Partial Differential Equations III/IV

[6pt] Exercise Sheet 5: Solutions


  1. 1.

    Mean-value formula ⟹ harmonic. Fix π’™βˆˆΞ©. For all Br⁒(𝒙)βŠ‚Ξ©

    u(𝒙)=-βˆ«βˆ‚β‘Br⁒(𝒙)u(π’š)dL(π’š)=:Ο•(r). (1)

    We can parametrise βˆ‚β‘Br⁒(𝒙)={π’šβˆˆβ„2:|π’š-𝒙|=r} using polar coordinates by

    𝒓:[0,2⁒π]β†’βˆ‚β‘Br⁒(𝒙),𝒓⁒(ΞΈ)=𝒙+r⁒(cos⁑θ,sin⁑θ).

    Using this parametrisation we compute

    ϕ⁒(r) =-βˆ«βˆ‚β‘Br⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š)=1|βˆ‚β‘Br⁒(𝒙)|β’βˆ«βˆ‚β‘Br⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š)
    =12⁒π⁒r⁒∫02⁒πu⁒(𝒓⁒(ΞΈ))⁒|𝒓˙⁒(ΞΈ)|⁒𝑑θ
    =12⁒π⁒r⁒∫02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒r⁒𝑑θ
    =12β’Ο€β’βˆ«02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒𝑑θ. (2)

    By equation (2) and the Chain Rule

    ϕ′⁒(r) =dd⁒r⁒12β’Ο€β’βˆ«02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒𝑑θ
    =12β’Ο€β’βˆ«02β’Ο€βˆ‡β‘u⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))β‹…(cos⁑θ,sin⁑θ)⁒𝑑θ. (3)

    The unit outward-pointing normal to βˆ‚β‘Br⁒(𝒙) at point π’š is

    𝒏⁒(π’š)=π’š-𝒙|π’š-𝒙|=π’š-𝒙r.

    Taking π’š=𝒓⁒(ΞΈ) gives

    𝒏⁒(𝒓⁒(ΞΈ))=𝒓⁒(ΞΈ)-𝒙r=(cos⁑θ,sin⁑θ).

    Using this, we can write equation (3) as

    ϕ′⁒(r) =12β’Ο€β’βˆ«02β’Ο€βˆ‡β‘u⁒(𝒓⁒(ΞΈ))⋅𝒏⁒(𝒓⁒(ΞΈ))⁒𝑑θ
    =12⁒π⁒r⁒∫02β’Ο€βˆ‡β‘u⁒(𝒓⁒(ΞΈ))⋅𝒏⁒(𝒓⁒(ΞΈ))⁒r⏟=|𝒓˙⁒(ΞΈ)|⁒𝑑θ
    =12⁒π⁒rβ’βˆ«βˆ‚β‘Br⁒(𝒙)βˆ‡β‘u⁒(π’š)⋅𝒏⁒(π’š)⁒𝑑L⁒(π’š)
    =12⁒π⁒r⁒∫Br⁒(𝒙)divβ’βˆ‡β‘u⁒(π’š)β’π‘‘π’š (Divergence Theorem)
    =12⁒π⁒r⁒∫Br⁒(𝒙)Δ⁒u⁒(π’š)β’π‘‘π’š.

    Differentiating equation (1) with respect to r gives ϕ′⁒(r)=0. Therefore

    0=ϕ′⁒(r)=12⁒π⁒r⁒∫Br⁒(𝒙)Δ⁒u⁒(π’š)β’π‘‘π’š

    for all Br⁒(𝒙)βŠ‚Ξ©. There are two ways to reach the punchline from here: Either observe that since

    ∫Br⁒(𝒙)Δ⁒u⁒(π’š)β’π‘‘π’š=0β€ƒβˆ€Br⁒(𝒙)βŠ‚Ξ©, (4)

    then we must have Δ⁒u⁒(𝒙)=0. (Otherwise, by continuity of Δ⁒u, Δ⁒u is either strictly positive or strictly negative in Br⁒(𝒙) for r sufficiently small, which contradicts (4).) Alternatively, multiply equation (4) by 1π⁒r2 and take the limit rβ†’0:

    1π⁒r2⁒∫Br⁒(𝒙)Δ⁒u⁒(π’š)β’π‘‘π’š=0β€ƒβŸΉrβ†’0 Δ⁒u⁒(𝒙)=0

    since the average of a continuous function over a ball of radius r tends to the value of the function at the centre of the ball as r→0.

  2. 2.

    Subharmonic functions.

