
Partial Differential Equations III/IV

Exercise Sheet 5: Solutions

1. Mean-value formula =⇒ harmonic. Fix x ∈ Ω. For all Br(x) ⊂ Ω

u(x) = −
∫
∂Br(x)

u(y) dL(y) =: φ(r). (1)

We can parametrise ∂Br(x) = {y ∈ R2 : |y − x| = r} using polar coordinates by

r : [0, 2π]→ ∂Br(x), r(θ) = x + r(cos θ, sin θ).

Using this parametrisation we compute

φ(r) = −
∫
∂Br(x)

u(y) dL(y) =
1

|∂Br(x)|

∫
∂Br(x)

u(y) dL(y)

=
1

2πr

∫ 2π

0
u(r(θ))|ṙ(θ)| dθ

=
1

2πr

∫ 2π

0
u(x + r(cos θ, sin θ)) r dθ

=
1

2π

∫ 2π

0
u(x + r(cos θ, sin θ)) dθ. (2)

By equation (2) and the Chain Rule

φ′(r) =
d

dr

1

2π

∫ 2π

0
u(x + r(cos θ, sin θ)) dθ

=
1

2π

∫ 2π

0
∇u(x + r(cos θ, sin θ)) · (cos θ, sin θ) dθ. (3)

The unit outward-pointing normal to ∂Br(x) at point y is

n(y) =
y − x

|y − x|
=

y − x

r
.

Taking y = r(θ) gives

n(r(θ)) =
r(θ)− x

r
= (cos θ, sin θ).

Using this, we can write equation (3) as

φ′(r) =
1

2π

∫ 2π

0
∇u(r(θ)) · n(r(θ)) dθ

=
1

2πr

∫ 2π

0
∇u(r(θ)) · n(r(θ)) r︸︷︷︸

=|ṙ(θ)|

dθ

=
1

2πr

∫
∂Br(x)

∇u(y) · n(y) dL(y)

=
1

2πr

∫
Br(x)

div∇u(y) dy (Divergence Theorem)

=
1

2πr

∫
Br(x)

∆u(y) dy.



Differentiating equation (1) with respect to r gives φ′(r) = 0. Therefore

0 = φ′(r) =
1

2πr

∫
Br(x)

∆u(y) dy

for all Br(x) ⊂ Ω. There are two ways to reach the punchline from here: Either observe that since∫
Br(x)

∆u(y) dy = 0 ∀ Br(x) ⊂ Ω, (4)

then we must have ∆u(x) = 0. (Otherwise, by continuity of ∆u, ∆u is either strictly positive or strictly
negative in Br(x) for r sufficiently small, which contradicts (4).) Alternatively, multiply equation (4) by

1
πr2

and take the limit r → 0:

1

πr2

∫
Br(x)

∆u(y) dy = 0
r→0
=⇒ ∆u(x) = 0

since the average of a continuous function over a ball of radius r tends to the value of the function at the
centre of the ball as r → 0.

2. Subharmonic functions.

(i) First we prove the mean-value formula

u(x) ≤ −
∫
∂Br(x)

u(y) dL(y) =: φ(r). (5)

We can parametrise ∂Br(x) = {y ∈ R2 : |y − x| = r} using polar coordinates by

r : [0, 2π]→ ∂Br(x), r(θ) = x + r(cos θ, sin θ).

Using this parametrisation we compute

φ(r) = −
∫
∂Br(x)

u(y) dL(y) =
1

|∂Br(x)|

∫
∂Br(x)

u(y) dL(y)

=
1

2πr

∫ 2π

0
u(r(θ))|ṙ(θ)| dθ

=
1

2πr

∫ 2π

0
u(x + r(cos θ, sin θ)) r dθ

=
1

2π

∫ 2π

0
u(x + r(cos θ, sin θ)) dθ. (6)

By equation (6) and the Chain Rule

φ′(r) =
d

dr

1

2π

∫ 2π

0
u(x + r(cos θ, sin θ)) dθ

=
1

2π

∫ 2π

0
∇u(x + r(cos θ, sin θ)) · (cos θ, sin θ) dθ. (7)

The unit outward-pointing normal to ∂Br(x) at point y is

n(y) =
y − x

|y − x|
=

y − x

r
.
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Taking y = r(θ) gives

n(r(θ)) =
r(θ)− x

r
= (cos θ, sin θ).

