Partial Differential Equations III/TV
Exercise Sheet 6: Solutions

1. The Fourier transform: The heat equation with source term.

(i) By the Fundamental Theorem of Calculus

t
i(t) = AGeM + ) P (s) + / AN F(s) ds
0

s=t
t
= \GeM + F(t) + )\/ A (s5) ds
0
= \z(t) + F(t)

as claimed.

(ii) Taking the Fourier transform of u; = kuy, + f with respect to the x variable gives

U= Kigs +f <= w(&t) = k(i&)%u(&,t) + f(&,t) = —k€2a(&, 1) + f(&,1).

Taking the Fourier transform of the initial condition u(z,0) = g(x) gives

(&, 0) = g(¢)-

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ¢&:
=~k + f, alg0) = g(9).
Applying part (i) with z = @, A = —k&2, F = f, G = g gives
t
R R (G

Therefore . G
u(w,t) = g+ [ HETfes)as
0

Recall that

) L2
() = =,
Therefore . )
_kEQ 9 —ax2 f _ =
=V2ae (&) for a s

Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain

§(&)e M = V2a §(€) e (€)

gxe " (€)




; _ 1
since a = gz7. Therefore

&5§§@:¢%mgwwi=¢mw*g:/@@—%waw@ %)

where @ is the fundamental solution of the heat equation in R. Similarly

T g 5) = Mkl(t_s)e—zmés) k F(s) = / B —yt— ) fs)dy.  (3)

Combining equations (1), (2) and (3) yields

u(:Jc,t):/Oo O(x—y,t)g dy+// O(x—y,t —s)f(y,s)dyds

—00
as required.
. The Fourier transform: The transport equation.

(i) By definition

Ta0(€ Tav( e %87 dy
“ \/27r/ ¢
(x —a) e 8T dy
\/27r/

JeEr) g (y=o-a

wm/ o)

— e—i&a / zfy dy

_ e—z{a (

as required.

(ii) Taking the Fourier transform of the transport equation u; + cu, = 0 gives
U+ cuy =0 <= (& t)+cifu(&,t) =0
and taking the Fourier transform of the initial condition u(z,0) = g(x) gives
a(&,0) = §(©).
We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ¢&:
iy = —cigt,  a(,0) = g(g).
Recall that the ODE 4 = Az has solution z(t) = 2(0)e*. Applying this with 2 = 4, A = —ci€ yields

(€, 0) = (€, 0)e

a(
(&)e
g(&)

where a = ct, by part (i). By taking the inverse Fourier transform we obtain

>QQ>

Il
N

u(z,t) = Tag(z) = g(z — a) = g(x — ct)

as desired.



3. The Fourier transform: Schrédinger’s equation.
(i) Taking the Fourier transform of iu; = —uy, with respect to the z variable gives
il = —lag == il(§,t) = —(i€)*a(¢, 1) = £ (8, 1).
By multiplying by —i we can rewrite this as 4; = —i¢24. Taking the Fourier transform of the initial
condition u(x,0) = g(z) gives
We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by &:
at = _7;52717 ﬂ(f,O) = g(f)

Recall that the ODE 4 = Az has solution x(t) = 2(0)e™. Applying this with z = @, A\ = —i&? gives

A€, t) = (€, 0)e ™ = g(&)e T (4)

To obtain u we need to compute the following inverse Fourier transform:

The trick is to recognise that g(f)e_’f% is the product of Fourier transforms, which follows from the
fact that the Fourier transform of a Gaussian is a Gaussian. Recall that

— 1 52

e—ax? = ——e¢e 4a,
€)=
Therefore o 1
e = \/2q e~a2” (&) for a= e (5)
i
Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain
§(E)e™ = Vaag(e) e (©) (by equation (5))

=V2a

1 2
=97

= \/z g*e 9 (€).

Combining this with equation (4) and taking the inverse Fourier transform gives

W6 =2 g = =y Lgne

Since a = 4%.1: and the convolution is commutative we arrive at

(2.1) 1 —%2 1 %2 1 /°° i<x;y)2 () d
u :[;’ = * € it — e 4t x = (& t
VAt g VAt g vVarmit J oo g9y

as required.

(ii) In part (i) we showed that
~ ~ — 2
(1) = g(&)e



Since the Fourier transform preserves the L% norm,

[l 172y = 14C, )72
= [9() e 32

= [ Jotee e e

-/ o) de

— 00

= l9l1Z2g)
as required.

