
Partial Differential Equations III/IV

Exercise Sheet 6: Solutions

1. The Fourier transform: The heat equation with source term.

(i) By the Fundamental Theorem of Calculus

ẋ(t) = λGeλt + eλ(t−s)F (s)
∣∣∣
s=t

+

∫ t

0
λeλ(t−s)F (s) ds

= λGeλt + F (t) + λ

∫ t

0
eλ(t−s)F (s) ds

= λx(t) + F (t)

as claimed.

(ii) Taking the Fourier transform of ut = kuxx + f with respect to the x variable gives

ut
∧

= kuxx
∧

+ f̂ ⇐⇒ ût(ξ, t) = k(iξ)2û(ξ, t) + f̂(ξ, t) = −kξ2û(ξ, t) + f̂(ξ, t).

Taking the Fourier transform of the initial condition u(x, 0) = g(x) gives

û(ξ, 0) = ĝ(ξ).

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ:

ût = −kξ2û+ f̂ , û(ξ, 0) = ĝ(ξ).

Applying part (i) with x = û, λ = −kξ2, F = f̂ , G = ĝ gives

û(ξ, t) = ĝ(ξ)e−kξ
2t +

∫ t

0
e−kξ

2(t−s)f̂(ξ, s) ds.

Therefore

u(x, t) = ĝ(ξ)e−kξ
2t

∧

+

∫ t

0
e−kξ

2(t−s)f̂(ξ, s)

∧

ds. (1)

Recall that

ê−ax2(ξ) =
1√
2a

e−
ξ2

4a .

Therefore

e−kξ
2t =

√
2a e−ax

2
∧

(ξ) for a =
1

4kt
.

Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain

ĝ(ξ)e−kξ
2t =

√
2a ĝ(ξ) e−ax

2
∧

(ξ)

=
√

2a
1√
2π

g ∗ e−ax2
∧

(ξ)

=

√
a

π
g ∗ e−ax2
∧

(ξ)

=
1√

4πkt
g ∗ e−

x2

4kt

∧

(ξ)



since a = 1
4kt . Therefore

ĝ(ξ)e−kξ
2t

∧

=
1√

4πkt
g ∗ e−

x2

4kt = Φ(·, t) ∗ g =

∫ ∞
−∞

Φ(x− y, t)g(y) dy (2)

where Φ is the fundamental solution of the heat equation in R. Similarly

e−kξ
2(t−s)f̂(ξ, s)

∧

=
1√

4πk(t− s)
e
− x2

4k(t−s) ∗ f(·, s) =

∫ ∞
−∞

Φ(x− y, t− s)f(y, s) dy. (3)

Combining equations (1), (2) and (3) yields

u(x, t) =

∫ ∞
−∞

Φ(x− y, t)g(y) dy +

∫ t

0

∫ ∞
−∞

Φ(x− y, t− s)f(y, s) dy ds

as required.

2. The Fourier transform: The transport equation.

(i) By definition

τav
∧

(ξ) =
1√
2π

∫ ∞
−∞

τav(x)e−iξx dx

=
1√
2π

∫ ∞
−∞

v(x− a)e−iξx dx

=
1√
2π

∫ ∞
−∞

v(y)e−iξ(y+a) dy (y = x− a)

= e−iξa
1√
2π

∫ ∞
−∞

v(y)e−iξy dy

= e−iξav̂(ξ)

as required.

(ii) Taking the Fourier transform of the transport equation ut + cux = 0 gives

ut
∧

+ cux
∧

= 0 ⇐⇒ ût(ξ, t) + ciξû(ξ, t) = 0

and taking the Fourier transform of the initial condition u(x, 0) = g(x) gives

û(ξ, 0) = ĝ(ξ).

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ:

ût = −ciξû, û(ξ, 0) = ĝ(ξ).

Recall that the ODE ẋ = λx has solution x(t) = x(0)eλt. Applying this with x = û, λ = −ciξ yields

û(ξ, t) = û(ξ, 0)e−ciξt

= ĝ(ξ)e−ciξt

= τag
∧

(ξ)

where a = ct, by part (i). By taking the inverse Fourier transform we obtain

u(x, t) = τag(x) = g(x− a) = g(x− ct)

as desired.
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3. The Fourier transform: Schrödinger’s equation.

