Partial Differential Equations III/IV Exercise Sheet 6: Solutions

1. The Fourier transform: The heat equation with source term.
(i) By the Fundamental Theorem of Calculus

$$
\begin{aligned}
\dot{x}(t) & =\lambda G e^{\lambda t}+\left.e^{\lambda(t-s)} F(s)\right|_{s=t}+\int_{0}^{t} \lambda e^{\lambda(t-s)} F(s) d s \\
& =\lambda G e^{\lambda t}+F(t)+\lambda \int_{0}^{t} e^{\lambda(t-s)} F(s) d s \\
& =\lambda x(t)+F(t)
\end{aligned}
$$

as claimed.
(ii) Taking the Fourier transform of $u_{t}=k u_{x x}+f$ with respect to the x variable gives

$$
\widehat{u_{t}}=k \widehat{u_{x x}}+\hat{f} \quad \Longleftrightarrow \quad \hat{u}_{t}(\xi, t)=k(i \xi)^{2} \hat{u}(\xi, t)+\hat{f}(\xi, t)=-k \xi^{2} \hat{u}(\xi, t)+\hat{f}(\xi, t)
$$

Taking the Fourier transform of the initial condition $u(x, 0)=g(x)$ gives

$$
\hat{u}(\xi, 0)=\hat{g}(\xi) .
$$

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ :

$$
\hat{u}_{t}=-k \xi^{2} \hat{u}+\hat{f}, \quad \hat{u}(\xi, 0)=\hat{g}(\xi)
$$

Applying part (i) with $x=\hat{u}, \lambda=-k \xi^{2}, F=\hat{f}, G=\hat{g}$ gives

$$
\hat{u}(\xi, t)=\hat{g}(\xi) e^{-k \xi^{2} t}+\int_{0}^{t} e^{-k \xi^{2}(t-s)} \hat{f}(\xi, s) d s
$$

Therefore

$$
\begin{equation*}
u(x, t)=\overline{\hat{g}(\xi) e^{-k \xi^{2} t}}+\int_{0}^{t} \overline{e^{-k \xi^{2}(t-s)} \hat{f}(\xi, s)} d s \tag{1}
\end{equation*}
$$

Recall that

$$
\widehat{e^{-a x^{2}}}(\xi)=\frac{1}{\sqrt{2 a}} e^{-\frac{\xi^{2}}{4 a}}
$$

Therefore

$$
e^{-k \xi^{2} t}=\sqrt{2 a} \widehat{e^{-a x^{2}}}(\xi) \quad \text { for } \quad a=\frac{1}{4 k t}
$$

Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain

$$
\begin{aligned}
\hat{g}(\xi) e^{-k \xi^{2} t} & =\sqrt{2 a} \hat{g}(\xi) \widehat{e^{-a x^{2}}}(\xi) \\
& =\sqrt{2 a} \frac{1}{\sqrt{2 \pi}} \widehat{g * e^{-a x^{2}}}(\xi) \\
& =\sqrt{\frac{a}{\pi}} \widehat{g * e^{-a x^{2}}}(\xi) \\
& =\frac{1}{\sqrt{4 \pi k t}} \widehat{g * e^{-\frac{x^{2}}{4 k t}}}(\xi)
\end{aligned}
$$

since $a=\frac{1}{4 k t}$. Therefore

$$
\begin{equation*}
\overline{\hat{g}(\xi) e^{-k \xi^{2} t}}=\frac{1}{\sqrt{4 \pi k t}} g * e^{-\frac{x^{2}}{4 k t}}=\Phi(\cdot, t) * g=\int_{-\infty}^{\infty} \Phi(x-y, t) g(y) d y \tag{2}
\end{equation*}
$$

where Φ is the fundamental solution of the heat equation in \mathbb{R}. Similarly

$$
\begin{equation*}
\overline{e^{-k \xi^{2}(t-s)} \hat{f}(\xi, s)}=\frac{1}{\sqrt{4 \pi k(t-s)}} e^{-\frac{x^{2}}{4 k(t-s)}} * f(\cdot, s)=\int_{-\infty}^{\infty} \Phi(x-y, t-s) f(y, s) d y \tag{3}
\end{equation*}
$$

Combining equations (1), (2) and (3) yields

$$
u(x, t)=\int_{-\infty}^{\infty} \Phi(x-y, t) g(y) d y+\int_{0}^{t} \int_{-\infty}^{\infty} \Phi(x-y, t-s) f(y, s) d y d s
$$

as required.
2. The Fourier transform: The transport equation.
(i) By definition

$$
\begin{aligned}
\widehat{\tau_{a} v}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tau_{a} v(x) e^{-i \xi x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} v(x-a) e^{-i \xi x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} v(y) e^{-i \xi(y+a)} d y \\
& =e^{-i \xi a} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} v(y) e^{-i \xi y} d y \\
& =e^{-i \xi a} \hat{v}(\xi)
\end{aligned}
$$

as required.
(ii) Taking the Fourier transform of the transport equation $u_{t}+c u_{x}=0$ gives

$$
\widehat{u_{t}}+c \widehat{u_{x}}=0 \quad \Longleftrightarrow \quad \hat{u}_{t}(\xi, t)+\operatorname{ci\xi } \hat{u}(\xi, t)=0
$$

and taking the Fourier transform of the initial condition $u(x, 0)=g(x)$ gives

$$
\hat{u}(\xi, 0)=\hat{g}(\xi)
$$

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ :

$$
\hat{u}_{t}=-\operatorname{ci} \xi \hat{u}, \quad \hat{u}(\xi, 0)=\hat{g}(\xi)
$$

