strong maximum principle is false if Ω is not connected. Find an example of an open, bounded and
disconnected set Ω ⊂ R2 and a non-constant harmonic function u : Ω→ R, u ∈ C2(Ω) ∩ C(Ω) such that

u(x0) = max
Ω

u

for some x0 ∈ Ω.
Remark: The weak maximum principle, on the other hand, does hold on disconnected sets.



5. Minimum principles and an application: Positivity of solutions.

(i) Use the maximum principles for harmonic functions to prove the corresponding minimum principles.
Hint: If u is harmonic, so is ũ = −u. Apply the maximum principles to ũ.

(ii) Let Ω ⊂ R2 be open, bounded and connected and let g ∈ C(∂Ω). Let u ∈ C2(Ω) ∩ C(Ω) satisfy

∆u = 0 in Ω,

u = g on ∂Ω.

Assume that g(x) ≥ 0 for all x ∈ ∂Ω and that there exists x0 ∈ ∂Ω such that g(x0) > 0. Prove the
positivity result

u(x) > 0 for all x ∈ Ω.

6. Another application of the maximum principle: Bounds on solutions. In class we used the maximum
principle to prove uniqueness for Poisson’s equation. Another application is to prove bounds on solutions,
as this question demonstrates. This question appeared on the May 2010 exam.

(a) If u is harmonic in |x| < 1, |y| < 1, and u = x2 + y2 on the boundary lines |x| = 1 and |y| = 1, find
lower and upper bounds for u(0, 0).

(b) Verify that

v =
47

40
− 1

5
(x4 − 6x2y2 + y4)

is harmonic and that −0.025 ≤ v − 1− x2 ≤ 0.025 when |x| < 1 and |y| = 1. Deduce that u(0, 0) of
Part (a) satisfies 1.15 < u(0, 0) < 1.2.

7. Application of the maximum principle for subharmonic functions: Comparison theorems. Let Ω ⊂ Rn be
open, bounded and connected. For i ∈ {1, 2}, let ui ∈ C2(Ω) ∩ C(Ω) satisfy

−∆ui = fi in Ω,

ui = gi on ∂Ω,

where fi ∈ C(Ω), gi ∈ C(∂Ω), i ∈ {1, 2}. Assume that f1 ≤ f2 and g1 ≤ g2. Prove that u1 ≤ u2. This is
know as a comparison theorem or a comparison principle.

8. Maximum principles for more general elliptic problems. Maximum principles hold not only for Laplace’s
equation, but also for a broad class of second-order linear elliptic PDEs. In this exercise we look at some
examples.

(i) Consider the one-dimensional steady convection-diffusion equation

−αu′′ + βu′ = 0 in (a, b)

where α and β are constants, α > 0. Show that u satisfies a maximum and minimum principle.

(ii) Consider Poisson’s equation
−u′′ = f in (a, b)

where f is a constant. Under what conditions on f does u satisfy a maximum principle? And a
minimum principle?

(iii) Consider the equation
−u′′ + cu = 0 in Ω

with c > 0, Ω = (a, b). Show that maxΩ |u| = max∂Ω |u|. What if c < 0?
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9. Maximum principles for 4th-order elliptic PDEs? Do 4th-order elliptic PDEs satisfy a maximum princi-
ple? Think about the differential equations u′′′′ = 0 and u′′′′ = f , where f is a constant.

10. Regularity Theorem: Harmonic functions are C∞. Let Ω ⊆ R2 be open. We will prove that if u ∈ C2(Ω)
is harmonic, then u ∈ C∞(Ω).

(i) Define η ∈ C∞(R2) by

η(x) =

{
C exp

(
− 1

1−|x|2

)
if |x| < 1,

0 if |x| ≥ 1,

where C is the normalisation constant

C =

(∫
B1(0)

e
− 1

1−|x|2 dx

)−1

.

For ε > 0, define

ηε(x) =
1

ε2
η
(x
ε

)
.

Find the support of ηε, supp(ηε). Show that for all ε > 0∫
R2

ηε(x) dx = 1.

(ii) Define
Ωε = {x ∈ Ω : Bε(x) ⊂ Ω} = {x ∈ Ω : dist(x, ∂Ω) > ε}.

For x ∈ Ωε, define

uε(x) =

∫
Ω
ηε(x− y)u(y) dy =

∫
Bε(x)

ηε(x− y)u(y) dy.