(i) Taking the Fourier transform of iut = −uxx with respect to the x variable gives

iut
∧

= −uxx
∧

⇐⇒ iût(ξ, t) = −(iξ)2û(ξ, t) = ξ2û(ξ, t).

By multiplying by −i we can rewrite this as ût = −iξ2û. Taking the Fourier transform of the initial
condition u(x, 0) = g(x) gives

û(ξ, 0) = ĝ(ξ).

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ:

ût = −iξ2û, û(ξ, 0) = ĝ(ξ).

Recall that the ODE ẋ = λx has solution x(t) = x(0)eλt. Applying this with x = û, λ = −iξ2 gives

û(ξ, t) = û(ξ, 0)e−iξ
2t = ĝ(ξ)e−iξ

2t. (4)

To obtain u we need to compute the following inverse Fourier transform:

ĝ(ξ)e−iξ
2t

∧

.

The trick is to recognise that ĝ(ξ)e−iξ
2t is the product of Fourier transforms, which follows from the

fact that the Fourier transform of a Gaussian is a Gaussian. Recall that

ê−ax2(ξ) =
1√
2a

e−
ξ2

4a .

Therefore

e−iξ
2t =

√
2a e−ax

2
∧

(ξ) for a =
1

4it
. (5)

Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain

ĝ(ξ)e−kξ
2t =

√
2a ĝ(ξ) e−ax

2
∧

(ξ) (by equation (5))

=
√

2a
1√
2π

g ∗ e−ax2
∧

(ξ)

=

√
a

π
g ∗ e−ax2
∧

(ξ).

Combining this with equation (4) and taking the inverse Fourier transform gives

û(ξ, t) =

√
a

π
g ∗ e−ax2
∧

(ξ) ⇐⇒ u(x, t) =

√
a

π
g ∗ e−ax2 .

Since a = 1
4it and the convolution is commutative we arrive at

u(x, t) =
1√
4πit

g ∗ e−
x2

4it =
1√
4πit

e
ix2

4t ∗ g =
1√
4πit

∫ ∞
−∞

e
i(x−y)2

4t g(y) dy

as required.

(ii) In part (i) we showed that

û(ξ, t) = ĝ(ξ)e−iξ
2t.
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Since the Fourier transform preserves the L2–norm,

‖u(·, t)‖2L2(R) = ‖û(·, t)‖2L2(R)

= ‖ĝ(ξ)e−iξ
2t‖2L2(R)

=

∫ ∞
−∞

∣∣∣ĝ(ξ)e−iξ
2t
∣∣∣2 dξ

=

∫ ∞
−∞
|ĝ(ξ)|2 dξ

= ‖g‖2L2(R)

as required.

4. The Fourier transform: The wave equation. Use the Fourier transform to derive the solution

u(x, t) =
1

2
[g(x− ct) + g(x+ ct)]

of the wave equation

utt = c2uxx for (x, t) ∈ R× (0,∞),

u(x, 0) = g(x) for x ∈ R,
ut(x, 0) = 0 for x ∈ R,

where the constant c > 0 is the wave speed. This is known as D’Alembert’s solution.
Hint: Use Q2(i) and the fact that cos(cξt) = [exp(icξt) + exp(−icξt)]/2.

Taking the Fourier transform of utt = c2uxx with respect to the x variable gives

utt
∧

= c2uxx

∧

⇐⇒ ûtt(ξ, t) = c2(iξ)2û(ξ, t) = −c2ξ2û(ξ, t).

Taking the Fourier transform of the initial condition u(x, 0) = g(x) gives

û(ξ, 0) = ĝ(ξ).

Taking the Fourier transform of the initial condition ut(x, 0) = 0 gives

ût(ξ, 0) = 0.

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ:

ûtt = −c2ξ2û, û(ξ, 0) = ĝ(ξ), ût(ξ, 0) = 0.

Recall that the ODE ẍ = −λ2x has solution of the form x(t) = A cos(λt) +B sin(λt). Applying this with
x = û, λ = cξ gives

û(ξ, t) = A cos(cξt) +B sin(cξt).