Recall that the ODE $\dot{x}=\lambda x$ has solution $x(t)=x(0) e^{\lambda t}$. Applying this with $x=\hat{u}, \lambda=-c i \xi$ yields

$$
\begin{aligned}
\hat{u}(\xi, t) & =\hat{u}(\xi, 0) e^{-c i \xi t} \\
& =\hat{g}(\xi) e^{-c i \xi t} \\
& =\widehat{\tau_{a} g}(\xi)
\end{aligned}
$$

where $a=c t$, by part (i). By taking the inverse Fourier transform we obtain

$$
u(x, t)=\tau_{a} g(x)=g(x-a)=g(x-c t)
$$

as desired.
3. The Fourier transform: Schrödinger's equation.
(i) Taking the Fourier transform of $i u_{t}=-u_{x x}$ with respect to the x variable gives

$$
i \widehat{u_{t}}=-\widehat{u_{x x}} \quad \Longleftrightarrow \quad i \hat{u}_{t}(\xi, t)=-(i \xi)^{2} \hat{u}(\xi, t)=\xi^{2} \hat{u}(\xi, t)
$$

By multiplying by $-i$ we can rewrite this as $\hat{u}_{t}=-i \xi^{2} \hat{u}$. Taking the Fourier transform of the initial condition $u(x, 0)=g(x)$ gives

$$
\hat{u}(\xi, 0)=\hat{g}(\xi) .
$$

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ :

$$
\hat{u}_{t}=-i \xi^{2} \hat{u}, \quad \hat{u}(\xi, 0)=\hat{g}(\xi) .
$$

Recall that the ODE $\dot{x}=\lambda x$ has solution $x(t)=x(0) e^{\lambda t}$. Applying this with $x=\hat{u}, \lambda=-i \xi^{2}$ gives

$$
\begin{equation*}
\hat{u}(\xi, t)=\hat{u}(\xi, 0) e^{-i \xi^{2} t}=\hat{g}(\xi) e^{-i \xi^{2} t} . \tag{4}
\end{equation*}
$$

To obtain u we need to compute the following inverse Fourier transform:

$$
\overline{\hat{g}(\xi) e^{-i \xi^{2} t}}
$$

The trick is to recognise that $\hat{g}(\xi) e^{-i \xi^{2} t}$ is the product of Fourier transforms, which follows from the fact that the Fourier transform of a Gaussian is a Gaussian. Recall that

$$
\widehat{e^{-a x^{2}}}(\xi)=\frac{1}{\sqrt{2 a}} e^{-\frac{\xi^{2}}{4 a}}
$$

Therefore

$$
\begin{equation*}
e^{-i \xi^{2} t}=\sqrt{2 a} \widehat{e^{-a x^{2}}}(\xi) \quad \text { for } \quad a=\frac{1}{4 i t} . \tag{5}
\end{equation*}
$$

Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain

$$
\begin{aligned}
\hat{g}(\xi) e^{-k \xi^{2} t} & =\sqrt{2 a} \hat{g}(\xi) \widehat{e^{-a x^{2}}}(\xi) \\
& =\sqrt{2 a} \frac{1}{\sqrt{2 \pi}} \widehat{g * e^{-a x^{2}}}(\xi) \\
& =\sqrt{\frac{a}{\pi}} \widehat{g * e^{-a x^{2}}}(\xi)
\end{aligned}
$$

Combining this with equation (4) and taking the inverse Fourier transform gives

$$
\hat{u}(\xi, t)=\sqrt{\frac{a}{\pi}} \widehat{g * e^{-a x^{2}}}(\xi) \quad \Longleftrightarrow \quad u(x, t)=\sqrt{\frac{a}{\pi}} g * e^{-a x^{2}} .
$$

Since $a=\frac{1}{4 i t}$ and the convolution is commutative we arrive at

$$
u(x, t)=\frac{1}{\sqrt{4 \pi i t}} g * e^{-\frac{x^{2}}{4 i t}}=\frac{1}{\sqrt{4 \pi i t}} e^{\frac{i x^{2}}{4 t}} * g=\frac{1}{\sqrt{4 \pi i t}} \int_{-\infty}^{\infty} e^{\frac{i(x-y)^{2}}{4 t}} g(y) d y
$$

as required.
(ii) In part (i) we showed that

$$
\hat{u}(\xi, t)=\hat{g}(\xi) e^{-i \xi^{2} t} .
$$

Since the Fourier transform preserves the $L^{2}-$ norm,

$$
\begin{aligned}
\|u(\cdot, t)\|_{L^{2}(\mathbb{R})}^{2} & =\|\hat{u}(\cdot, t)\|_{L^{2}(\mathbb{R})}^{2} \\
& =\left\|\hat{g}(\xi) e^{-i \xi^{2} t}\right\|_{L^{2}(\mathbb{R})}^{2} \\
& =\int_{-\infty}^{\infty}\left|\hat{g}(\xi) e^{-i \xi^{2} t}\right|^{2} d \xi \\
& =\int_{-\infty}^{\infty}|\hat{g}(\xi)|^{2} d \xi \\
& =\|g\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

as required.
4. The Fourier transform: The wave equation. Use the Fourier transform to derive the solution

$$
u(x, t)=\frac{1}{2}[g(x-c t)+g(x+c t)]
$$

of the wave equation

$$
\begin{aligned}
u_{t t}=c^{2} u_{x x} & \text { for }(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=g(x) & \text { for } x \in \mathbb{R} \\
u_{t}(x, 0)=0 & \text { for } x \in \mathbb{R}
\end{aligned}
$$

where the constant $c>0$ is the wave speed. This is known as D^{\prime} 'Alembert's solution.
Hint: Use Q2(i) and the fact that $\cos (c \xi t)=[\exp (i c \xi t)+\exp (-i c \xi t)] / 2$.
Taking the Fourier transform of $u_{t t}=c^{2} u_{x x}$ with respect to the x variable gives

$$
\widehat{u_{t t}}=\widehat{c^{2} u_{x x}} \Longleftrightarrow \hat{u}_{t t}(\xi, t)=c^{2}(i \xi)^{2} \hat{u}(\xi, t)=-c^{2} \xi^{2} \hat{u}(\xi, t)
$$