4. The Fourier transform: The wave equation. Use the Fourier transform to derive the solution
1
u(@,t) = Slglz —ct) + g(z + ct)]
of the wave equation

Uy = g, for (z,t) € R x (0,00),
u(z,0) = g(z) for z € R,
ut(x,0) =0 for z € R,

where the constant ¢ > 0 is the wave speed. This is known as D’Alembert’s solution.
Hint: Use Q2(i) and the fact that cos(c{t) = [exp(ic{t) + exp(—ict)]/2.

Taking the Fourier transform of us = c?u,, with respect to the = variable gives

U = Pz <= (&, t) = Ai€)%(E, t) = (€, t).
Taking the Fourier transform of the initial condition u(z,0) = g(x) gives
a(€,0) = g(&).
Taking the Fourier transform of the initial condition u(z,0) = 0 gives
(€,0) = 0.

We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by &:

Uy = _02€2ﬁ7 ﬁ(Ev 0) = g(§)7 at(€70) =0.

Recall that the ODE & = —\2z has solution of the form x(t) = A cos(At) + Bsin(\t). Applying this with
T =1u, A = cf gives
(&, t) = Acos(c€t) + Bsin(ctt).

The initial conditions @(&,0) = g(§), @(&,0) = 0 imply that A = §(¢) and B = 0. Therefore

(&, t) = g(&) cos(cst)

exp(ict) 4 exp(—ict)
2

exp(ic€I(€) + 5 exp(—ic€n(€)

I
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where a = ct, by Q2(i). Taking the inverse Fourier transform gives

T_ag(z)+ ! Ta 9(2)

u(z,t) = 5

N =N =N =

as required.

5. The Fourier transform of a derivative. By definition

(&) = ors /_OO u'(z)e %% de
1 > d _,
— —i€x
= —— u(x)—e dx
V2T ) ( )dl’
1 o0

=—— u(z)(—if)e % dx

= zf\/% _Z u(z)e % da
= iga(§)

as required.

6. The Fourier transform of a convolution. By definition

8

(u*v)(z)e” &% dx

( / i u(z)v(z — 2) dz) e %% dy
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as desired.

g(:v+a)—|—%g(x—a)

[g(z + ct) + g(x — ct)]

(integration by parts)

/ u(z)v(z — 2) dz) e e (T 2) gy
/ v(z — z)e @2 dm) u(z)e” % dz



7. Proof of the Sobolev embedding using the Fourier transform.

(i) Since the Fourier transform preserves the L?-norm

||U||§{1(R) = HUH%Q(R) + HU/H%Q(R)
= H@H%?(R) + [ H%Q(R)
= ||allZ2 gy + l1i€allZ: g

= [Claerde+ [ i ae

-/ T Pl 2 de.

—0o0

as required.
(ii) Following the hint

el = / ()] de

T
- /_ A (LTI lae)ld
00 1/2 o 1/2
: </— (1+1|£|2) d§> </_ (1+ ) [a(6)? df) (Cauchy-Schwarz)
o0 1 1/2
([ atem ) e
= Cllullm(w)

where

o= ([Litem)

If we can show that C' is finite, then we’ve completed the proof. This is a simple calculus exercise;
one way is as follows:

o0 1
2 __
¢ ‘2/0 are)®

| |
_/0 (1+§2)d§+/1 (1+§2>d'E
L | |
g/o s+ [ e

as required.

(iii) By the Fourier Inversion Theorem



by part (ii). Since this holds for all z € R,

C
|l oo (m) < e ]l 1 (m)

as required.

8. Fundamental Solution of the Heat Equation. We compute
1 @ 2 n 2
Oz, t) = e T (—gtzl i )
@ 2 -
folt) = e e (20
ox; (4rkt)2 4kt

07 (arkt)® Akt \4kt) | (4rkt)? 2kt 4k*2 )7

" 02 1 _l=? n ||?
A‘I’(w,t) = ' 7($,t) = e 4kt <_2kt + 4k2t2> .

Therefore ® satisfies ®;(x,t) = kA®P(x,t) for all ® € R™, ¢t > 0, as required.
9. Finite speed of propagation for a degenerate diffusion equation.