The initial conditions û(ξ, 0) = ĝ(ξ), ût(ξ, 0) = 0 imply that A = ĝ(ξ) and B = 0. Therefore

û(ξ, t) = ĝ(ξ) cos(cξt)

= ĝ(ξ)

[
exp(icξt) + exp(−icξt)

2

]
=

1

2
exp(icξt)ĝ(ξ) +

1

2
exp(−icξt)ĝ(ξ)

=
1

2
τ−ag
∧

(ξ) +
1

2
τag
∧

(ξ)
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where a = ct, by Q2(i). Taking the inverse Fourier transform gives

u(x, t) =
1

2
τ−a g(x) +

1

2
τa g(x)

=
1

2
g(x+ a) +

1

2
g(x− a)

=
1

2
[g(x+ ct) + g(x− ct)]

as required.

5. The Fourier transform of a derivative. By definition

u′
∧

(ξ) =
1√
2π

∫ ∞
−∞

u′(x)e−iξx dx

= − 1√
2π

∫ ∞
−∞

u(x)
d

dx
e−iξx dx (integration by parts)

= − 1√
2π

∫ ∞
−∞

u(x)(−iξ)e−iξx dx

= iξ
1√
2π

∫ ∞
−∞

u(x)e−iξx dx

= iξû(ξ)

as required.

6. The Fourier transform of a convolution. By definition

û ∗ v(ξ) =
1√
2π

∫ ∞
−∞

(u ∗ v)(x)e−iξx dx

=
1√
2π

∫ ∞
−∞

(∫ ∞
−∞

u(z)v(x− z) dz
)
e−iξx dx

=
1√
2π

∫ ∞
−∞

(∫ ∞
−∞

u(z)v(x− z) dz
)
e−iξze−iξ(x−z) dx

=
1√
2π

∫ ∞
−∞

(∫ ∞
−∞

v(x− z)e−iξ(x−z) dx
)
u(z)e−iξz dz

=

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

v(x̃)e−iξx̃ dx̃

)
u(z)e−iξz dz (x̃ = x− z)

=

∫ ∞
−∞

v̂(ξ)u(z)e−iξz dz

=
√

2π v̂(ξ)
1√
2π

∫ ∞
−∞

u(z)e−iξz dz

=
√

2π v̂(ξ)û(ξ)

as desired.
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7. Proof of the Sobolev embedding using the Fourier transform.

(i) Since the Fourier transform preserves the L2–norm

‖u‖2H1(R) = ‖u‖2L2(R) + ‖u′‖2L2(R)

= ‖û‖2L2(R) + ‖u′
∧

‖2L2(R)

= ‖û‖2L2(R) + ‖iξû‖2L2(R)

=

∫ ∞
−∞
|û(ξ)|2 dξ +

∫ ∞
−∞
|iξû(ξ)|2 dξ

=

∫ ∞
−∞

(1 + |ξ|2)|û(ξ)|2 dξ.

as required.

(ii) Following the hint

‖û‖L1(R) =

∫ ∞
−∞
|û(ξ)|dξ

=

∫ ∞
−∞

1

(1 + |ξ|2)1/2
(1 + |ξ|2)1/2 |û(ξ)| dξ

≤
(∫ ∞
−∞

1

(1 + |ξ|2)
dξ

)1/2(∫ ∞
−∞

(1 + |ξ|2) |û(ξ)|2 dξ
)1/2

(Cauchy-Schwarz)

=

(∫ ∞
−∞

1

(1 + |ξ|2)
dξ

)1/2

‖u‖H1(R)

= C‖u‖H1(R)

where

C =

(∫ ∞
−∞

1

(1 + |ξ|2)
dξ

)1/2

.

If we can show that C is finite, then we’ve completed the proof. This is a simple calculus exercise;
one way is as follows:

C2 = 2

∫ ∞
0

1

(1 + ξ2)
dξ

=

∫ 1

0

1

(1 + ξ2)
dξ +

∫ ∞
1

1

(1 + ξ2)
dξ

≤
∫ 1

0

1

(1 + 0)
dξ +

∫ ∞
1

1

ξ2
dξ

= 1 + 1

= 2 <∞

as required.

(iii) By the Fourier Inversion Theorem
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|u(x)| =
∣∣∣∣ 1√

2π

∫ ∞
−∞

û(ξ)eiξx dξ

∣∣∣∣
≤ 1√

2π

∫ ∞
−∞
|û(ξ)| |eiξx| dξ

=
1√
2π

∫ ∞
−∞
|û(ξ)| dξ

=
1√
2π
‖û‖L1(R)

≤ C√
2π
‖u‖H1(R)

by part (ii). Since this holds for all x ∈ R,

‖u‖L∞(R) ≤
C√
2π
‖u‖H1(R)

as required.