    • (i)

      First we prove the mean-value formula

      u(𝒙)≀-βˆ«βˆ‚β‘Br⁒(𝒙)u(π’š)dL(π’š)=:Ο•(r). (5)

      We can parametrise βˆ‚β‘Br⁒(𝒙)={π’šβˆˆβ„2:|π’š-𝒙|=r} using polar coordinates by

      𝒓:[0,2⁒π]β†’βˆ‚β‘Br⁒(𝒙),𝒓⁒(ΞΈ)=𝒙+r⁒(cos⁑θ,sin⁑θ).

      Using this parametrisation we compute

      ϕ⁒(r) =-βˆ«βˆ‚β‘Br⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š)=1|βˆ‚β‘Br⁒(𝒙)|β’βˆ«βˆ‚β‘Br⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š)
      =12⁒π⁒r⁒∫02⁒πu⁒(𝒓⁒(ΞΈ))⁒|𝒓˙⁒(ΞΈ)|⁒𝑑θ
      =12⁒π⁒r⁒∫02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒r⁒𝑑θ
      =12β’Ο€β’βˆ«02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒𝑑θ. (6)

      By equation (6) and the Chain Rule

      ϕ′⁒(r) =dd⁒r⁒12β’Ο€β’βˆ«02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒𝑑θ
      =12β’Ο€β’βˆ«02β’Ο€βˆ‡β‘u⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))β‹…(cos⁑θ,sin⁑θ)⁒𝑑θ. (7)

      The unit outward-pointing normal to βˆ‚β‘Br⁒(𝒙) at point π’š is

      𝒏⁒(π’š)=π’š-𝒙|π’š-𝒙|=π’š-𝒙r.

      Taking π’š=𝒓⁒(ΞΈ) gives

      𝒏⁒(𝒓⁒(ΞΈ))=𝒓⁒(ΞΈ)-𝒙r=(cos⁑θ,sin⁑θ).

      Using this, we can write equation (7) as

      ϕ′⁒(r) =12β’Ο€β’βˆ«02β’Ο€βˆ‡β‘u⁒(𝒓⁒(ΞΈ))⋅𝒏⁒(𝒓⁒(ΞΈ))⁒𝑑θ
      =12⁒π⁒r⁒∫02β’Ο€βˆ‡β‘u⁒(𝒓⁒(ΞΈ))⋅𝒏⁒(𝒓⁒(ΞΈ))⁒r⏟=|𝒓˙⁒(ΞΈ)|⁒𝑑θ
      =12⁒π⁒rβ’βˆ«βˆ‚β‘Br⁒(𝒙)βˆ‡β‘u⁒(π’š)⋅𝒏⁒(π’š)⁒𝑑L⁒(π’š)
      =12⁒π⁒r⁒∫Br⁒(𝒙)divβ’βˆ‡β‘u⁒(π’š)β’π‘‘π’š (Divergence Theorem)
      =12⁒π⁒r⁒∫Br⁒(𝒙)Δ⁒u⁒(π’š)⏟β‰₯0β’π‘‘π’š
      β‰₯0

      since u is subharmonic. Therefore ϕ′⁒(r)β‰₯0 and hence ϕ⁒(r)β‰₯ϕ⁒(0) if rβ‰₯0. The mean-value formula (5) follows almost immediately from this:

      ϕ⁒(r)β‰₯ϕ⁒(0)=limrβ†’0⁑ϕ⁒(r)=limrβ†’0⁑-β’βˆ«βˆ‚β‘Br⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š)=u⁒(𝒙)

      since the average of a continuous function over a sphere of radius r tends to the value of the function at the centre of the sphere as r→0.

      Now we prove the second mean-value formula

      u⁒(𝒙)≀-⁒∫Br⁒(𝒙)u⁒(π’š)β’π‘‘π’š. (8)

      Using polar coordinates we can write

      -∫Br⁒(𝒙)u⁒(π’š)β’π‘‘π’š =1π⁒r2⁒∫Br⁒(𝒙)u⁒(π’š)β’π‘‘π’š
      =1π⁒r2⁒∫ρ=0r∫θ=02⁒πu⁒(𝒙+ρ⁒(cos⁑θ,sin⁑θ))⁒ρ⁒𝑑θ⁒𝑑ρ. (9)

      Observe that βˆ‚β‘Bρ⁒(𝒙) is parametrised by 𝒓ρ:[0,2⁒π]β†’βˆ‚β‘Bρ⁒(𝒙), 𝒓ρ⁒(ΞΈ)=𝒙+ρ⁒(cos⁑θ,sin⁑θ). This parametrisation satisfies |𝒓˙ρ|=ρ. Therefore we can write equation (9) as

      -∫Br⁒(𝒙)u⁒(π’š)β’π‘‘π’š =1π⁒r2⁒∫ρ=0r∫θ=02⁒πu⁒(𝒓ρ⁒(ΞΈ))⁒|𝒓˙ρ|⁒𝑑θ⁒𝑑ρ
      =1π⁒r2⁒∫ρ=0r(βˆ«βˆ‚β‘Bρ⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š))⏟β‰₯2⁒π⁒ρ⁒u⁒(𝒙)⁒ by ⁒(⁒5⁒)⁒𝑑ρ
      β‰₯u⁒(𝒙)r2⁒∫ρ=0r2⁒ρ⁒𝑑ρ
      =u⁒(𝒙)r2⁒ρ2|0r
      =u⁒(𝒙)

      as required.