(i) Observe that

o=

1

1 3 \3 1 22 2 1 1
— _— ———:0 P — :3’7]{;‘7 _‘tT
2 (kmt) 6k ¢ ol = 33 hksmots

and so

Wl

1
1/ 3Y\3 1a* | 2,1 1
se = 3 (i) 'y <kl

0 if 2] > 35 k5615,

=

Clearly ® satisfies the degenerate diffusion equation for |z| > 33k3n ot3. For |z] < 33k3not3,

dat) — L (3 -5 3\, o 1/3\3 L
x,t) == -— - —— =—= |7 s
B 6 \ krt krt? 6kt2 6t \ krt 6kt2’

X
q’r(x’t) = _%7



73

(@0 = (2) + 1o

.’E2

(a((p)q)x)a:(mat) = _& (k?rt) + 6kt2”

Therefore ® satisfies the degenerate diffusion equation for all ¢ > 0 and all x € R with |z| #
35ksm6t3,

(ii) For fixed ¢ > 0, ®(z,t) is the maximum of a concave quadratic function and the zero function. The
support of the map = — ®(z,t) is the compact interval

|-

ol

IN]

o=
w

=
=

[—3§k‘%7r_ 'té, 33k3 ot

.
10. The mathematical equation that caused the banks to crash. Let t(x,T) satisfy
T=T—t(x, 7).

Differentiating this expression with respect to 7 and x gives

Let S(z, ) satisfy

r=1In (S(f;)> + <r — ;&) T. (6)

Differentiating this expressions with respect to 7 gives

KS, 1, (1,
0—§f+7' 50’ <~ ST—<2O' T)S
Differentiating equation (6) with respect to x gives
K S,
1= = 8.
5z S S
Therefore
1
ur = Ce" [rV + VgS; + Vit| = Ce'™ |:’I"V + (20’2 - r> SV, — Vt] ,
uy = Ce'"" [VgSy + Vity] = Ce'™ SV,
Upy = Ce'™ [Su Vs + SVsSs] = Ce'™ [SVs + S?Vss] .
Therefore

1 1 1
Ur — §J2um = Ce'm [rv + (202 — r> SV, —V, — 502(51/3 + Szvss)}

1
=—-Ce"" [V} + 50252V55 +rSVg — TV:|
=0

since V satisfies the Black-Scholes PDE. This completes the proof.



11.

12.

The energy method: Uniqueness for the heat equation in a time dependent domain. Let u and v be
solutions and let w = v — v. Then w satisfies
wy — kwg, =0 for (z,t) € U,
w(a(t),t) =0 forte0,T],
w(b(t),t) =0 forte0,T],
w(xz,0) =0 for z € (a(0),b(0)).

Multiply the equation w; = kwg, by w and integrate over (a(t),b(t)) to obtain
b(t) b(t)
/ wwydr =k / Wy d. (7)
a(t) a(t)
Recall the Fundamental Theorem of Calculus:

a1 by = / " et e + B0 F0(),0) — o) F(a0), 0
dt Ja(r) ’ a a(t) o | -

We can use this to rewrite the left-hand side of equation (7) as follows:

b(t) 1 ro@ 1. 1
/ ww dr = d/ w?(xz,t) de — ~b(t)w?(b(t),t) + ~a(t)w?(a(t),t)
a(t) dt 2 a(t) 2 2
d1 [*®
= dtQ/Mt) w(x,t) dx (8)

since w(a(t),t) = w(b(t),t) = 0. We rewrite the right-hand side of equation (7) using integration by

parts:
b(t) b(t) b(t) b(t)
k/ WWge dT = kww, — k/ wg dx = —k:/ wg dr, (9)
a(t) a(t) a(t) a(t)

again using the fact that w(a(t),t) = w(b(t),t) = 0. Substituting (8) and (9) into (7) gives

b(t) b(t)
dl/ wz(:c,t)dﬂ::—k/ w2 dz < 0.
dt2 Jam a(t)

Let

b(t)
B(t) = 1/ w?(z, 1) da.
a(t)

We have shown that F(t) < 0. Hence
0< E(t)<EW0)=0
since w = 0 for ¢t = 0. Consequently E(t) = 0 for all t. Therefore w =0 in U and so u = v, as required.

The energy method: Uniqueness for a 4th-order heat equation. Let u and v be solutions and let w = u—w.
Then w satisfies

wy + kwggee =0 for (z,t) € (a,b) x (0,71, (10)
w(a,t) =w(b,t) =0 forte [0,T], (11)
wy(a,t) =w,(b,t) =0 fort e [0,T], (12)
w(z,0) =0 for z € (a,b). (13)



13.