Using this, we can write equation (7) as

φ′(r) =
1

2π

∫ 2π

0
∇u(r(θ)) · n(r(θ)) dθ

=
1

2πr

∫ 2π

0
∇u(r(θ)) · n(r(θ)) r︸︷︷︸

=|ṙ(θ)|

dθ

=
1

2πr

∫
∂Br(x)

∇u(y) · n(y) dL(y)

=
1

2πr

∫
Br(x)

div∇u(y) dy (Divergence Theorem)

=
1

2πr

∫
Br(x)

∆u(y)︸ ︷︷ ︸
≥0

dy

≥ 0

since u is subharmonic. Therefore φ′(r) ≥ 0 and hence φ(r) ≥ φ(0) if r ≥ 0. The mean-value formula
(5) follows almost immediately from this:

φ(r) ≥ φ(0) = lim
r→0

φ(r) = lim
r→0
−
∫
∂Br(x)

u(y) dL(y) = u(x)

since the average of a continuous function over a sphere of radius r tends to the value of the function
at the centre of the sphere as r → 0.

Now we prove the second mean-value formula

u(x) ≤ −
∫
Br(x)

u(y) dy. (8)

Using polar coordinates we can write

−
∫
Br(x)

u(y) dy =
1

πr2

∫
Br(x)

u(y) dy

=
1

πr2

∫ r

ρ=0

∫ 2π

θ=0
u(x + ρ(cos θ, sin θ)) ρ dθdρ. (9)

Observe that ∂Bρ(x) is parametrised by rρ : [0, 2π] → ∂Bρ(x), rρ(θ) = x + ρ(cos θ, sin θ). This
parametrisation satisfies |ṙρ| = ρ. Therefore we can write equation (9) as

−
∫
Br(x)

u(y) dy =
1

πr2

∫ r

ρ=0

∫ 2π

θ=0
u(rρ(θ)) |ṙρ| dθdρ

=
1

πr2

∫ r

ρ=0

(∫
∂Bρ(x)

u(y) dL(y)

)
︸ ︷︷ ︸
≥ 2πρu(x) by (5)

dρ

≥ u(x)

r2

∫ r

ρ=0
2ρ dρ

=
u(x)

r2
ρ2
∣∣∣r
0

= u(x)
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as required.

(ii) We prove the strong maximum principle. Let x0 ∈ Ω and

M = u(x0) = max
Ω

u.

Define S to be the set of points in Ω where u attains its maximum:

S = {x ∈ Ω : u(x) = M} = u−1({M}) ∩ Ω.

Note that S is nonempty since x0 ∈ S.

Let x ∈ S and Br(x) ⊂ Ω, i.e, 0 < r < dist(x, ∂Ω). By part (i)

M = u(x) ≤ −
∫
Br(x)

u(y) dy ≤ −
∫
Br(x)

M dy = M. (10)

Therefore the inequality in (10) is an equality,

−
∫
Br(x)

u(y) dy = −
∫
Br(x)

M dy,

which means that u(y) = M for all y ∈ Br(x). Hence Br(x) ⊂ S and so S is an open subset of Ω.

The set u−1({M}) is the preimage of the closed set {M} under the continuous map u and so is
closed. Therefore S = u−1({M}) ∩ Ω is a closed subset of Ω.

We have shown that S is a nonempty open and closed subset of the connected set Ω. Therefore
S = Ω, which implies that u = M = constant in Ω, as required. The weak maximum principle
follows easily from this (see Q3).

(iii) Subharmonic functions do not satisfy the minimum principle

min
Ω
u = min

∂Ω
u.