Taking the Fourier transform of the initial condition $u(x, 0)=g(x)$ gives

$$
\hat{u}(\xi, 0)=\hat{g}(\xi)
$$

Taking the Fourier transform of the initial condition $u_{t}(x, 0)=0$ gives

$$
\hat{u}_{t}(\xi, 0)=0
$$

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ξ :

$$
\hat{u}_{t t}=-c^{2} \xi^{2} \hat{u}, \quad \hat{u}(\xi, 0)=\hat{g}(\xi), \quad \hat{u}_{t}(\xi, 0)=0
$$

Recall that the ODE $\ddot{x}=-\lambda^{2} x$ has solution of the form $x(t)=A \cos (\lambda t)+B \sin (\lambda t)$. Applying this with $x=\hat{u}, \lambda=c \xi$ gives

$$
\hat{u}(\xi, t)=A \cos (c \xi t)+B \sin (c \xi t)
$$

The initial conditions $\hat{u}(\xi, 0)=\hat{g}(\xi), \hat{u}_{t}(\xi, 0)=0$ imply that $A=\hat{g}(\xi)$ and $B=0$. Therefore

$$
\begin{aligned}
\hat{u}(\xi, t) & =\hat{g}(\xi) \cos (c \xi t) \\
& =\hat{g}(\xi)\left[\frac{\exp (i c \xi t)+\exp (-i c \xi t)}{2}\right] \\
& =\frac{1}{2} \exp (i c \xi t) \hat{g}(\xi)+\frac{1}{2} \exp (-i c \xi t) \hat{g}(\xi) \\
& =\frac{1}{2} \widehat{\tau_{-a} g}(\xi)+\frac{1}{2} \widehat{\tau_{a} g}(\xi)
\end{aligned}
$$

where $a=c t$, by Q2(i). Taking the inverse Fourier transform gives

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \tau_{-a} g(x)+\frac{1}{2} \tau_{a} g(x) \\
& =\frac{1}{2} g(x+a)+\frac{1}{2} g(x-a) \\
& =\frac{1}{2}[g(x+c t)+g(x-c t)]
\end{aligned}
$$

as required.
5. The Fourier transform of a derivative. By definition

$$
\begin{aligned}
\widehat{u^{\prime}}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{\prime}(x) e^{-i \xi x} d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x) \frac{d}{d x} e^{-i \xi x} d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x)(-i \xi) e^{-i \xi x} d x \\
& =i \xi \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x) e^{-i \xi x} d x \\
& =i \xi \hat{u}(\xi)
\end{aligned}
$$

as required.
6. The Fourier transform of a convolution. By definition

$$
\begin{aligned}
\widehat{u * v}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(u * v)(x) e^{-i \xi x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} u(z) v(x-z) d z\right) e^{-i \xi x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} u(z) v(x-z) d z\right) e^{-i \xi z} e^{-i \xi(x-z)} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} v(x-z) e^{-i \xi(x-z)} d x\right) u(z) e^{-i \xi z} d z \\
& =\int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} v(\tilde{x}) e^{-i \xi \tilde{x}} d \tilde{x}\right) u(z) e^{-i \xi z} d z \quad \quad(\tilde{x}=x-z) \\
& =\int_{-\infty}^{\infty} \hat{v}(\xi) u(z) e^{-i \xi z} d z \\
& =\sqrt{2 \pi} \hat{v}(\xi) \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(z) e^{-i \xi z} d z \\
& =\sqrt{2 \pi} \hat{v}(\xi) \hat{u}(\xi)
\end{aligned}
$$

as desired.
7. Proof of the Sobolev embedding using the Fourier transform.
(i) Since the Fourier transform preserves the L^{2}-norm

$$
\begin{aligned}
\|u\|_{H^{1}(\mathbb{R})}^{2} & =\|u\|_{L^{2}(\mathbb{R})}^{2}+\left\|u^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2} \\
& =\|\hat{u}\|_{L^{2}(\mathbb{R})}^{2}+\left\|\widehat{u^{\prime}}\right\|_{L^{2}(\mathbb{R})}^{2} \\
& =\|\hat{u}\|_{L^{2}(\mathbb{R})}^{2}+\|i \xi \hat{u}\|_{L^{2}(\mathbb{R})}^{2} \\
& =\int_{-\infty}^{\infty}|\hat{u}(\xi)|^{2} d \xi+\int_{-\infty}^{\infty}|i \xi \hat{u}(\xi)|^{2} d \xi \\
& =\int_{-\infty}^{\infty}\left(1+|\xi|^{2}\right)|\hat{u}(\xi)|^{2} d \xi .
\end{aligned}
$$

as required.
(ii) Following the hint

$$
\begin{aligned}
\|\hat{u}\|_{L^{1}(\mathbb{R})} & =\int_{-\infty}^{\infty}|\hat{u}(\xi)| d \xi \\
& =\int_{-\infty}^{\infty} \frac{1}{\left(1+|\xi|^{2}\right)^{1 / 2}}\left(1+|\xi|^{2}\right)^{1 / 2}|\hat{u}(\xi)| d \xi \\
& \leq\left(\int_{-\infty}^{\infty} \frac{1}{\left(1+|\xi|^{2}\right)} d \xi\right)^{1 / 2}\left(\int_{-\infty}^{\infty}\left(1+|\xi|^{2}\right)|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2} \quad \text { (Cauchy-Schwarz) } \\
& =\left(\int_{-\infty}^{\infty} \frac{1}{\left(1+|\xi|^{2}\right)} d \xi\right)^{1 / 2}\|u\|_{H^{1}(\mathbb{R})} \\
& =C\|u\|_{H^{1}(\mathbb{R})}
\end{aligned}
$$

where

$$
C=\left(\int_{-\infty}^{\infty} \frac{1}{\left(1+|\xi|^{2}\right)} d \xi\right)^{1 / 2}
$$