Multiplying the equation w; = —kwgzz by w and integrating over (a,b) gives

b

b
wwy dr = —k/ WWaprr AT
. a

b b
= —kwwyzy +l<:/ Wy Wapr AT
b a
b b
= kW, Wy —k:/ Wy Way AT
b a
= —k/ w?, dx (by (12)).
Therefore
dl/b 2dr = k/b 2 dx <0
iz ), w’ dx = ; Wi, dr <
and so

b b
0< / w?(x,t) de < / w?(z,0) dr =0
a a

by (13). We conclude that w = 0 and hence u = v, as required.

We consider u; + ktizzze = 0 to be the 4th-order version of the heat equation u; — ku,, = 0 since it has
the same energy-decay property:

d
%HUH%Z([Q,H) <0

(provided that u and u, vanish at = a and = b). The equation u; — ktzzz, = 0 looks more similar to
the heat equation u; — kg, = 0 (because of the minus sign), but its L?-energy grows with time:

d
&HUH%Q([a,bD > 0.

Asymptotic behaviour of the heat equation with time independent data. Let w(x,t) = u(x,t) —v(x). We
need to prove that lim¢ o [|w][z2(q) = 0. By subtracting the PDEs for u and v we find that w satisfies

wy(x,t) — kAw(x,t) =0 for (x,t) € Q x (0,00),
w(x,t) =0 for (x,t) € 0N x [0, 00),
w(x,0) = ug(x) —v(x) for x e Q.

(x
(x

Multiplying the equation w; = kAw by w and integrating by parts over {2 gives

d1
/wwtdw:k/wAwdw <— /w d:c—k/ wVw-ndS—k/Vw-de:c
Q Q dt2 a0 Q
d1
= 3 /w d:c——k/ |Vw|? d (14)

since w = 0 on 092. By the Poincaré inequality, there exists a constant C}, > 0 such that

/|w\2da: < Cp/ |Vwl|? da.
Q Q



Multiplying this by —k/C) gives

— k/ lw|* de > —k:/ \Vwl|? dz. (15)
Cp Jo 0

Combining equations (14), (15) yields
dl k
/ w? dx < —/ lw|? da.
dt2 Jq Cyp Ja

B(t) = /Q W, 1) dz = ||| 2 0,

Define

and \ = %—’Z We have shown that
E < - )\E.

By the Gionwall inequality,
E(t) < e ME(0).

Since A > 0, we conclude that E(t) — 0 as t — co. Therefore w — 0 in L?(f2) as t — oo, as required.
14. Asymptotic behaviour of the heat equation with time independent data in the L°°—norm.
(i) By linearity, w satisfies

wy(x,t) — kwyy(z,t) =0 for (z,t) € (a,b) x (0,00),
w(z,0) =ug(x) —v(z) for z € (a,b),
w(a,t) =w(b,t) =0 fort e [0,00).

Multiplying the PDE by w and integrating over [a, b] gives

b b d 1 b b b
/ ww; dr = k:/ Wy dr < 72 / w?dr = kww, —k/ wg dzr
a a a N ~- a, a

where we have used the Chain Rule and integration by parts. Note that the boundary terms vanish

when we perform integration by parts since w(a,t) = w(b,t) = 0. Therefore
b b

— | w(z,t)dz = —Qk/ w?(x,t) da
dt J, a

as required.

(ii) We can write the result of part (i) in terms of L?norms as

d

3oy = ~ 2l 2 10)

By the Poincaré inequality, there exists a constant C' > 0 such that
lwlF2ap) < CllwallZa o p)- (17)
Combining equations (16), (17) gives

d 2k
%HWH%Q([a,b}) = —2klwa 20 < _EHwH%?([a,b])‘ (18)



Define
E(t) = [[w]|72(a)-

We can rewrite equation (18) as .
E < -)\E

with A = 2k/C > 0. By the Gronwall inequality,
E(t) < E(0)e ™ =0 ast— .
Therefore, by definition of E, w — 0 in L?([a,b]) as t — oo, as required.
(iii) By differentiating the PDE for w with respect to t we obtain
wy(x,t) — kwige(x,t) =0 for (x,t) € (a,b) x (0,00),
wi(a,t) = wi(b,t) =0 fort € [0,00).

