Additional Exercise - Wave Equation Solution

Exercise. Consider the wave equation

$$
\begin{cases}u_{t t}(x, t)=c^{2} u_{x x}(x, t), & (x, t) \in(0,2 \pi) \times(0, \infty), \tag{1}\\ u(0, t)=u(2 \pi, t), & t \in(0, \infty) \\ u(x, 0)=f(x), & t \in(0,2 \pi) \\ u_{t}(x, 0)=0, & x \in(0,2 \pi),\end{cases}
$$

where f is a smooth function on $[0,2 \pi]$ with $f(0)=f(2 \pi)=0$. We will find a solution to the (1) by utilising the Fourier series (like the heat equation). We assume that we can write

$$
u(x, t)=\sum_{n \in \mathbb{Z}} a_{n}(t) e^{i n x}
$$

with

$$
a_{n}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(x, t) e^{-i n x} d x
$$

and that the convergence is such that all interchanging of differentiation and integration is allowed (this will happen, for instance, if we seek a solution that is C^{4} on the periodic domain).
(i) Show that $a_{n}(t)$ satisfies the equation

$$
a_{n}^{\prime \prime}(t)+n^{2} c^{2} a_{n}(t)=0
$$

(ii) using he boundary conditions show that

$$
a_{n}(t)=A_{n} \cos (n c t)
$$

and find an explicit expression for $\left\{A_{n}\right\}_{n \in \mathbb{Z}}$ which depends on f.
(iii) Write a solution to (1)

Solution. (i) Differentiating the sum and plugging it into our wave equation yields

$$
\sum_{n \in \mathbb{Z}} a_{n}^{\prime \prime}(t) e^{i n x}=c^{2} \sum_{n \in \mathbb{Z}} a_{n}(t)(i n)^{2} e^{i n x}
$$

The uniqueness of the Fourier coefficients implies that $a_{n}(t)$ must solve the equation

$$
a_{n}^{\prime \prime}(t)=-n^{2} c^{2} a_{n}(t),
$$

which is the desired result.
(ii) The solution to the above sequence of ODEs is given by

$$
a_{n}(t)= \begin{cases}A_{0}+B_{0} t, & \mathrm{n}=0, \\ A_{n} \cos (n c t)+B_{n} \sin (n c t), & n \neq 0\end{cases}
$$

At this point we will need to use our boundary condition for $u(x, 0)$ and $u_{t}(x, 0)$. Since

$$
u_{t}(x, t)=\sum_{n \in \mathbb{Z}} a_{n}^{\prime}(t) e^{i n x}
$$

we conclude that $u_{t}(x, 0)=0$ implies, together with the uniqueness of the Fourier coefficients, that

$$
a_{n}^{\prime}(0)=0, \quad \forall n \in \mathbb{Z}
$$

As

$$
a_{n}^{\prime}(t)=\left\{\begin{array}{ll}
B_{0}, & \mathrm{n}=0 \\
-n c A_{n} \sin (n c t)+n c B_{n} \cos (n c t), & n \neq 0
\end{array} .\right.
$$

we find that $B_{n}=0$ for all $n \in \mathbb{Z}$. Thus, we have that

$$
a_{n}(t)=\left\{\begin{array}{ll}
A_{0}, & n=0, \\
A_{n} \cos (n c t), & n \neq 0 .
\end{array}=A_{n} \cos (n c t) .\right.
$$

Using the fact that $u(x, 0)=f(x)$ we find that

$$
\sum_{n \in \mathbb{Z}} a_{n}(0) e^{i n x}=u(x, 0)=f(x)=\sum_{n \in \mathbb{Z}} \widehat{f}_{n} e^{i n x}
$$

and, like before, the uniqueness of the Fourier coefficients imply that

$$
A_{n}=a_{n}(0)=\widehat{f}_{n}, \quad \forall n \in \mathbb{Z} .
$$

(iii) Combining the previous results we conclude that our solution is given by

$$
u(x, t)=\sum_{n \in \mathbb{Z}} \widehat{f}_{n} \cos (n c t) e^{i n x}
$$