For example, take Ω = (−1, 1), u : [−1, 1] → R, u(x) = x2. Then −u′′(x) = −2 < 0 and so u is
subharmonic. But the minimum value of u is 0, which is attained at x = 0 ∈ Ω, not on the boundary
of Ω.

3. Strong maximum principle =⇒ weak maximum principle. By the strong maximum principle:
Either: u is constant, in which case it is trivial that

max
Ω

u = max
∂Ω

u.

Or: u is not constant, in which case the strong maximum principle implies that, for all x ∈ Ω,

u(x) < max
Ω

u,

i.e., the maximum of u over Ω is not attained in Ω. Since Ω = Ω ∪ ∂Ω, it follows that

max
Ω

u = max
∂Ω

u

as required.
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4. The strong maximum principle is false if Ω is not connected. Simply take Ω1 = B1((2, 0)), Ω2 =
B1((−2, 0)), Ω = Ω1 ∪ Ω2, and define u : Ω→ R by

u(x) =

{
3 if x ∈ Ω1,

4 if x ∈ Ω2.

Clearly, u ∈ C2(Ω1∪Ω2) and u ∈ C(Ω1∪Ω2), while Ω1∪Ω2 is clearly disconnected. Finally, maxΩ1∪Ω2
u =

maxΩ2
= u(−2, 0), which is an interior point. Yet, the function is not constant.

5. Minimum principles and an application: Positivity of solutions.

(i) First we state the minimum principles: Let Ω ⊂ Rn be open, bounded and connected. Let u : Ω→ R,
u ∈ C2(Ω) ∩ C(Ω) be harmonic in Ω.

(a) Weak minimum principle: u attains its minimum on the boundary of Ω, i.e.,

min
Ω
u = min

∂Ω
u.

(b) Strong minimum principle: If u attains its minimum in the interior of Ω, then u is constant,
i.e., if there exists x0 ∈ Ω such that

u(x0) = min
Ω
u

then u is constant in Ω.

These can be proved as follows:

(a) Weak minimum principle: Let ũ = −u. Then ũ is harmonic since u is harmonic. Therefore by
the weak maximum principle

min
Ω
u = −max

Ω
(−u)

= −max
Ω

ũ

= −max
∂Ω

ũ

= −max
∂Ω

(−u)

= min
∂Ω

u

as required.

(b) Strong minimum principle: If u attains its minimum at x0 ∈ Ω, then the harmonic function
ũ = −u attains its maximum at x0. By the strong maximum principle, ũ is constant. Therefore
u is constant.

(ii) Since u is harmonic it satisfies the strong minimum principle. Therefore:

Either: u is constant, in which case for all x ∈ Ω

u(x) = u(x0) = g(x0) > 0,

as the function is continuous up to the boundary.

Or: u is not constant, in which case the strong minimum principle implies that, for all x ∈ Ω,

u(x) > min
y∈∂Ω

u(y) = min
y∈∂Ω

g(y) ≥ 0.

In either case u(x) > 0 for all x ∈ Ω, as required.
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6. Another application of the maximum principle: Bounds on solutions.

(a) Let Ω = (−1, 1)× (−1, 1). We have

min
∂Ω

u = min
(x,y)∈∂Ω

(x2 + y2) = 1,

max
∂Ω

u = max
(x,y)∈∂Ω

(x2 + y2) = 2.

We know that u is not constant (since u(x, y) = x2 + y2 on ∂Ω). Therefore the strong maximum
principle for harmonic functions implies that

min
∂Ω

u < u(0, 0) < max
∂Ω

u ⇐⇒ 1 < u(0, 0) < 2.

(b) Let

v =
47

40
− 1

5
(x4 − 6x2y2 + y4).

Then

vx = −4

5
x3 +

12

5
xy2, vxx = −12

5
x2 +

12

5
y2,

vy = −4

5
y3 +

12

5
x2y, vyy = −12

5
y2 +

12

5
x2,

and therefore v is harmonic.

Let Γ1 = {(x, y) : |x| < 1, |y| = 1}. If (x, y) ∈ Γ1, then

v(x, y)− 1− x2 =
7

40
− 1

5
x4 +

6

5
x2 − 1

5
− x2 = − 1

40
− 1

5
x4 +

1

5
x2 =: f(x).