8. Fundamental Solution of the Heat Equation. We compute

Φt(x, t) =
1

(4πk)
n
2

e−
|x|2
4kt

(
−n

2
t−

n
2
−1 +

|x|2

4kt2

)
∂Φ

∂xi
(x, t) =

1

(4πkt)
n
2

e−
|x|2
4kt

(
−2xi

4kt

)
,

∂2Φ

∂x2
i

(x, t) =
1

(4πkt)
n
2

e−
|x|2
4kt

(
− 2

4kt
+

(
2xi
4kt

)2
)

=
1

(4πkt)
n
2

e−
|x|2
4kt

(
− 1

2kt
+

x2
i

4k2t2

)
,

∆Φ(x, t) =
n∑
i=1

∂2Φ

∂x2
i

(x, t) =
1

(4πkt)
n
2

e−
|x|2
4kt

(
− n

2kt
+
|x|2

4k2t2

)
.

Therefore Φ satisfies Φt(x, t) = k∆Φ(x, t) for all x ∈ Rn, t > 0, as required.

9. Finite speed of propagation for a degenerate diffusion equation.

(i) Observe that

1

2

(
3

kπt

) 1
3

− 1

6k

x2

t
= 0 ⇐⇒ |x| = 3

2
3k

1
3π−

1
6 t

1
3

and so

Φ(x, t) =


1

2

(
3

kπt

) 1
3

− 1

6k

x2

t
if |x| < 3

2
3k

1
3π−

1
6 t

1
3 ,

0 if |x| ≥ 3
2
3k

1
3π−

1
6 t

1
3 .

Clearly Φ satisfies the degenerate diffusion equation for |x| > 3
2
3k

1
3π−

1
6 t

1
3 . For |x| < 3

2
3k

1
3π−

1
6 t

1
3 ,

Φt(x, t) =
1

6

(
3

kπt

)− 2
3
(
− 3

kπt2

)
+

x2

6kt2
= − 1

6t

(
3

kπt

) 1
3

+
x2

6kt2
,

Φx(x, t) = − x

3kt
,
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(a(Φ)Φx)(x, t) = − x
6t

(
3

kπt

) 1
3

+
x3

18kt2
,

(a(Φ)Φx)x(x, t) = − 1

6t

(
3

kπt

) 1
3

+
x2

6kt2
.

Therefore Φ satisfies the degenerate diffusion equation for all t > 0 and all x ∈ R with |x| 6=
3

2
3k

1
3π−

1
6 t

1
3 .

(ii) For fixed t > 0, Φ(x, t) is the maximum of a concave quadratic function and the zero function. The
support of the map x 7→ Φ(x, t) is the compact interval

[−3
2
3k

1
3π−

1
6 t

1
3 , 3

2
3k

1
3π−

1
6 t

1
3 ].

10. The mathematical equation that caused the banks to crash. Let t(x, τ) satisfy

τ = T − t(x, τ).

Differentiating this expression with respect to τ and x gives

tτ = −1, tx = 0.

Let S(x, τ) satisfy

x = ln

(
S(x, τ)

K

)
+

(
r − 1

2
σ2

)
τ. (6)

Differentiating this expressions with respect to τ gives

0 =
K

S

Sτ
K

+ r − 1

2
σ2 ⇐⇒ Sτ =

(
1

2
σ2 − r

)
S.

Differentiating equation (6) with respect to x gives

1 =
K

S

Sx
K

⇐⇒ Sx = S.

Therefore

uτ = Cerτ [rV + VSSτ + Vttτ ] = Cerτ
[
rV +

(
1

2
σ2 − r

)
SVs − Vt

]
,

ux = Cerτ [VSSx + Vttx] = CerτSVS ,

uxx = Cerτ [SxVS + SVSSSx] = Cerτ
[
SVS + S2VSS

]
.

Therefore

uτ −
1

2
σ2uxx = Cerτ

[
rV +

(
1

2
σ2 − r

)
SVs − Vt −

1

2
σ2(SVS + S2VSS)

]
= −Cerτ

[
Vt +

1

2
σ2S2VSS + rSVS − rV

]
= 0

since V satisfies the Black-Scholes PDE. This completes the proof.
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11. The energy method: Uniqueness for the heat equation in a time dependent domain. Let u and v be
solutions and let w = u− v. Then w satisfies

wt − kwxx = 0 for (x, t) ∈ U,
w(a(t), t) = 0 for t ∈ [0, T ],

w(b(t), t) = 0 for t ∈ [0, T ],

w(x, 0) = 0 for x ∈ (a(0), b(0)).