    • (ii)

      We prove the strong maximum principle. Let 𝒙0∈Ω and

      M=u⁒(𝒙0)=maxΩ¯⁑u.

      Define S to be the set of points in Ξ© where u attains its maximum:

      S={π’™βˆˆΞ©:u⁒(𝒙)=M}=u-1⁒({M})∩Ω.

      Note that S is nonempty since 𝒙0∈S.

      Let π’™βˆˆS and Br⁒(𝒙)βŠ‚Ξ©, i.e, 0<r<dist⁒(𝒙,βˆ‚β‘Ξ©). By part (i)

      M=u⁒(𝒙)≀-⁒∫Br⁒(𝒙)u⁒(π’š)β’π‘‘π’šβ‰€-⁒∫Br⁒(𝒙)Mβ’π‘‘π’š=M. (10)

      Therefore the inequality in (10) is an equality,

      -⁒∫Br⁒(𝒙)u⁒(π’š)β’π‘‘π’š=-⁒∫Br⁒(𝒙)Mβ’π‘‘π’š,

      which means that u⁒(π’š)=M for all π’šβˆˆBr⁒(𝒙). Hence Br⁒(𝒙)βŠ‚S and so S is an open subset of Ξ©.

      The set u-1⁒({M}) is the preimage of the closed set {M} under the continuous map u and so is closed. Therefore S=u-1⁒({M})∩Ω is a closed subset of Ω.

      We have shown that S is a nonempty open and closed subset of the connected set Ξ©. Therefore S=Ξ©, which implies that u=M= constant in Ξ©, as required. The weak maximum principle follows easily from this (see Q3).

    • (iii)

      Subharmonic functions do not satisfy the minimum principle

      minΩ¯⁑u=minβˆ‚β‘Ξ©β‘u.

      For example, take Ξ©=(-1,1), u:[-1,1]→ℝ, u⁒(x)=x2. Then -u′′⁒(x)=-2<0 and so u is subharmonic. But the minimum value of u is 0, which is attained at x=0∈Ω, not on the boundary of Ξ©.

  3. 3.

    Strong maximum principle ⟹ weak maximum principle. By the strong maximum principle:
    Either: u is constant, in which case it is trivial that

    maxΩ¯⁑u=maxβˆ‚β‘Ξ©β‘u.

    Or: u is not constant, in which case the strong maximum principle implies that, for all π’™βˆˆΞ©,

    u⁒(𝒙)<maxΩ¯⁑u,

    i.e., the maximum of u over Ω¯ is not attained in Ξ©. Since Ω¯=Ξ©βˆͺβˆ‚β‘Ξ©, it follows that

    maxΩ¯⁑u=maxβˆ‚β‘Ξ©β‘u

    as required.

  4. 4.

    The strong maximum principle is false if Ξ© is not connected. Simply take Ξ©1=B1⁒((2,0)), Ξ©2=B1⁒((-2,0)), Ξ©=Ξ©1βˆͺΞ©2, and define u:Ω¯→ℝ by

    u⁒(𝒙)={3ifΒ β’π’™βˆˆΞ©Β―1,4ifΒ β’π’™βˆˆΞ©Β―2.

    Clearly, u∈C2⁒(Ξ©1βˆͺΞ©2) and u∈C⁒(Ω¯1βˆͺΩ¯2), while Ξ©1βˆͺΞ©2 is clearly disconnected. Finally, maxΩ¯1βˆͺΩ¯2⁑u=maxΩ¯2=u⁒(-2,0), which is an interior point. Yet, the function is not constant.

  5. 5.

    Minimum principles and an application: Positivity of solutions.

    • (i)

      First we state the minimum principles: Let Ξ©βŠ‚β„n be open, bounded and connected. Let u:Ω¯→ℝ, u∈C2⁒(Ξ©)∩C⁒(Ω¯) be harmonic in Ξ©.

      • (a)

        Weak minimum principle: u attains its minimum on the boundary of Ξ©, i.e.,

        minΩ¯⁑u=minβˆ‚β‘Ξ©β‘u.
      • (b)

        Strong minimum principle: If u attains its minimum in the interior of Ξ©, then u is constant, i.e., if there exists 𝒙0∈Ω such that

        u⁒(𝒙0)=minΩ¯⁑u

        then u is constant in Ξ©.