(You should recognise this as a type of convolution.) Observe that

∂uε
∂xi

(x) =

∫
Ω

∂ηε
∂xi

(x− y)u(y) dy

and similarly for higher-order derivatives. It follows that uε ∈ C∞(Ωε) since ηε is infinitely differen-
tiable. Use the mean-value formula

u(x) = −
∫
∂Br(x)

u(y) dL(y)

to prove that
uε(x) = u(x)

for all x ∈ Ωε. Therefore u ∈ C∞(Ωε) for all ε > 0 and hence u ∈ C∞(Ω).
Hint: Use polar coordinates to rewrite the formula for uε(x) in terms of∫

∂Br(x)
u(y) dL(y).

You will also need to use part (i) and the fact that ηε is a radial function, which means that ηε(x)
depends only on |x|.
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11. C∞ 6=⇒ analytic. Harmonic functions are analytic, which means that they are infinitely differentiable
and that they have a convergent Taylor series expansion about every point in their domain. Give an
example of an infinitely differentiable function that is not analytic.
Hint: Can nonzero analytic functions have compact support?

12. Non-negative harmonic functions on Rn are constant. Let u : Rn → [0,∞) be harmonic and non-negative.

(i) Let x,y ∈ Rn, R > r > 0, and Br(x) ⊂ BR(y). Use a mean-value formula to prove that

u(x) ≤ |BR(y)|
|Br(x)|

u(y).

Hint: Write

u(x) = −
∫
Br(x)

u(z) dz =
|BR(y)|
|Br(x)|

1

|BR(y)|

∫
Br(x)

u(z) dz.

(ii) Choose r = R− |x− y|. Show that Br(x) ⊂ BR(y) and compute

lim
R→∞

|BR(y)|
|Br(x)|

.

(iii) Conclude that u is constant.

13. Proof of Liouville’s Theorem. Use the previous question to prove Liouville’s Theorem.

14. An application of Liouville’s Theorem: ‘Uniqueness’ for Poisson’s equation in R3. Let f ∈ C2
c (R3). Let

u ∈ C2(R3) be a bounded solution of Poisson’s equation in R3:

−∆u = f in R3.

Prove that
u = Φ ∗ f + c

for some constant c ∈ R, where Φ is the fundamental solution of Poisson’s equation in R3. This means
that bounded solutions of Poisson’s equation in R3 are unique up to a constant.
Hint: Let u1 = Φ ∗ f and let u2 be any bounded solution of Poisson’s equation in R3. Apply Liouville’s
Theorem to w = u2 − u1. The same argument works in Rn for n ≥ 3. Why doesn’t this argument work
in R2?

15. An obstacle to uniqueness for Laplace’s equation: Unbounded domains. Let n > 1 and let Ω ⊂ Rn be
open. Consider the PDE

∆u = 0 in Ω,

u = 0 on ∂Ω.
(1)

Clearly u = 0 is one solution of (1). Find a nontrivial solution of (1) for

(i) Ω = Rn \B1(0);
(hint: consider the fundamental solution of Poisson’s equation)

(ii) Ω = {x ∈ Rn : xn > 0}.

These examples are taken from Q. Han (2011) A Basic Course in Partial Differential Equations, AMS.
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16. Eigenvalues of the negative Laplacian. Consider the eigenvalue problem

−u′′(x) = λu(x), x ∈ (0, 2π),

u(0) = 0, u(2π) = 0,

where u ∈ C2([0, 2π]), u 6= 0, λ ∈ R. Show that there are countably many eigenfunction-eigenvalue pairs
(un, λn), n ∈ N, and find them all.
Hint: We know from Exercise Sheet 4, Q11, that all the eigenvalues are positive. Therefore we can assume
that λ = ω2 from some ω ∈ (0,∞). We also know the general form of solutions of the second-order linear
ODE u′′(x) + ω2u(x) = 0; see the lecture notes, page 21.
Remark: More generally, it can be shown that second-order linear elliptic differential operators on compact
sets have a countable set of eigenvalues.

17. Connection between holomorphic functions and harmonic functions. Let f : Ω ⊂ C→ C be a holomorphic
(complex analytic) function with real and imaginary parts u and v:

f(x+ iy) = u(x, y) + iv(x, y).

Use the Cauchy-Riemann equations to show that u and v are harmonic functions. Several results for
holomorphic functions can be extended to the broader class of harmonic functions. Complete the following
table to give the names of the analogous results in complex analysis:

Harmonic Functions Holomorphic Functions

Mean-Value Formula
Maximum Principle
Liouville’s Theorem

The regularity result for harmonic functions (if u ∈ C2 is harmonic, then u is analytic) also has an
analogue for holomorphic functions: If f is complex differentiable, then f is complex analytic.
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