Multiply the equation wt = kwxx by w and integrate over (a(t), b(t)) to obtain∫ b(t)

a(t)
wwt dx = k

∫ b(t)

a(t)
wwxx dx. (7)

Recall the Fundamental Theorem of Calculus:

d

dt

∫ b(t)

a(t)
f(x, t) dx =

∫ b(t)

a(t)
ft(x, t) dx+ ḃ(t)f(b(t), t)− ȧ(t)f(a(t), t).

We can use this to rewrite the left-hand side of equation (7) as follows:∫ b(t)

a(t)
wwt dx =

d

dt

1

2

∫ b(t)

a(t)
w2(x, t) dx− 1

2
ḃ(t)w2(b(t), t) +

1

2
ȧ(t)w2(a(t), t)

=
d

dt

1

2

∫ b(t)

a(t)
w2(x, t) dx (8)

since w(a(t), t) = w(b(t), t) = 0. We rewrite the right-hand side of equation (7) using integration by
parts:

k

∫ b(t)

a(t)
wwxx dx = kwwx

∣∣∣b(t)
a(t)
− k

∫ b(t)

a(t)
w2
x dx = −k

∫ b(t)

a(t)
w2
x dx, (9)

again using the fact that w(a(t), t) = w(b(t), t) = 0. Substituting (8) and (9) into (7) gives

d

dt

1

2

∫ b(t)

a(t)
w2(x, t) dx = −k

∫ b(t)

a(t)
w2
x dx ≤ 0.

Let

E(t) =
1

2

∫ b(t)

a(t)
w2(x, t) dx.

We have shown that Ė(t) ≤ 0. Hence

0 ≤ E(t) ≤ E(0) = 0

since w = 0 for t = 0. Consequently E(t) = 0 for all t. Therefore w = 0 in U and so u = v, as required.

12. The energy method: Uniqueness for a 4th-order heat equation. Let u and v be solutions and let w = u−v.
Then w satisfies

wt + kwxxxx = 0 for (x, t) ∈ (a, b)× (0, T ], (10)

w(a, t) = w(b, t) = 0 for t ∈ [0, T ], (11)

wx(a, t) = wx(b, t) = 0 for t ∈ [0, T ], (12)

w(x, 0) = 0 for x ∈ (a, b). (13)
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Multiplying the equation wt = −kwxxxx by w and integrating over (a, b) gives∫ b

a
wwt︸︷︷︸
1
2
∂
∂t
w2

dx = −k
∫ b

a
wwxxxx dx

= −kwwxxx
∣∣∣b
a

+ k

∫ b

a
wxwxxx dx

= k

∫ b

a
wxwxxx dx (by (11))

= kwxwxx

∣∣∣b
a
− k

∫ b

a
wxxwxx dx

= −k
∫ b

a
w2
xx dx (by (12)).

Therefore
d

dt

1

2

∫ b

a
w2 dx = −k

∫ b

a
w2
xx dx ≤ 0

and so

0 ≤
∫ b

a
w2(x, t) dx ≤

∫ b

a
w2(x, 0) dx = 0

by (13). We conclude that w = 0 and hence u = v, as required.

We consider ut + kuxxxx = 0 to be the 4th-order version of the heat equation ut − kuxx = 0 since it has
the same energy-decay property:

d

dt
‖u‖2L2([a,b]) ≤ 0

(provided that u and ux vanish at x = a and x = b). The equation ut− kuxxxx = 0 looks more similar to
the heat equation ut − kuxx = 0 (because of the minus sign), but its L2–energy grows with time:

d

dt
‖u‖2L2([a,b]) ≥ 0.

13. Asymptotic behaviour of the heat equation with time independent data. Let w(x, t) = u(x, t)− v(x). We
need to prove that limt→∞ ‖w‖L2(Ω) = 0. By subtracting the PDEs for u and v we find that w satisfies

wt(x, t)− k∆w(x, t) = 0 for (x, t) ∈ Ω× (0,∞),

w(x, t) = 0 for (x, t) ∈ ∂Ω× [0,∞),

w(x, 0) = u0(x)− v(x) for x ∈ Ω.