      These can be proved as follows:

      • (a)

        Weak minimum principle: Let u~=-u. Then u~ is harmonic since u is harmonic. Therefore by the weak maximum principle

        minΩ¯⁑u =-maxΩ¯⁑(-u)
        =-maxΩ¯⁑u~
        =-maxβˆ‚β‘Ξ©β‘u~
        =-maxβˆ‚β‘Ξ©β‘(-u)
        =minβˆ‚β‘Ξ©β‘u

        as required.

      • (b)

        Strong minimum principle: If u attains its minimum at 𝒙0∈Ω, then the harmonic function u~=-u attains its maximum at 𝒙0. By the strong maximum principle, u~ is constant. Therefore u is constant.

    • (ii)

      Since u is harmonic it satisfies the strong minimum principle. Therefore:
      Either: u is constant, in which case for all π’™βˆˆΞ©

      u⁒(𝒙)=u⁒(𝒙0)=g⁒(𝒙0)>0,

      as the function is continuous up to the boundary.

      Or: u is not constant, in which case the strong minimum principle implies that, for all π’™βˆˆΞ©,

      u⁒(𝒙)>minπ’šβˆˆβˆ‚β‘Ξ©β‘u⁒(π’š)=minπ’šβˆˆβˆ‚β‘Ξ©β‘g⁒(π’š)β‰₯0.

      In either case u⁒(𝒙)>0 for all π’™βˆˆΞ©, as required.

  6. 6.

    Another application of the maximum principle: Bounds on solutions.

    • (a)

      Let Ξ©=(-1,1)Γ—(-1,1). We have

      minβˆ‚β‘Ξ©β‘u =min(x,y)βˆˆβˆ‚β‘Ξ©β‘(x2+y2)=1,
      maxβˆ‚β‘Ξ©β‘u =max(x,y)βˆˆβˆ‚β‘Ξ©β‘(x2+y2)=2.

      We know that u is not constant (since u⁒(x,y)=x2+y2 on βˆ‚β‘Ξ©). Therefore the strong maximum principle for harmonic functions implies that

      minβˆ‚β‘Ξ©β‘u<u⁒(0,0)<maxβˆ‚β‘Ξ©β‘uβ€ƒβŸΊβ€ƒ1<u⁒(0,0)<2.
    • (b)

      Let

      v=4740-15⁒(x4-6⁒x2⁒y2+y4).

      Then

      vx=-45⁒x3+125⁒x⁒y2,vx⁒x=-125⁒x2+125⁒y2,
      vy=-45⁒y3+125⁒x2⁒y,vy⁒y=-125⁒y2+125⁒x2,

      and therefore v is harmonic.

      Let Ξ“1={(x,y):|x|<1,|y|=1}. If (x,y)βˆˆΞ“1, then

      v(x,y)-1-x2=740-15x4+65x2-15-x2=-140-15x4+15x2=:f(x).

      Let’s find the infimum and supremum of f on Ξ“1. We have

      f′⁒(x)=0β€ƒβŸΊβ€ƒ-45⁒x3+25⁒x=0β€ƒβŸΊβ€ƒ25⁒x⁒(-2⁒x2+1)=0.

      Therefore the critical points of f are

      0,Β±12.

      The maximum and minimum points of f on Ξ“1Β― are attained at the critical points of f or at the end points x=Β±1. We have

      f⁒(±1)=-140=-0.025,f⁒(0)=-140=-0.025,f⁒(±12)=140=0.025.

      Therefore

      -0.025≀v⁒(x,y)-1-x2≀0.025 for all ⁒(x,y)βˆˆΞ“1

      as required.

      Let Ξ“2={(x,y):|x|=1,|y|<1}. By symmetry of v in x and y,

      -0.025≀v⁒(x,y)-1-y2≀0.025 for all ⁒(x,y)βˆˆΞ“2.

      Let w=v-u. Then w is harmonic and w=v-x2-y2 on βˆ‚β‘Ξ©. We can decompose βˆ‚β‘Ξ© as

      βˆ‚β‘Ξ©=Ξ“1βˆͺΞ“2βˆͺ{(-1,-1),(-1,1),(1,-1),(1,1)}.

      For (x,y)βˆˆβˆ‚β‘Ξ©,

      w⁒(x,y)={v-1-x2if ⁒(x,y)βˆˆΞ“1,v-1-y2if ⁒(x,y)βˆˆΞ“2,-140if ⁒|x|=|y|=1.

      Clearly w is not constant. Therefore by the strong maximum principle

      -140=minβˆ‚β‘Ξ©β‘w<w⁒(0,0)<maxβˆ‚β‘Ξ©β‘w=140.