If we can show that C is finite, then we've completed the proof. This is a simple calculus exercise; one way is as follows:

$$
\begin{aligned}
C^{2} & =2 \int_{0}^{\infty} \frac{1}{\left(1+\xi^{2}\right)} d \xi \\
& =\int_{0}^{1} \frac{1}{\left(1+\xi^{2}\right)} d \xi+\int_{1}^{\infty} \frac{1}{\left(1+\xi^{2}\right)} d \xi \\
& \leq \int_{0}^{1} \frac{1}{(1+0)} d \xi+\int_{1}^{\infty} \frac{1}{\xi^{2}} d \xi \\
& =1+1 \\
& =2<\infty
\end{aligned}
$$

as required.
(iii) By the Fourier Inversion Theorem

$$
\begin{aligned}
|u(x)| & =\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{u}(\xi) e^{i \xi x} d \xi\right| \\
& \leq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|\hat{u}(\xi)|\left|e^{i \xi x}\right| d \xi \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|\hat{u}(\xi)| d \xi \\
& =\frac{1}{\sqrt{2 \pi}}\|\hat{u}\|_{L^{1}(\mathbb{R})} \\
& \leq \frac{C}{\sqrt{2 \pi}}\|u\|_{H^{1}(\mathbb{R})}
\end{aligned}
$$

by part (ii). Since this holds for all $x \in \mathbb{R}$,

$$
\|u\|_{L^{\infty}(\mathbb{R})} \leq \frac{C}{\sqrt{2 \pi}}\|u\|_{H^{1}(\mathbb{R})}
$$

as required.
8. Fundamental Solution of the Heat Equation. We compute

$$
\begin{aligned}
& \Phi_{t}(\boldsymbol{x}, t)=\frac{1}{(4 \pi k)^{\frac{n}{2}}} e^{-\frac{|\boldsymbol{x}|^{2}}{4 k t}}\left(-\frac{n}{2} t^{-\frac{n}{2}-1}+\frac{|\boldsymbol{x}|^{2}}{4 k t^{2}}\right) \\
& \frac{\partial \Phi}{\partial x_{i}}(\boldsymbol{x}, t)=\frac{1}{(4 \pi k t)^{\frac{n}{2}}} e^{-\frac{|\boldsymbol{x}|^{2}}{4 k t}}\left(-\frac{2 x_{i}}{4 k t}\right), \\
& \frac{\partial^{2} \Phi}{\partial x_{i}^{2}}(\boldsymbol{x}, t)=\frac{1}{(4 \pi k t)^{\frac{n}{2}}} e^{-\frac{|\boldsymbol{x}|^{2}}{4 k t}}\left(-\frac{2}{4 k t}+\left(\frac{2 x_{i}}{4 k t}\right)^{2}\right)=\frac{1}{(4 \pi k t)^{\frac{n}{2}}} e^{-\frac{|\boldsymbol{x}|^{2}}{4 k t}}\left(-\frac{1}{2 k t}+\frac{x_{i}^{2}}{4 k^{2} t^{2}}\right), \\
& \Delta \Phi(\boldsymbol{x}, t)=\sum_{i=1}^{n} \frac{\partial^{2} \Phi}{\partial x_{i}^{2}}(\boldsymbol{x}, t)=\frac{1}{(4 \pi k t)^{\frac{n}{2}}} e^{-\frac{|\boldsymbol{x}|^{2}}{4 k t}}\left(-\frac{n}{2 k t}+\frac{|\boldsymbol{x}|^{2}}{4 k^{2} t^{2}}\right) .
\end{aligned}
$$

Therefore Φ satisfies $\Phi_{t}(\boldsymbol{x}, t)=k \Delta \Phi(\boldsymbol{x}, t)$ for all $\boldsymbol{x} \in \mathbb{R}^{n}, t>0$, as required.
9. Finite speed of propagation for a degenerate diffusion equation.
(i) Observe that

$$
\frac{1}{2}\left(\frac{3}{k \pi t}\right)^{\frac{1}{3}}-\frac{1}{6 k} \frac{x^{2}}{t}=0 \quad \Longleftrightarrow \quad|x|=3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}
$$

and so

$$
\Phi(x, t)=\left\{\begin{array}{cl}
\frac{1}{2}\left(\frac{3}{k \pi t}\right)^{\frac{1}{3}}-\frac{1}{6 k} \frac{x^{2}}{t} & \text { if }|x|<3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}} \\
0 & \text { if }|x| \geq 3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}
\end{array}\right.
$$

Clearly Φ satisfies the degenerate diffusion equation for $|x|>3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}$. For $|x|<3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}$,

$$
\begin{aligned}
& \Phi_{t}(x, t)=\frac{1}{6}\left(\frac{3}{k \pi t}\right)^{-\frac{2}{3}}\left(-\frac{3}{k \pi t^{2}}\right)+\frac{x^{2}}{6 k t^{2}}=-\frac{1}{6 t}\left(\frac{3}{k \pi t}\right)^{\frac{1}{3}}+\frac{x^{2}}{6 k t^{2}} \\
& \Phi_{x}(x, t)=-\frac{x}{3 k t}
\end{aligned}
$$

$$
\begin{aligned}
\left(a(\Phi) \Phi_{x}\right)(x, t) & =-\frac{x}{6 t}\left(\frac{3}{k \pi t}\right)^{\frac{1}{3}}+\frac{x^{3}}{18 k t^{2}} \\
\left(a(\Phi) \Phi_{x}\right)_{x}(x, t) & =-\frac{1}{6 t}\left(\frac{3}{k \pi t}\right)^{\frac{1}{3}}+\frac{x^{2}}{6 k t^{2}}
\end{aligned}
$$