In particular, w; satisfies the heat equation with Dirichlet boundary conditions, just like w. Therefore
the argument we applied in parts (i) and (ii) to w can also be applied to w;, which yields wy; — 0 in
L?([a,b]) as t — oo.

(iv) We have

b
el = [ wdtant)da

R N Y (by part (i)
= detaw x,t)dr v part (i

1 b
:_k/ w(z, )we(z,t) de

1 b 1/2 b 1/2
= k (/ w?(z,t) dm) </ wi (x,t) d:n) (Cauchy-Schwarz)
1

= 1 lwllzz (o) llwellz2agy — 0 ast =0

by parts (ii) and (iii). Therefore w, — 0 in L?([a,b]) as t — oo, as required. Note that we don’t
really need w; — 0 in L?([a,b]) as t — 0o, we just need |wel| £2([a,p)) to be uniformly bounded in .

(v) This final result follows from the Sobolev inequality: There exists a constant C' > 0 such that

1/2—>0 ast — oo

[wll Lo (a,p)) < Cllwll g (ae)y = C (lwll L2 (e + |1wall L2 (ja8))
by parts (ii) and (iv).

15. Applications of the mazimum principle: Uniqueness and bounds on solutions.

(i) Let I'r = [a,b] x {0} U {a,b} x [0, T] be the parabolic boundary of Qr. Let u,v € C(Qr) N C(Qr)
satisfy

Ut — Ugy = 1 in QT,

u=0 in Ip.
Then w = u —v € C2(Qr) N C(Qr) satisfies

Wy — Wee =0 in Qp,

w=0 1in I'p.



By the weak maximum principle
maxw = maxw = 0, minw = minw = 0.
QT FT QT 1—‘T

Therefore w = 0 and u = v, as required.
(ii) Since ut — uyy = 1 > 0, the weak maximum principle gives
minu = minwu = 0.

Qrp I'r

This is the desired lower bound on u. We still need to prove the upper bound. Let v(x,t) =¢. Then

vy — Uz — 1 and w = u — v satisfies
Wt — Wy = 0 in QT,

w=—t in FT.

By the weak maximum principle
max w = maxw = max(—t) =0
Qr I'r I'r

Therefore w < 0 in Q7 and hence u < v =t in Qp, which is the desired upper bound.
16. Application of the mazximum principle: Comparison Principle. Define v = u; — us. Then v satisfies
for (x,t) €  x (0,77,

a”(x,w — kAv(z,t) =
for (x,t) € 90 x 0,71,

ot
v(z,t) = gi1(x) — g2(x)
v(x,0) = ul(x) — ud(x) for x € Q.
Since f1 < fa, then
v —kAv = f1 — fo <0 in Q7.
Therefore the weak maximum principle implies that
max v = maxuv.
Qr I'r
For (x,t) € I'p,
o(@, ) = g1(x) — ga(x) if (x,t) € 0Q x [0,T7,
’ uf(z) —uy(x) ift=0,z €.
But
91— g2 <0, uf —ud <0

maxv = maxv < 0.

Therefore v < 0 on I'r and hence
Qr I'r

Hence v < 0 in Q7 and so u; < ug in Qp, as required.



17. Eigenfunctions of the Laplacian and an application to the heat equation. Formally (not worrying about
interchanging limits and infinite sums),

0=1wv — kAv

[ee]

= " en(tun(®) — kY cnlt) Auy(x)
n=1

n=
oo
o0

1
en(t)un (@) + kY cn(t) Anun ()
n=1 n=1
=3 (énlt) + kAncn(t)) un().
n=1

Since {up, }nen forms an orthogonal basis, it follows that
én(t) + kdnen(t) =0

for all n. We also have

oo o0 [e.e]

v(@,0) =g(x) <= D cnOun(@) = goun(z) <= > (cn(0) = gn)un(x) =0.

n=1 n=1 n=1

Again, since {u,}nen forms an orthogonal basis, it follows that
cn(0) = gn
for all n. We have reduced the PDE for v to a one-parameter family of uncoupled ODEs, indexed by n:
en(t) = —kAnen(t), cn(0) = gn.

These ODEs have solutions

en(t) = gne_k’\"t.

Therefore -
’U(:C,t) = Zgne_’d\"tun(w)
n=1

as required.