      Therefore

      -140<v⁒(0,0)⏟=4740-u⁒(0,0)<140β€ƒβŸΊβ€ƒ4640⏟1.15<u⁒(0,0)<4840⏟1.2

      as desired. We have an estimate of u⁒(0,0) correct to two significant figures!

  7. 7.

    Application of the maximum principle for subharmonic functions: Comparison theorems. Let v=u1-u2. Then v satisfies

    -Δ⁒v=f1-f2 in ⁒Ω,
    v=g1-g2 onΒ β’βˆ‚β‘Ξ©.

    By assumption, f1-f2≀0 and so v is subharmonic. Therefore it satisfies the maximum principle

    maxΩ¯⁑v=maxβˆ‚β‘Ξ©β‘v=maxβˆ‚β‘Ξ©β‘(g1-g2)≀0.

    Therefore v≀0 and u1≀u2, as required.

  8. 8.

    Maximum principles for more general elliptic problems.

    • (i)

      Consider the one-dimensional steady convection-diffusion equation

      -α⁒uβ€²β€²+β⁒uβ€²=0 in ⁒(a,b)

      where Ξ± and Ξ² are constants, Ξ±>0. Let v=uβ€². Then

      -α⁒vβ€²+β⁒v=0β€ƒβŸΉβ€ƒ(e-βα⁒x⁒v)β€²=0.

      Therefore

      v⁒(x)=c⁒eβα⁒x

      for some constant c. Hence

      u⁒(x)=c⁒αβ⁒eβα⁒x+d

      for some constant d. If c=0, then u is constant. Otherwise

      u′⁒(x)=v⁒(x)=c⁒eβα⁒x

      and so u is strictly increasing if c>0 and strictly decreasing if c<0. Therefore u attains its maximum and minimum on the boundary of (a,b).

    • (ii)

      Let u satisfy Poisson’s equation

      -uβ€²β€²=f in ⁒(a,b)

      where f is a constant. Then u is a quadratic polynomial. It is easy to see that if f<0, then u satisfies a weak maximum principle, and if f>0, then u satisfies a weak minimum principle. See Q2 for the two-dimensional case.

    • (iii)

      Consider the equation

      -uβ€²β€²+c⁒u=0 in ⁒Ω

      with c>0, Ξ©=(a,b). The solution has the form

      u⁒(x)=A⁒exp⁑(c⁒x)+B⁒exp⁑(-c⁒x)

      where A and B are constants. We can assume that Aβ‰ 0 and Bβ‰ 0, otherwise the result is obvious. If B/A<0, then u is either increasing (if A>0, B<0) or decreasing (if A<0, B>0) and hence u attains its maximum and minimum on the boundary of Ξ©. It follows that maxΩ¯⁑|u|=maxβˆ‚β‘Ξ©β‘|u|. If B/A>0, then u has a unique critical point:

      u′⁒(x0)=0β€ƒβŸΊβ€ƒexp⁑(2⁒c⁒x0)=BAβ€ƒβŸΊβ€ƒx0=1c⁒ln⁑(BA)

      and the critical value of u is

      u⁒(x0)=A⁒(BA)1/2+B⁒(BA)-1/2.

      If x0βˆ‰Ξ©, then u is increasing or decreasing on Ξ© and so maxΩ¯⁑|u|=maxβˆ‚β‘Ξ©β‘|u| as before. Assume that x0∈Ω. We consider two case: A,B>0 and A,B<0.

      If A,B>0, then u⁒(x)>0 for all x∈(a,b) and u′′⁒(x0)=c⁒u⁒(x0)>0, which implies that x0 is a local minimum point of u. Therefore u=|u| attains its maximum on the boundary of Ξ©, as required.

      If A,B<0, then u⁒(x)<0 for all x∈(a,b) and u′′⁒(x0)=c⁒u⁒(x0)<0, which implies that u0 is a local maximum point of u. Therefore

      maxΩ¯⁑|u|=-minΩ¯⁑u=-minβˆ‚β‘Ξ©β‘u=maxβˆ‚β‘Ξ©β‘|u|

      as required.

      If c<0, then the maximum principle does not hold since

      u⁒(x)=A⁒sin⁑(-c⁒x)+B⁒cos⁑(-c⁒x)

      for some constants A and B. For example, take a=0, b=2⁒π, c=-1, A=1, B=0. Then

      maxΩ¯⁑|u|=1,maxβˆ‚β‘Ξ©β‘|u|=0.
  9. 9.

    Maximum principles for 4th-order elliptic PDEs? In general, 4th-order elliptic PDEs do not satisfy a maximum principle. For example, if uβ€²β€²β€²β€²=0 on (a,b), then u is a cubic polynomial, which need not attain is maximum or minimum on the boundary of (a,b). If -uβ€²β€²β€²β€²=f on (a,b), where f<0 is a constant, then u is a quartic polynomial, which again need not attain its maximum on the boundary of (a,b).