Therefore Φ satisfies the degenerate diffusion equation for all $t>0$ and all $x \in \mathbb{R}$ with $|x| \neq$ $3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}$.
(ii) For fixed $t>0, \Phi(x, t)$ is the maximum of a concave quadratic function and the zero function. The support of the map $x \mapsto \Phi(x, t)$ is the compact interval

$$
\left[-3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}, 3^{\frac{2}{3}} k^{\frac{1}{3}} \pi^{-\frac{1}{6}} t^{\frac{1}{3}}\right] .
$$

10. The mathematical equation that caused the banks to crash. Let $t(x, \tau)$ satisfy

$$
\tau=T-t(x, \tau)
$$

Differentiating this expression with respect to τ and x gives

$$
t_{\tau}=-1, \quad t_{x}=0
$$

Let $S(x, \tau)$ satisfy

$$
\begin{equation*}
x=\ln \left(\frac{S(x, \tau)}{K}\right)+\left(r-\frac{1}{2} \sigma^{2}\right) \tau . \tag{6}
\end{equation*}
$$

Differentiating this expressions with respect to τ gives

$$
0=\frac{K}{S} \frac{S_{\tau}}{K}+r-\frac{1}{2} \sigma^{2} \quad \Longleftrightarrow \quad S_{\tau}=\left(\frac{1}{2} \sigma^{2}-r\right) S
$$

Differentiating equation (6) with respect to x gives

$$
1=\frac{K}{S} \frac{S_{x}}{K} \quad \Longleftrightarrow \quad S_{x}=S
$$

Therefore

$$
\begin{aligned}
u_{\tau} & =C e^{r \tau}\left[r V+V_{S} S_{\tau}+V_{t} t_{\tau}\right]=C e^{r \tau}\left[r V+\left(\frac{1}{2} \sigma^{2}-r\right) S V_{s}-V_{t}\right], \\
u_{x} & =C e^{r \tau}\left[V_{S} S_{x}+V_{t} t_{x}\right]=C e^{r \tau} S V_{S}, \\
u_{x x} & =C e^{r \tau}\left[S_{x} V_{S}+S V_{S S} S_{x}\right]=C e^{r \tau}\left[S V_{S}+S^{2} V_{S S}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u_{\tau}-\frac{1}{2} \sigma^{2} u_{x x} & =C e^{r \tau}\left[r V+\left(\frac{1}{2} \sigma^{2}-r\right) S V_{s}-V_{t}-\frac{1}{2} \sigma^{2}\left(S V_{S}+S^{2} V_{S S}\right)\right] \\
& =-C e^{r \tau}\left[V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V\right] \\
& =0
\end{aligned}
$$

since V satisfies the Black-Scholes PDE. This completes the proof.
11. The energy method: Uniqueness for the heat equation in a time dependent domain. Let u and v be solutions and let $w=u-v$. Then w satisfies

$$
\begin{aligned}
w_{t}-k w_{x x}=0 & \text { for }(x, t) \in U \\
w(a(t), t)=0 & \text { for } t \in[0, T] \\
w(b(t), t)=0 & \text { for } t \in[0, T] \\
w(x, 0)=0 & \text { for } x \in(a(0), b(0)) .
\end{aligned}
$$

Multiply the equation $w_{t}=k w_{x x}$ by w and integrate over $(a(t), b(t))$ to obtain

$$
\begin{equation*}
\int_{a(t)}^{b(t)} w w_{t} d x=k \int_{a(t)}^{b(t)} w w_{x x} d x \tag{7}
\end{equation*}
$$

Recall the Fundamental Theorem of Calculus:

$$
\frac{d}{d t} \int_{a(t)}^{b(t)} f(x, t) d x=\int_{a(t)}^{b(t)} f_{t}(x, t) d x+\dot{b}(t) f(b(t), t)-\dot{a}(t) f(a(t), t)
$$

We can use this to rewrite the left-hand side of equation (7) as follows:

$$
\begin{align*}
\int_{a(t)}^{b(t)} w w_{t} d x & =\frac{d}{d t} \frac{1}{2} \int_{a(t)}^{b(t)} w^{2}(x, t) d x-\frac{1}{2} \dot{b}(t) w^{2}(b(t), t)+\frac{1}{2} \dot{a}(t) w^{2}(a(t), t) \\
& =\frac{d}{d t} \frac{1}{2} \int_{a(t)}^{b(t)} w^{2}(x, t) d x \tag{8}
\end{align*}
$$

since $w(a(t), t)=w(b(t), t)=0$. We rewrite the right-hand side of equation (7) using integration by parts:

$$
\begin{equation*}
k \int_{a(t)}^{b(t)} w w_{x x} d x=\left.k w w_{x}\right|_{a(t)} ^{b(t)}-k \int_{a(t)}^{b(t)} w_{x}^{2} d x=-k \int_{a(t)}^{b(t)} w_{x}^{2} d x, \tag{9}
\end{equation*}
$$

again using the fact that $w(a(t), t)=w(b(t), t)=0$. Substituting (8) and (9) into (7) gives

$$
\frac{d}{d t} \frac{1}{2} \int_{a(t)}^{b(t)} w^{2}(x, t) d x=-k \int_{a(t)}^{b(t)} w_{x}^{2} d x \leq 0
$$