Multiplying the equation wt = k∆w by w and integrating by parts over Ω gives∫
Ω
wwt dx = k

∫
Ω
w∆w dx ⇐⇒ d

dt

1

2

∫
Ω
w2 dx = k

∫
∂Ω
w∇w · n dS − k

∫
Ω
∇w · ∇w dx

⇐⇒ d

dt

1

2

∫
Ω
w2 dx = −k

∫
Ω
|∇w|2 dx (14)

since w = 0 on ∂Ω. By the Poincaré inequality, there exists a constant Cp > 0 such that∫
Ω
|w|2 dx ≤ Cp

∫
Ω
|∇w|2 dx.
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Multiplying this by −k/Cp gives

− k

Cp

∫
Ω
|w|2 dx ≥ −k

∫
Ω
|∇w|2 dx. (15)

Combining equations (14), (15) yields

d

dt

1

2

∫
Ω
w2 dx ≤ − k

Cp

∫
Ω
|w|2 dx.

Define

E(t) =

∫
Ω
w2(x, t) dx = ‖w‖2L2(Ω)

and λ = 2k
Cp

. We have shown that

Ė ≤ −λE.

By the Gr̈onwall inequality,
E(t) ≤ e−λtE(0).

Since λ > 0, we conclude that E(t)→ 0 as t→∞. Therefore w → 0 in L2(Ω) as t→∞, as required.

14. Asymptotic behaviour of the heat equation with time independent data in the L∞–norm.

(i) By linearity, w satisfies

wt(x, t)− kwxx(x, t) = 0 for (x, t) ∈ (a, b)× (0,∞),

w(x, 0) = u0(x)− v(x) for x ∈ (a, b),

w(a, t) = w(b, t) = 0 for t ∈ [0,∞).

Multiplying the PDE by w and integrating over [a, b] gives∫ b

a
wwt dx = k

∫ b

a
wwxx dx ⇐⇒ d

dt

1

2

∫ b

a
w2 dx = kwwx

∣∣∣b
a︸ ︷︷ ︸

=0

−k
∫ b

a
w2
x dx

where we have used the Chain Rule and integration by parts. Note that the boundary terms vanish
when we perform integration by parts since w(a, t) = w(b, t) = 0. Therefore

d

dt

∫ b

a
w2(x, t) dx = −2k

∫ b

a
w2
x(x, t) dx

as required.

(ii) We can write the result of part (i) in terms of L2–norms as

d

dt
‖w‖2L2([a,b]) = −2k‖wx‖2L2([a,b]). (16)

By the Poincaré inequality, there exists a constant C > 0 such that

‖w‖2L2([a,b]) ≤ C‖wx‖
2
L2([a,b]). (17)

Combining equations (16), (17) gives

d

dt
‖w‖2L2([a,b]) = −2k‖wx‖2L2([a,b]) ≤ −

2k

C
‖w‖2L2([a,b]). (18)
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Define
E(t) = ‖w‖2L2([a,b]).

We can rewrite equation (18) as
Ė ≤ −λE

with λ = 2k/C > 0. By the Grönwall inequality,

E(t) ≤ E(0)e−λt → 0 as t→∞.

Therefore, by definition of E, w → 0 in L2([a, b]) as t→∞, as required.

(iii) By differentiating the PDE for w with respect to t we obtain

wtt(x, t)− kwtxx(x, t) = 0 for (x, t) ∈ (a, b)× (0,∞),

wt(a, t) = wt(b, t) = 0 for t ∈ [0,∞).

In particular, wt satisfies the heat equation with Dirichlet boundary conditions, just like w. Therefore
the argument we applied in parts (i) and (ii) to w can also be applied to wt, which yields wt → 0 in
L2([a, b]) as t→∞.

(iv) We have

‖wx‖2L2([a,b]) =

∫ b

a
w2
x(x, t) dx

= − 1

2k

d

dt

∫ b

a
w2(x, t) dx (by part (i))

= −1

k

∫ b

a
w(x, t)wt(x, t) dx

≤ 1

k

(∫ b

a
w2(x, t) dx

)1/2(∫ b

a
w2
t (x, t) dx

)1/2

(Cauchy-Schwarz)

=
1

k
‖w‖L2([a,b]) ‖wt‖L2([a,b]) → 0 as t→∞

by parts (ii) and (iii). Therefore wx → 0 in L2([a, b]) as t → ∞, as required. Note that we don’t
really need wt → 0 in L2([a, b]) as t→∞, we just need ‖wt‖L2([a,b]) to be uniformly bounded in t.