  10. 10.

    Regularity Theorem: Harmonic functions are C∞.

    • (i)

      Observe that Ξ·=0 outside the disc B1⁒(𝟎). Therefore supp(Ξ·)=B1⁒(𝟎)Β― and so supp(Ξ·Ξ΅)=BΡ⁒(𝟎)Β―. For the rest of the problem it is convenient to write η⁒(𝒙)=ϕ⁒(|𝒙|) where Ο•:[0,∞)→ℝ is defined by

      ϕ⁒(r)={C⁒exp⁑(-11-r2)if ⁒r<1,0if ⁒rβ‰₯1.

      Then ηΡ⁒(𝒙)=1Ξ΅2⁒ϕ⁒(|𝒙|Ξ΅). Observe that

      ∫B1⁒(𝟎)ϕ⁒(|𝒙|)⁒𝑑𝒙=∫B1⁒(𝟎)η⁒(𝒙)⁒𝑑𝒙=C⁒∫B1⁒(𝟎)e-11-|𝒙|2⁒𝑑𝒙=1

      by definition of C. We compute

      βˆ«β„2ηΡ⁒(𝒙)⁒𝑑𝒙 =∫BΡ⁒(𝟎)ηΡ⁒(𝒙)⁒𝑑𝒙
      =∫02β’Ο€βˆ«0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒r⁒𝑑r⁒𝑑θ (polar coordiates)
      =∫02β’Ο€βˆ«011Ξ΅2⁒ϕ⁒(s)⁒s⁒Ρ⁒Ρ⁒𝑑s⁒𝑑θ (change of variables: ⁒s=rΞ΅)
      =∫02β’Ο€βˆ«01ϕ⁒(s)⁒s⁒𝑑s⁒𝑑θ
      =∫B1⁒(𝟎)ϕ⁒(|𝒙|)⁒𝑑𝒙 (back to Cartesian coordinates)
      =1.
    • (ii)

      Take π’™βˆˆΞ©Ξ΅. Then

      uΡ⁒(𝒙) =∫BΡ⁒(𝒙)ηΡ⁒(𝒙-π’š)⁒u⁒(π’š)β’π‘‘π’š
      =∫BΡ⁒(𝒙)1Ξ΅2⁒ϕ⁒(|𝒙-π’š|Ξ΅)⁒u⁒(π’š)β’π‘‘π’š
      =∫02β’Ο€βˆ«0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒u⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒r⁒𝑑r⁒𝑑θ (π’š=𝒙+r⁒(cos⁑θ,sin⁑θ))
      =∫0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒(∫02⁒πu⁒(𝒙+r⁒(cos⁑θ,sin⁑θ))⁒r⁒𝑑θ)⁒𝑑r
      =∫0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒(βˆ«βˆ‚β‘Br⁒(𝒙)u⁒(π’š)⁒𝑑L⁒(π’š))⏟=|βˆ‚β‘Br⁒(𝒙)|⁒u⁒(𝒙)⁒𝑑r (mean-value formula)
      =∫0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒2⁒π⁒r⁒u⁒(𝒙)⁒𝑑r
      =u⁒(𝒙)⁒ 2β’Ο€β’βˆ«0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒r⁒𝑑r
      =u⁒(𝒙)⁒∫02β’Ο€βˆ«0Ξ΅1Ξ΅2⁒ϕ⁒(rΞ΅)⁒r⁒𝑑r⁒𝑑θ
      =u⁒(𝒙)⁒∫BΡ⁒(𝟎)1Ξ΅2⁒ϕ⁒(|π’š|Ξ΅)β’π‘‘π’š
      =u⁒(𝒙)⁒∫BΡ⁒(𝟎)ηΡ⁒(π’š)β’π‘‘π’š
      =u⁒(𝒙).
  11. 11.

    C∞⁒\centernot⟹ analytic. Consider the function Ξ·:ℝ→ℝ defined by

    η⁒(x)={exp⁑(-11-|x|2)if ⁒|x|<1,0if ⁒|x|β‰₯1.

    Then Ξ· is infinitely differentiable but it is not analytic since it does not have a convergent Taylor series expansion about the point x=1:

    βˆ‘k=0∞η(k)⁒(1)k!⁒(x-1)k=βˆ‘k=0∞0k!⁒(x-1)k=0,

    but Ξ· is nonzero in any neighbourhood of x=1. In general, nonzero analytic functions cannot have compact support.

  12. 12.

    Non-negative harmonic functions on ℝn are constant.