Let’s find the infimum and supremum of f on Γ1. We have

f ′(x) = 0 ⇐⇒ −4

5
x3 +

2

5
x = 0 ⇐⇒ 2

5
x
(
−2x2 + 1

)
= 0.

Therefore the critical points of f are

0, ± 1√
2
.

The maximum and minimum points of f on Γ1 are attained at the critical points of f or at the end
points x = ±1. We have

f(±1) = − 1

40
= −0.025, f(0) = − 1

40
= −0.025, f

(
± 1√

2

)
=

1

40
= 0.025.

Therefore
−0.025 ≤ v(x, y)− 1− x2 ≤ 0.025 for all (x, y) ∈ Γ1

as required.

Let Γ2 = {(x, y) : |x| = 1, |y| < 1}. By symmetry of v in x and y,

−0.025 ≤ v(x, y)− 1− y2 ≤ 0.025 for all (x, y) ∈ Γ2.

Let w = v − u. Then w is harmonic and w = v − x2 − y2 on ∂Ω. We can decompose ∂Ω as

∂Ω = Γ1 ∪ Γ2 ∪ {(−1,−1), (−1, 1), (1,−1), (1, 1)}.
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For (x, y) ∈ ∂Ω,

w(x, y) =


v − 1− x2 if (x, y) ∈ Γ1,
v − 1− y2 if (x, y) ∈ Γ2,
− 1

40 if |x| = |y| = 1.

Clearly w is not constant. Therefore by the strong maximum principle

− 1

40
= min

∂Ω
w < w(0, 0) < max

∂Ω
w =

1

40
.

Therefore

− 1

40
< v(0, 0)︸ ︷︷ ︸

= 47
40

−u(0, 0) <
1

40
⇐⇒ 46

40︸︷︷︸
1.15

< u(0, 0) <
48

40︸︷︷︸
1.2

as desired. We have an estimate of u(0, 0) correct to two significant figures!

7. Application of the maximum principle for subharmonic functions: Comparison theorems. Let v = u1−u2.
Then v satisfies

−∆v = f1 − f2 in Ω,

v = g1 − g2 on ∂Ω.

By assumption, f1 − f2 ≤ 0 and so v is subharmonic. Therefore it satisfies the maximum principle

max
Ω

v = max
∂Ω

v = max
∂Ω

(g1 − g2) ≤ 0.

Therefore v ≤ 0 and u1 ≤ u2, as required.

8. Maximum principles for more general elliptic problems.

(i) Consider the one-dimensional steady convection-diffusion equation

−αu′′ + βu′ = 0 in (a, b)

where α and β are constants, α > 0. Let v = u′. Then

−αv′ + βv = 0 =⇒
(
e−

β
α
xv
)′

= 0.

Therefore
v(x) = ce

β
α
x

for some constant c. Hence
u(x) =

cα

β
e
β
α
x + d

for some constant d. If c = 0, then u is constant. Otherwise

u′(x) = v(x) = ce
β
α
x

and so u is strictly increasing if c > 0 and strictly decreasing if c < 0. Therefore u attains its
maximum and minimum on the boundary of (a, b).

(ii) Let u satisfy Poisson’s equation
−u′′ = f in (a, b)

where f is a constant. Then u is a quadratic polynomial. It is easy to see that if f < 0, then u
satisfies a weak maximum principle, and if f > 0, then u satisfies a weak minimum principle. See
Q2 for the two-dimensional case.
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(iii) Consider the equation
−u′′ + cu = 0 in Ω

with c > 0, Ω = (a, b). The solution has the form

u(x) = A exp(
√
cx) +B exp(−

√
cx)

where A and B are constants. We can assume that A 6= 0 and B 6= 0, otherwise the result is obvious.
If B/A < 0, then u is either increasing (if A > 0, B < 0) or decreasing (if A < 0, B > 0) and hence
u attains its maximum and minimum on the boundary of Ω. It follows that maxΩ |u| = max∂Ω |u|.
If B/A > 0, then u has a unique critical point:

u′(x0) = 0 ⇐⇒ exp(2
√
c x0) =

B

A
⇐⇒ x0 =

1√
c

ln

(
B

A

)
and the critical value of u is

u(x0) = A

(
B

A

)1/2

+B

(
B

A

)−1/2

.