Let

$$
E(t)=\frac{1}{2} \int_{a(t)}^{b(t)} w^{2}(x, t) d x
$$

We have shown that $\dot{E}(t) \leq 0$. Hence

$$
0 \leq E(t) \leq E(0)=0
$$

since $w=0$ for $t=0$. Consequently $E(t)=0$ for all t. Therefore $w=0$ in U and so $u=v$, as required.
12. The energy method: Uniqueness for a 4th-order heat equation. Let u and v be solutions and let $w=u-v$. Then w satisfies

$$
\begin{align*}
w_{t}+k w_{x x x x}=0 & \text { for }(x, t) \in(a, b) \times(0, T], \tag{10}\\
w(a, t)=w(b, t)=0 & \text { for } t \in[0, T], \tag{11}\\
w_{x}(a, t)=w_{x}(b, t)=0 & \text { for } t \in[0, T], \tag{12}\\
w(x, 0)=0 & \text { for } x \in(a, b) . \tag{13}
\end{align*}
$$

Multiplying the equation $w_{t}=-k w_{x x x x}$ by w and integrating over (a, b) gives

$$
\begin{align*}
\int_{a}^{b} \underbrace{w w_{t}}_{\frac{1}{2} \frac{\partial}{\partial t} w^{2}} d x & =-k \int_{a}^{b} w w_{x x x x} d x \\
& =-\left.k w w_{x x x}\right|_{a} ^{b}+k \int_{a}^{b} w_{x} w_{x x x} d x \\
& =k \int_{a}^{b} w_{x} w_{x x x} d x \tag{11}\\
& =\left.k w_{x} w_{x x}\right|_{a} ^{b}-k \int_{a}^{b} w_{x x} w_{x x} d x \\
& =-k \int_{a}^{b} w_{x x}^{2} d x \tag{12}
\end{align*}
$$

Therefore

$$
\frac{d}{d t} \frac{1}{2} \int_{a}^{b} w^{2} d x=-k \int_{a}^{b} w_{x x}^{2} d x \leq 0
$$

and so

$$
0 \leq \int_{a}^{b} w^{2}(x, t) d x \leq \int_{a}^{b} w^{2}(x, 0) d x=0
$$

by (13). We conclude that $w=0$ and hence $u=v$, as required.
We consider $u_{t}+k u_{x x x x}=0$ to be the 4th-order version of the heat equation $u_{t}-k u_{x x}=0$ since it has the same energy-decay property:

$$
\frac{d}{d t}\|u\|_{L^{2}([a, b])}^{2} \leq 0
$$

(provided that u and u_{x} vanish at $x=a$ and $x=b$). The equation $u_{t}-k u_{x x x x}=0$ looks more similar to the heat equation $u_{t}-k u_{x x}=0$ (because of the minus sign), but its L^{2}-energy grows with time:

$$
\frac{d}{d t}\|u\|_{L^{2}([a, b])}^{2} \geq 0
$$

13. Asymptotic behaviour of the heat equation with time independent data. Let $w(\boldsymbol{x}, t)=u(\boldsymbol{x}, t)-v(\boldsymbol{x})$. We need to prove that $\lim _{t \rightarrow \infty}\|w\|_{L^{2}(\Omega)}=0$. By subtracting the PDEs for u and v we find that w satisfies

$$
\begin{aligned}
w_{t}(\boldsymbol{x}, t)-k \Delta w(\boldsymbol{x}, t)=0 & \text { for }(\boldsymbol{x}, t) \in \Omega \times(0, \infty) \\
w(\boldsymbol{x}, t)=0 & \text { for }(\boldsymbol{x}, t) \in \partial \Omega \times[0, \infty), \\
w(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x})-v(\boldsymbol{x}) & \text { for } \boldsymbol{x} \in \Omega
\end{aligned}
$$

Multiplying the equation $w_{t}=k \Delta w$ by w and integrating by parts over Ω gives

$$
\begin{align*}
\int_{\Omega} w w_{t} d \boldsymbol{x}=k \int_{\Omega} w \Delta w d \boldsymbol{x} & \Longleftrightarrow \frac{d}{d t} \frac{1}{2} \int_{\Omega} w^{2} d \boldsymbol{x}=k \int_{\partial \Omega} w \nabla w \cdot \boldsymbol{n} d S-k \int_{\Omega} \nabla w \cdot \nabla w d \boldsymbol{x} \\
& \Longleftrightarrow \frac{d}{d t} \frac{1}{2} \int_{\Omega} w^{2} d \boldsymbol{x}=-k \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x} \tag{14}
\end{align*}
$$

since $w=0$ on $\partial \Omega$. By the Poincaré inequality, there exists a constant $C_{p}>0$ such that

$$
\int_{\Omega}|w|^{2} d \boldsymbol{x} \leq C_{p} \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x}
$$

Multiplying this by $-k / C_{p}$ gives

$$
\begin{equation*}
-\frac{k}{C_{p}} \int_{\Omega}|w|^{2} d \boldsymbol{x} \geq-k \int_{\Omega}|\nabla w|^{2} d \boldsymbol{x} \tag{15}
\end{equation*}
$$

Combining equations (14), (15) yields

$$
\frac{d}{d t} \frac{1}{2} \int_{\Omega} w^{2} d \boldsymbol{x} \leq-\frac{k}{C_{p}} \int_{\Omega}|w|^{2} d \boldsymbol{x}
$$

Define

$$
E(t)=\int_{\Omega} w^{2}(\boldsymbol{x}, t) d \boldsymbol{x}=\|w\|_{L^{2}(\Omega)}^{2}
$$

and $\lambda=\frac{2 k}{C_{p}}$. We have shown that

$$
\dot{E} \leq-\lambda E .
$$

By the Gr̈onwall inequality,

$$
E(t) \leq e^{-\lambda t} E(0)
$$

Since $\lambda>0$, we conclude that $E(t) \rightarrow 0$ as $t \rightarrow \infty$. Therefore $w \rightarrow 0$ in $L^{2}(\Omega)$ as $t \rightarrow \infty$, as required.
14. Asymptotic behaviour of the heat equation with time independent data in the $L^{\infty}{ }^{-}$norm.
(i) By linearity, w satisfies

$$
\begin{aligned}
w_{t}(x, t)-k w_{x x}(x, t)=0 & \text { for }(x, t) \in(a, b) \times(0, \infty), \\
w(x, 0)=u_{0}(x)-v(x) & \text { for } x \in(a, b), \\
w(a, t)=w(b, t)=0 & \text { for } t \in[0, \infty) .
\end{aligned}
$$