    • (i)

      We have

      u⁒(𝒙) =-∫Br⁒(𝒙)u⁒(𝒛)⁒𝑑𝒛 (mean-value formula)
      =|BR⁒(π’š)||Br⁒(𝒙)|⁒1|BR⁒(π’š)|⁒∫Br⁒(𝒙)u⁒(𝒛)⁒𝑑𝒛
      ≀|BR⁒(π’š)||Br⁒(𝒙)|⁒1|BR⁒(π’š)|⁒∫BR⁒(π’š)u⁒(𝒛)⁒𝑑𝒛 (since ⁒u>0⁒ and ⁒Br⁒(𝒙)βŠ‚BR⁒(π’š))
      =|BR⁒(π’š)||Br⁒(𝒙)|⁒u⁒(π’š) (mean-value formula)

      as required.

    • (ii)

      Let π’›βˆˆBr⁒(𝒙). Then

      |𝒛-π’š|=|𝒛-𝒙+𝒙-π’š|≀|𝒛-𝒙|+|𝒙-π’š|<r+|𝒙-π’š|=R.

      Therefore π’›βˆˆBR⁒(π’š) and hence Br⁒(𝒙)βŠ‚BR⁒(π’š). We have

      |BR⁒(π’š)||Br⁒(𝒙)|=Rn⁒α⁒(n)rn⁒α⁒(n)=Rn(R-|𝒙-π’š|)n=11-|𝒙-π’š|Rβ†’1 as ⁒Rβ†’βˆž.
    • (iii)

      If r=R-|𝒙-π’š|, then by parts (i) and (ii),

      u⁒(𝒙)≀|BR⁒(π’š)||Br⁒(𝒙)|⁒u⁒(π’š)β†’u⁒(π’š)  as ⁒Rβ†’βˆž.

      Therefore

      u⁒(𝒙)≀u⁒(π’š).

      Interchanging the roles of 𝒙 and π’š gives

      u⁒(π’š)≀u⁒(𝒙).

      Therefore u⁒(𝒙)=u⁒(π’š) for all 𝒙,π’šβˆˆβ„n and hence u is a constant function.

  13. 13.

    Proof of Liouville’s Theorem. Since u is bounded, then there exists M>0 such that u⁒(𝒙)>-M for all π’™βˆˆβ„n. Therefore the harmonic function v=u+M>0 on ℝn. But positive harmonic functions on ℝn are constant by Q12. Therefore v, and hence u, are constant.

  14. 14.

    An application of Liouville’s Theorem: β€˜Uniqueness’ for Poisson’s equation in ℝ3. Let u1=Ξ¦*f where Ξ¦ is the fundamental solution of Poisson’s equation in ℝn with n=3:

    Φ⁒(𝒙)=1n⁒(n-2)⁒α⁒(n)⁒1|𝒙|n-2=14⁒π⁒1|𝒙|.

    (Recall that α⁒(n) is the volume of the unit ball in ℝn and hence α⁒(3)=43⁒π.) Let u2 be any bounded solution of Poisson’s equation in ℝ3. Then w=u2-u1 is a harmonic function since -Δ⁒u1=f and -Δ⁒u2=f in ℝ3. We show that u1 is bounded: Since f∈Cc2⁒(ℝ3) has compact support, there exists R>0 such that supp(f)βŠ‚BR⁒(𝟎). In particular, f=0 in ℝ3βˆ–BR⁒(𝟎). Therefore

    |u1⁒(𝒙)| =|(Ξ¦*f)⁒(𝒙)|
    =|14β’Ο€β’βˆ«β„3f⁒(π’š)|𝒙-π’š|β’π‘‘π’š|
    ≀14β’Ο€β’βˆ«β„3|f⁒(π’š)||𝒙-π’š|β’π‘‘π’š
    =14β’Ο€β’βˆ«BR⁒(𝟎)|f⁒(π’š)||𝒙-π’š|β’π‘‘π’š
    ≀14⁒π⁒maxBR⁒(𝟎)⁑|f|⁒∫BR⁒(𝟎)1|𝒙-π’š|β’π‘‘π’š.

    We just need to show that

    ∫BR⁒(𝟎)1|𝒙-π’š|β’π‘‘π’š

    is uniformly bounded in 𝒙. This is more fiddly than you would expect. We consider two cases: |𝒙|≀2⁒R and |𝒙|>2⁒R.

    If |𝒙|≀2⁒R, then BR⁒(𝟎)βŠ‚B3⁒R⁒(𝒙) (draw a sketch to convince yourself of this) and so

    ∫BR⁒(𝟎)1|𝒙-π’š|β’π‘‘π’š <∫B3⁒R⁒(𝒙)1|𝒙-π’š|β’π‘‘π’š
    =∫B3⁒R⁒(𝟎)1|𝒛|⁒𝑑𝒛 (𝒛=π’š-𝒙)
    =βˆ«Ο•=02β’Ο€βˆ«ΞΈ=0Ο€βˆ«03⁒R1r⁒r2⁒sin⁑θ⁒d⁒r⁒d⁒θ⁒d⁒ϕ (spherical polar coordinates)
    =2⁒π⁒12⁒r2|r=03⁒R⁒(-cos⁑θ)|ΞΈ=0Ο€
    =18⁒π⁒R2.