(v) This final result follows from the Sobolev inequality: There exists a constant C > 0 such that

‖w‖L∞([a,b]) ≤ C‖w‖H1([a,b]) = C
(
‖w‖L2([a,b]) + ‖wx‖L2([a,b])

)1/2 → 0 as t→∞

by parts (ii) and (iv).

15. Applications of the maximum principle: Uniqueness and bounds on solutions.

(i) Let ΓT = [a, b]× {0} ∪ {a, b} × [0, T ] be the parabolic boundary of ΩT . Let u, v ∈ C2
1 (ΩT ) ∩ C(ΩT )

satisfy

ut − uxx = 1 in ΩT ,

u = 0 in ΓT .

Then w = u− v ∈ C2
1 (ΩT ) ∩ C(ΩT ) satisfies

wt − wxx = 0 in ΩT ,

w = 0 in ΓT .
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By the weak maximum principle

max
ΩT

w = max
ΓT

w = 0, min
ΩT

w = min
ΓT

w = 0.

Therefore w = 0 and u = v, as required.

(ii) Since ut − uxx = 1 > 0, the weak maximum principle gives

min
ΩT

u = min
ΓT

u = 0.

This is the desired lower bound on u. We still need to prove the upper bound. Let v(x, t) = t. Then
vt − vxx = 1 and w = u− v satisfies

wt − wxx = 0 in ΩT ,

w = −t in ΓT .

By the weak maximum principle

max
ΩT

w = max
ΓT

w = max
ΓT

(−t) = 0.

Therefore w ≤ 0 in ΩT and hence u ≤ v = t in ΩT , which is the desired upper bound.

16. Application of the maximum principle: Comparison Principle. Define v = u1 − u2. Then v satisfies

∂v

∂t
(x, t)− k∆v(x, t) = f1(x)− f2(x) for (x, t) ∈ Ω× (0, T ],

v(x, t) = g1(x)− g2(x) for (x, t) ∈ ∂Ω× [0, T ],

v(x, 0) = u0
1(x)− u0

2(x) for x ∈ Ω.

Since f1 ≤ f2, then
vt − k∆v = f1 − f2 ≤ 0 in ΩT .

Therefore the weak maximum principle implies that

max
ΩT

v = max
ΓT

v.

For (x, t) ∈ ΓT ,

v(x, t) =

{
g1(x)− g2(x) if (x, t) ∈ ∂Ω× [0, T ],
u0

1(x)− u0
2(x) if t = 0, x ∈ Ω.

But
g1 − g2 ≤ 0, u0

1 − u0
2 ≤ 0.

Therefore v ≤ 0 on ΓT and hence
max
ΩT

v = max
ΓT

v ≤ 0.

Hence v ≤ 0 in ΩT and so u1 ≤ u2 in ΩT , as required.
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17. Eigenfunctions of the Laplacian and an application to the heat equation. Formally (not worrying about
interchanging limits and infinite sums),

0 = vt − k∆v

=

∞∑
n=1

ċn(t)un(x)− k
∞∑
n=1

cn(t)∆un(x)

=
∞∑
n=1

ċn(t)un(x) + k
∞∑
n=1

cn(t)λnun(x)

=
∞∑
n=1

(ċn(t) + kλncn(t))un(x).

Since {un}n∈N forms an orthogonal basis, it follows that

ċn(t) + kλncn(t) = 0

for all n. We also have

v(x, 0) = g(x) ⇐⇒
∞∑
n=1

cn(0)un(x) =
∞∑
n=1

gnun(x) ⇐⇒
∞∑
n=1

(cn(0)− gn)un(x) = 0.

Again, since {un}n∈N forms an orthogonal basis, it follows that

cn(0) = gn

for all n. We have reduced the PDE for v to a one-parameter family of uncoupled ODEs, indexed by n:

ċn(t) = −kλncn(t), cn(0) = gn.

These ODEs have solutions
cn(t) = gne

−kλnt.

Therefore

v(x, t) =
∞∑
n=1

gne
−kλntun(x)

as required.
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