Multiplying the PDE by w and integrating over $[a, b]$ gives

$$
\int_{a}^{b} w w_{t} d x=k \int_{a}^{b} w w_{x x} d x \Longleftrightarrow \frac{d}{d t} \frac{1}{2} \int_{a}^{b} w^{2} d x=\underbrace{\left.k w w_{x}\right|_{a} ^{b}}_{=0}-k \int_{a}^{b} w_{x}^{2} d x
$$

where we have used the Chain Rule and integration by parts. Note that the boundary terms vanish when we perform integration by parts since $w(a, t)=w(b, t)=0$. Therefore

$$
\frac{d}{d t} \int_{a}^{b} w^{2}(x, t) d x=-2 k \int_{a}^{b} w_{x}^{2}(x, t) d x
$$

as required.
(ii) We can write the result of part (i) in terms of $L^{2}-$ norms as

$$
\begin{equation*}
\frac{d}{d t}\|w\|_{L^{2}([a, b])}^{2}=-2 k\left\|w_{x}\right\|_{L^{2}([a, b])}^{2} \tag{16}
\end{equation*}
$$

By the Poincaré inequality, there exists a constant $C>0$ such that

$$
\begin{equation*}
\|w\|_{L^{2}([a, b])}^{2} \leq C\left\|w_{x}\right\|_{L^{2}([a, b])}^{2} \tag{17}
\end{equation*}
$$

Combining equations (16), (17) gives

$$
\begin{equation*}
\frac{d}{d t}\|w\|_{L^{2}([a, b])}^{2}=-2 k\left\|w_{x}\right\|_{L^{2}([a, b])}^{2} \leq-\frac{2 k}{C}\|w\|_{L^{2}([a, b])}^{2} \tag{18}
\end{equation*}
$$

Define

$$
E(t)=\|w\|_{L^{2}([a, b])}^{2} .
$$

We can rewrite equation (18) as

$$
\dot{E} \leq-\lambda E
$$

with $\lambda=2 k / C>0$. By the Grönwall inequality,

$$
E(t) \leq E(0) e^{-\lambda t} \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

Therefore, by definition of $E, w \rightarrow 0$ in $L^{2}([a, b])$ as $t \rightarrow \infty$, as required.
(iii) By differentiating the PDE for w with respect to t we obtain

$$
\begin{aligned}
w_{t t}(x, t)-k w_{t x x}(x, t)=0 & \text { for }(x, t) \in(a, b) \times(0, \infty), \\
w_{t}(a, t)=w_{t}(b, t)=0 & \text { for } t \in[0, \infty) .
\end{aligned}
$$

In particular, w_{t} satisfies the heat equation with Dirichlet boundary conditions, just like w. Therefore the argument we applied in parts (i) and (ii) to w can also be applied to w_{t}, which yields $w_{t} \rightarrow 0$ in $L^{2}([a, b])$ as $t \rightarrow \infty$.
(iv) We have

$$
\begin{align*}
\left\|w_{x}\right\|_{L^{2}([a, b])}^{2} & =\int_{a}^{b} w_{x}^{2}(x, t) d x \\
& =-\frac{1}{2 k} \frac{d}{d t} \int_{a}^{b} w^{2}(x, t) d x \tag{i}\\
& =-\frac{1}{k} \int_{a}^{b} w(x, t) w_{t}(x, t) d x \\
& \leq \frac{1}{k}\left(\int_{a}^{b} w^{2}(x, t) d x\right)^{1 / 2}\left(\int_{a}^{b} w_{t}^{2}(x, t) d x\right)^{1 / 2} \quad \text { (by part (i)) } \\
& =\frac{1}{k}\|w\|_{L^{2}([a, b])}\left\|w_{t}\right\|_{L^{2}([a, b])} \rightarrow 0 \quad \text { as } t \rightarrow \infty
\end{align*} \quad \text { (Cauchy-Schwarz) } \quad \text {) }
$$

by parts (ii) and (iii). Therefore $w_{x} \rightarrow 0$ in $L^{2}([a, b])$ as $t \rightarrow \infty$, as required. Note that we don't really need $w_{t} \rightarrow 0$ in $L^{2}([a, b])$ as $t \rightarrow \infty$, we just need $\left\|w_{t}\right\|_{L^{2}([a, b])}$ to be uniformly bounded in t.
(v) This final result follows from the Sobolev inequality: There exists a constant $C>0$ such that

$$
\|w\|_{L^{\infty}([a, b])} \leq C\|w\|_{H^{1}([a, b])}=C\left(\|w\|_{L^{2}([a, b])}+\left\|w_{x}\right\|_{L^{2}([a, b])}\right)^{1 / 2} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

by parts (ii) and (iv).
15. Applications of the maximum principle: Uniqueness and bounds on solutions.
(i) Let $\Gamma_{T}=[a, b] \times\{0\} \cup\{a, b\} \times[0, T]$ be the parabolic boundary of Ω_{T}. Let $u, v \in C_{1}^{2}\left(\Omega_{T}\right) \cap C\left(\bar{\Omega}_{T}\right)$ satisfy

$$
\begin{aligned}
u_{t}-u_{x x}=1 & \text { in } \Omega_{T}, \\
u=0 & \text { in } \Gamma_{T} .
\end{aligned}
$$