If x0 /∈ Ω, then u is increasing or decreasing on Ω and so maxΩ |u| = max∂Ω |u| as before. Assume
that x0 ∈ Ω. We consider two case: A,B > 0 and A,B < 0.

If A,B > 0, then u(x) > 0 for all x ∈ (a, b) and u′′(x0) = cu(x0) > 0, which implies that x0 is a local
minimum point of u. Therefore u = |u| attains its maximum on the boundary of Ω, as required.

If A,B < 0, then u(x) < 0 for all x ∈ (a, b) and u′′(x0) = cu(x0) < 0, which implies that u0 is a
local maximum point of u. Therefore

max
Ω
|u| = −min

Ω
u = −min

∂Ω
u = max

∂Ω
|u|

as required.

If c < 0, then the maximum principle does not hold since

u(x) = A sin(
√
−cx) +B cos(

√
−cx)

for some constants A and B. For example, take a = 0, b = 2π, c = −1, A = 1, B = 0. Then

max
Ω
|u| = 1, max

∂Ω
|u| = 0.

9. Maximum principles for 4th-order elliptic PDEs? In general, 4th-order elliptic PDEs do not satisfy a
maximum principle. For example, if u′′′′ = 0 on (a, b), then u is a cubic polynomial, which need not attain
is maximum or minimum on the boundary of (a, b). If −u′′′′ = f on (a, b), where f < 0 is a constant,
then u is a quartic polynomial, which again need not attain its maximum on the boundary of (a, b).

10. Regularity Theorem: Harmonic functions are C∞.

(i) Observe that η = 0 outside the disc B1(0). Therefore supp(η) = B1(0) and so supp(ηε) = Bε(0).
For the rest of the problem it is convenient to write η(x) = φ(|x|) where φ : [0,∞) → R is defined
by

φ(r) =

{
C exp

(
− 1

1−r2

)
if r < 1,

0 if r ≥ 1.
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Then ηε(x) = 1
ε2
φ( |x|ε ). Observe that∫

B1(0)
φ(|x|) dx =

∫
B1(0)

η(x) dx = C

∫
B1(0)

e
− 1

1−|x|2 dx = 1

by definition of C. We compute∫
R2

ηε(x) dx =

∫
Bε(0)

ηε(x) dx

=

∫ 2π

0

∫ ε

0

1

ε2
φ
(r
ε

)
r drdθ (polar coordiates)

=

∫ 2π

0

∫ 1

0

1

ε2
φ(s) sε εdsdθ (change of variables: s =

r

ε
)

=

∫ 2π

0

∫ 1

0
φ(s)s dsdθ

=

∫
B1(0)

φ(|x|) dx (back to Cartesian coordinates)

= 1.

(ii) Take x ∈ Ωε. Then

uε(x) =

∫
Bε(x)

ηε(x− y)u(y) dy

=

∫
Bε(x)

1

ε2
φ
(
|x−y|
ε

)
u(y) dy

=

∫ 2π

0

∫ ε

0

1

ε2
φ
(r
ε

)
u(x + r(cos θ, sin θ)) r drdθ (y = x + r(cos θ, sin θ))

=

∫ ε

0

1

ε2
φ
(r
ε

)(∫ 2π

0
u(x + r(cos θ, sin θ)) r dθ

)
dr

=

∫ ε

0

1

ε2
φ
(r
ε

)(∫
∂Br(x)

u(y) dL(y)

)
︸ ︷︷ ︸

=|∂Br(x)|u(x)

dr (mean-value formula)

=

∫ ε

0

1

ε2
φ
(r
ε

)
2πr u(x) dr

= u(x) 2π

∫ ε

0

1

ε2
φ
(r
ε

)
r dr

= u(x)

∫ 2π

0

∫ ε

0

1

ε2
φ
(r
ε

)
r drdθ

= u(x)

∫
Bε(0)

1

ε2
φ
(
|y|
ε

)
dy

= u(x)

∫
Bε(0)

ηε(y) dy

= u(x).
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11. C∞ 6=⇒ analytic. Consider the function η : R→ R defined by

η(x) =

{
exp

(
− 1

1−|x|2

)
if |x| < 1,

0 if |x| ≥ 1.