    If |𝒙|>2⁒R, then for all π’šβˆˆBR⁒(𝟎)

    |𝒙-π’š|>Rβ€ƒβŸΉβ€ƒ1|𝒙-π’š|<1R

    and so

    ∫BR⁒(𝟎)1|𝒙-π’š|β’π‘‘π’š<∫BR⁒(𝟎)1Rβ’π‘‘π’š=1R⁒|BR⁒(𝟎)|=1R⁒43⁒π⁒R3=43⁒π⁒R2<18⁒π⁒R2.

    Therefore, for all π’™βˆˆβ„3,

    |u1⁒(𝒙)|≀14⁒π⁒maxBR⁒(𝟎)⁑|f|⁒∫BR⁒(𝟎)1|𝒙-π’š|β’π‘‘π’š<14⁒π⁒maxBR⁒(𝟎)⁑|f|⁒ 18⁒π⁒R2=184⁒R2⁒maxBR⁒(𝟎)⁑|f|.

    Hence u1 is bounded. Since u1 and u2 are bounded, then w is a bounded harmonic function on ℝ3. By Liouville’s Theorem w=c= constant. Therefore

    u2-u1=cβ€ƒβŸΊβ€ƒu2=u1+c=Ξ¦*f+c

    as required.

    This argument can be extended to ℝn for any nβ‰₯3. It does not work for n=2 since u1=Ξ¦*f is not necessarily bounded in ℝ2 since Φ⁒(𝒙)=-12⁒π⁒log⁑|𝒙| blows up as |𝒙|β†’βˆž. For the case nβ‰₯3, Φ⁒(𝒙)β†’0 as |𝒙|β†’βˆž, and it converges to 0 sufficiently fast in order for Ξ¦*f to be bounded.

  15. 15.

    An obstacle to uniqueness for Laplace’s equation: Unbounded domains.

    • (i)

      We can build a nontrivial solution using the fundamental solution of Poisson’s equation:

      u⁒(𝒙)={log⁑|𝒙|Β if ⁒n=2,|𝒙|2-n-1Β if ⁒nβ‰₯3.
    • (ii)

      Simply take u⁒(𝒙)=xn.

  16. 16.

    Eigenvalues of the negative Laplacian. By Exercise Sheet 4, Q11, the eigenvalues are positive, Ξ»>0. Therefore we can write each eigenvalue as Ξ»=Ο‰2 for some Ο‰βˆˆ(0,∞). Then

    -u′′⁒(x)=Ο‰2⁒u⁒(x),x∈(0,2⁒π).

    Recall from ODE theory (see page 21 of the lecture notes) that solutions of this ODE have the form

    u⁒(x)=A⁒cos⁑(ω⁒x)+B⁒sin⁑(ω⁒x)

    for some constants A,Bβˆˆβ„. The boundary condition u⁒(0)=0 implies that A=0. The boundary condition u⁒(2⁒π)=0 gives

    B⁒sin⁑(2⁒π⁒ω)=0.

    Since u≠0, then B≠0. Since ω>0, it follows that

    2β’Ο€β’Ο‰βˆˆ{n⁒π:nβˆˆβ„•}.

    Therefore Ο‰=n2 and the eigenfunction-eigenvalue pairs are

    (un⁒(x),Ξ»n)=(B⁒sin⁑(n⁒x2),n24),nβˆˆβ„•,Bβˆˆβ„.

    In particular, there are countably many eigenvalues.

  17. 17.

    Connection between holomorphic functions and harmonic functions.

    Let f:Ξ©βŠ‚β„‚β†’β„‚ be a holomorphic (complex analytic) function with real and imaginary parts u and v:

    f⁒(x+i⁒y)=u⁒(x,y)+i⁒v⁒(x,y).

    The Cauchy-Riemann equations are

    ux=vy,uy=-vx.

    Therefore

    Δ⁒u=ux⁒x+uy⁒y=(vy)x+(-vx)y=vy⁒x-vx⁒y=0

    and

    Δ⁒v=vx⁒x+vy⁒y=(-uy)x+(ux)y=-uy⁒x+ux⁒y=0.

    Completing the table gives

    Harmonic Functions Holomorphic Functions
    Mean-Value Formula Cauchy Integral Formula
    Maximum Principle Maximum Modulus Principle
    Liouville’s Theorem Liouville’s Theorem

    See Remark 5.3 in the lecture notes for an explanation of why the Cauchy integral formula implies the mean-value formula.