Then $w=u-v \in C_{1}^{2}\left(\Omega_{T}\right) \cap C\left(\bar{\Omega}_{T}\right)$ satisfies

$$
\begin{aligned}
w_{t}-w_{x x}=0 & \text { in } \Omega_{T}, \\
w=0 & \text { in } \Gamma_{T} .
\end{aligned}
$$

By the weak maximum principle

$$
\max _{\bar{\Omega}_{T}} w=\max _{\Gamma_{T}} w=0, \quad \min _{\bar{\Omega}_{T}} w=\min _{\Gamma_{T}} w=0
$$

Therefore $w=0$ and $u=v$, as required.
(ii) Since $u_{t}-u_{x x}=1>0$, the weak maximum principle gives

$$
\min _{\bar{\Omega}_{T}} u=\min _{\Gamma_{T}} u=0
$$

This is the desired lower bound on u. We still need to prove the upper bound. Let $v(x, t)=t$. Then $v_{t}-v_{x x}=1$ and $w=u-v$ satisfies

$$
\begin{aligned}
w_{t}-w_{x x}=0 & \text { in } \Omega_{T} \\
w=-t & \text { in } \Gamma_{T}
\end{aligned}
$$

By the weak maximum principle

$$
\max _{\bar{\Omega}_{T}} w=\max _{\Gamma_{T}} w=\max _{\Gamma_{T}}(-t)=0
$$

Therefore $w \leq 0$ in Ω_{T} and hence $u \leq v=t$ in Ω_{T}, which is the desired upper bound.
16. Application of the maximum principle: Comparison Principle. Define $v=u_{1}-u_{2}$. Then v satisfies

$$
\begin{aligned}
\frac{\partial v}{\partial t}(\boldsymbol{x}, t)-k \Delta v(\boldsymbol{x}, t) & =f_{1}(\boldsymbol{x})-f_{2}(\boldsymbol{x}) & & \text { for }(\boldsymbol{x}, t) \in \Omega \times(0, T] \\
v(\boldsymbol{x}, t) & =g_{1}(\boldsymbol{x})-g_{2}(\boldsymbol{x}) & & \text { for }(\boldsymbol{x}, t) \in \partial \Omega \times[0, T] \\
v(\boldsymbol{x}, 0) & =u_{1}^{0}(\boldsymbol{x})-u_{2}^{0}(\boldsymbol{x}) & & \text { for } \boldsymbol{x} \in \Omega
\end{aligned}
$$

Since $f_{1} \leq f_{2}$, then

$$
v_{t}-k \Delta v=f_{1}-f_{2} \leq 0 \quad \text { in } \Omega_{T}
$$

Therefore the weak maximum principle implies that

$$
\max _{\overline{\Omega_{T}}} v=\max _{\Gamma_{T}} v
$$

For $(\boldsymbol{x}, t) \in \Gamma_{T}$,

$$
v(\boldsymbol{x}, t)= \begin{cases}g_{1}(\boldsymbol{x})-g_{2}(\boldsymbol{x}) & \text { if }(\boldsymbol{x}, t) \in \partial \Omega \times[0, T] \\ u_{1}^{0}(\boldsymbol{x})-u_{2}^{0}(\boldsymbol{x}) & \text { if } t=0, \boldsymbol{x} \in \Omega\end{cases}
$$

But

$$
g_{1}-g_{2} \leq 0, \quad u_{1}^{0}-u_{2}^{0} \leq 0
$$

Therefore $v \leq 0$ on Γ_{T} and hence

$$
\max _{\Omega_{T}} v=\max _{\Gamma_{T}} v \leq 0
$$

Hence $v \leq 0$ in Ω_{T} and so $u_{1} \leq u_{2}$ in Ω_{T}, as required.
17. Eigenfunctions of the Laplacian and an application to the heat equation. Formally (not worrying about interchanging limits and infinite sums),

$$
\begin{aligned}
0 & =v_{t}-k \Delta v \\
& =\sum_{n=1}^{\infty} \dot{c}_{n}(t) u_{n}(\boldsymbol{x})-k \sum_{n=1}^{\infty} c_{n}(t) \Delta u_{n}(\boldsymbol{x}) \\
& =\sum_{n=1}^{\infty} \dot{c}_{n}(t) u_{n}(\boldsymbol{x})+k \sum_{n=1}^{\infty} c_{n}(t) \lambda_{n} u_{n}(\boldsymbol{x}) \\
& =\sum_{n=1}^{\infty}\left(\dot{c}_{n}(t)+k \lambda_{n} c_{n}(t)\right) u_{n}(\boldsymbol{x})
\end{aligned}
$$

Since $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ forms an orthogonal basis, it follows that

$$
\dot{c}_{n}(t)+k \lambda_{n} c_{n}(t)=0
$$

for all n. We also have

$$
v(\boldsymbol{x}, 0)=g(\boldsymbol{x}) \Longleftrightarrow \sum_{n=1}^{\infty} c_{n}(0) u_{n}(\boldsymbol{x})=\sum_{n=1}^{\infty} g_{n} u_{n}(\boldsymbol{x}) \Longleftrightarrow \sum_{n=1}^{\infty}\left(c_{n}(0)-g_{n}\right) u_{n}(\boldsymbol{x})=0
$$

Again, since $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ forms an orthogonal basis, it follows that

$$
c_{n}(0)=g_{n}
$$

for all n. We have reduced the PDE for v to a one-parameter family of uncoupled ODEs, indexed by n :

$$
\dot{c}_{n}(t)=-k \lambda_{n} c_{n}(t), \quad c_{n}(0)=g_{n}
$$

These ODEs have solutions

$$
c_{n}(t)=g_{n} e^{-k \lambda_{n} t}
$$

Therefore

$$
v(\boldsymbol{x}, t)=\sum_{n=1}^{\infty} g_{n} e^{-k \lambda_{n} t} u_{n}(\boldsymbol{x})
$$

as required.