Then η is infinitely differentiable but it is not analytic since it does not have a convergent Taylor series
expansion about the point x = 1:

∞∑
k=0

η(k)(1)

k!
(x− 1)k =

∞∑
k=0

0

k!
(x− 1)k = 0,

but η is nonzero in any neighbourhood of x = 1. In general, nonzero analytic functions cannot have
compact support.

12. Non-negative harmonic functions on Rn are constant.

(i) We have

u(x) = −
∫
Br(x)

u(z) dz (mean-value formula)

=
|BR(y)|
|Br(x)|

1

|BR(y)|

∫
Br(x)

u(z) dz

≤ |BR(y)|
|Br(x)|

1

|BR(y)|

∫
BR(y)

u(z) dz (since u > 0 and Br(x) ⊂ BR(y))

=
|BR(y)|
|Br(x)|

u(y) (mean-value formula)

as required.

(ii) Let z ∈ Br(x). Then

|z − y| = |z − x + x− y| ≤ |z − x|+ |x− y| < r + |x− y| = R.

Therefore z ∈ BR(y) and hence Br(x) ⊂ BR(y). We have

|BR(y)|
|Br(x)|

=
Rnα(n)

rnα(n)
=

Rn

(R− |x− y|)n
=

1

1− |x−y|R

→ 1 as R→∞.

(iii) If r = R− |x− y|, then by parts (i) and (ii),

u(x) ≤ |BR(y)|
|Br(x)|

u(y)→ u(y) as R→∞.

Therefore
u(x) ≤ u(y).

Interchanging the roles of x and y gives

u(y) ≤ u(x).

Therefore u(x) = u(y) for all x,y ∈ Rn and hence u is a constant function.

13. Proof of Liouville’s Theorem. Since u is bounded, then there exists M > 0 such that u(x) > −M for all
x ∈ Rn. Therefore the harmonic function v = u+M > 0 on Rn. But positive harmonic functions on Rn
are constant by Q12. Therefore v, and hence u, are constant.
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14. An application of Liouville’s Theorem: ‘Uniqueness’ for Poisson’s equation in R3. Let u1 = Φ ∗ f where
Φ is the fundamental solution of Poisson’s equation in Rn with n = 3:

Φ(x) =
1

n(n− 2)α(n)

1

|x|n−2
=

1

4π

1

|x|
.

(Recall that α(n) is the volume of the unit ball in Rn and hence α(3) = 4
3π.) Let u2 be any bounded

solution of Poisson’s equation in R3. Then w = u2 − u1 is a harmonic function since −∆u1 = f and
−∆u2 = f in R3. We show that u1 is bounded: Since f ∈ C2

c (R3) has compact support, there exists
R > 0 such that supp(f) ⊂ BR(0). In particular, f = 0 in R3 \BR(0). Therefore

|u1(x)| = |(Φ ∗ f)(x)|

=

∣∣∣∣ 1

4π

∫
R3

f(y)

|x− y|
dy

∣∣∣∣
≤ 1

4π

∫
R3

|f(y)|
|x− y|

dy

=
1

4π

∫
BR(0)

|f(y)|
|x− y|

dy

≤ 1

4π
max
BR(0)

|f |
∫
BR(0)

1

|x− y|
dy.

We just need to show that ∫
BR(0)

1

|x− y|
dy

is uniformly bounded in x. This is more fiddly than you would expect. We consider two cases: |x| ≤ 2R
and |x| > 2R.

If |x| ≤ 2R, then BR(0) ⊂ B3R(x) (draw a sketch to convince yourself of this) and so∫
BR(0)

1

|x− y|
dy <

∫
B3R(x)

1

|x− y|
dy

=

∫
B3R(0)

1

|z|
dz (z = y − x)

=

∫ 2π

φ=0

∫ π

θ=0

∫ 3R

0

1

r
r2 sin θ drdθdφ (spherical polar coordinates)

= 2π
1

2
r2
∣∣∣3R
r=0

(− cos θ)
∣∣∣π
θ=0

= 18πR2.

If |x| > 2R, then for all y ∈ BR(0)

|x− y| > R =⇒ 1

|x− y|
<

1

R

and so ∫
BR(0)

1

|x− y|
dy <

∫
BR(0)

1

R
dy =

1

R
|BR(0)| = 1

R

4

3
πR3 =

4

3
πR2 < 18πR2.

Therefore, for all x ∈ R3,

|u1(x)| ≤ 1

4π
max
BR(0)

|f |
∫
BR(0)

1

|x− y|
dy <

1

4π
max
BR(0)

|f | 18πR2 =
18

4
R2 max

BR(0)
|f |.

11



Hence u1 is bounded. Since u1 and u2 are bounded, then w is a bounded harmonic function on R3. By
Liouville’s Theorem w = c = constant. Therefore

u2 − u1 = c ⇐⇒ u2 = u1 + c = Φ ∗ f + c

as required.

This argument can be extended to Rn for any n ≥ 3. It does not work for n = 2 since u1 = Φ ∗ f is not
necessarily bounded in R2 since Φ(x) = − 1

2π log |x| blows up as |x| → ∞. For the case n ≥ 3, Φ(x)→ 0
as |x| → ∞, and it converges to 0 sufficiently fast in order for Φ ∗ f to be bounded.

15. An obstacle to uniqueness for Laplace’s equation: Unbounded domains.

(i) We can build a nontrivial solution using the fundamental solution of Poisson’s equation:

u(x) =

{
log |x| if n = 2,
|x|2−n − 1 if n ≥ 3.

(ii) Simply take u(x) = xn.

16. Eigenvalues of the negative Laplacian. By Exercise Sheet 4, Q11, the eigenvalues are positive, λ > 0.
Therefore we can write each eigenvalue as λ = ω2 for some ω ∈ (0,∞). Then

−u′′(x) = ω2u(x), x ∈ (0, 2π).

Recall from ODE theory (see page 21 of the lecture notes) that solutions of this ODE have the form

u(x) = A cos(ωx) +B sin(ωx)

for some constants A,B ∈ R. The boundary condition u(0) = 0 implies that A = 0. The boundary
condition u(2π) = 0 gives

B sin(2πω) = 0.

Since u 6= 0, then B 6= 0. Since ω > 0, it follows that

2πω ∈ {nπ : n ∈ N}.

Therefore ω = n
2 and the eigenfunction-eigenvalue pairs are

(un(x), λn) =

(
B sin

(nx
2

)
,
n2

4

)
, n ∈ N, B ∈ R.

In particular, there are countably many eigenvalues.

17. Connection between holomorphic functions and harmonic functions.

Let f : Ω ⊂ C→ C be a holomorphic (complex analytic) function with real and imaginary parts u and v:

f(x+ iy) = u(x, y) + iv(x, y).

The Cauchy-Riemann equations are
ux = vy, uy = −vx.

Therefore
∆u = uxx + uyy = (vy)x + (−vx)y = vyx − vxy = 0

and
∆v = vxx + vyy = (−uy)x + (ux)y = −uyx + uxy = 0.
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Completing the table gives

Harmonic Functions Holomorphic Functions

Mean-Value Formula Cauchy Integral Formula
Maximum Principle Maximum Modulus Principle
Liouville’s Theorem Liouville’s Theorem

See Remark 5.3 in the lecture notes for an explanation of why the Cauchy integral formula implies the
mean-value formula.

13


