Problem Class 1

Problem 1: For

$$
\begin{equation*}
\Lambda_{1 / 2}=\exp \left(S^{\mu \nu} \theta_{\mu \nu}\right) \tag{0.1}
\end{equation*}
$$

and show that $\Lambda_{1 / 2}^{\dagger} \neq \Lambda_{1 / 2}^{-1}$.
solution: This is equivalent to $\left(S^{\mu \nu} \theta_{\mu \nu}\right)^{\dagger}=-S^{\mu \nu} \theta_{\mu \nu}$. Note that using $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=$ $2 \eta^{\mu \nu} \mathbb{1}$ implies that whenever $\mu \neq \nu$:

$$
\begin{equation*}
S^{\mu \nu}=\frac{1}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]=\frac{1}{4}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)=\frac{1}{4}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\mu} \gamma^{\nu}\right)=\frac{1}{2} \gamma^{\mu} \gamma^{\nu} . \tag{0.2}
\end{equation*}
$$

Furthermore, the concrete way in which we have been writing the Dirac matrices,

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2 \times 2} \tag{0.3}\\
-\mathbb{1}_{2 \times 2} & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right) \quad i=1,2,3
$$

shows that $\left(\gamma^{0}\right)^{\dagger}=-\gamma^{0}$ and $\left(\gamma^{i}\right)^{\dagger}=\gamma^{i}$. Now let's go: Letting $i, j=1,2,3$, we can work this out as

$$
\begin{align*}
& \left(S^{0 i}\right)^{\dagger}=\frac{1}{2}\left(\gamma^{0} \gamma^{i}\right)^{\dagger}=\frac{1}{2}\left(\gamma^{i}\right)^{\dagger}\left(\gamma^{0}\right)^{\dagger}=-\frac{1}{2}\left(\gamma^{i}\right)\left(\gamma^{0}\right)=S^{0 i} \\
& \left(S^{i j}\right)^{\dagger}=\frac{1}{2}\left(\gamma^{i} \gamma^{j}\right)^{\dagger}=\frac{1}{2}\left(\gamma^{j}\right)^{\dagger}\left(\gamma^{i}\right)^{\dagger}=\frac{1}{2}\left(\gamma^{j}\right)\left(\gamma^{i}\right)=-S^{i j} . \tag{0.4}
\end{align*}
$$

Hence for a general choice of the real numbers $\theta_{\mu \nu}$ we have

$$
\begin{equation*}
\left(S^{\mu \nu} \theta_{\mu \nu}\right)^{\dagger} \neq-S^{\mu \nu} \theta_{\mu \nu} \tag{0.5}
\end{equation*}
$$

so that $\Lambda_{1 / 2}^{\dagger} \neq \Lambda_{1 / 2}^{-1}$.
Problem 2: Show that

$$
\begin{equation*}
\Lambda_{1 / 2}^{\dagger} \gamma^{0}=\gamma^{0} \Lambda_{1 / 2}^{-1} \tag{0.6}
\end{equation*}
$$

solution: We can work this out as follows

$$
\begin{equation*}
\Lambda_{1 / 2}^{\dagger} \gamma^{0}=\left(\exp \left(S^{\mu \nu} \theta_{\mu \nu}\right)\right)^{\dagger} \gamma^{0}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\left(S^{\mu \nu}\right)^{\dagger} \theta_{\mu \nu}\right)^{k} \gamma^{0} \tag{0.7}
\end{equation*}
$$

so we need to know how to commute γ^{0} with $\left(S^{\mu \nu}\right)^{\dagger}$. Note that

$$
\begin{equation*}
\left(S^{\mu \nu}\right)^{\dagger} \gamma^{0}=-\gamma^{0} S^{\mu \nu} \tag{0.8}
\end{equation*}
$$

when $\mu=0$ and $\nu=1,2,3$, we get no minus sign from the ${ }^{\dagger}$ and one minus sign from $\gamma^{i} \gamma^{0}=-\gamma^{0} \gamma^{i}$, when $\mu, \nu \neq 0$ we get a minus sign from the ${ }^{\dagger}$ and two minus signs from pulling γ^{0} to the left. We can now work out

$$
\begin{align*}
\left(\left(S^{\mu \nu}\right)^{\dagger} \theta_{\mu \nu}\right)^{k} \gamma^{0} & =\left(\left(S^{\mu \nu}\right)^{\dagger} \theta_{\mu \nu}\right)^{k-1} \gamma^{0}\left(-S^{\mu \nu} \theta_{\mu \nu}\right)=\left(\left(S^{\mu \nu}\right)^{\dagger} \theta_{\mu \nu}\right)^{k-2} \gamma^{0}\left(-S^{\mu \nu} \theta_{\mu \nu}\right)^{2}= \\
\ldots & =\gamma^{0}\left(-S^{\mu \nu} \theta_{\mu \nu}\right)^{k} \tag{0.9}
\end{align*}
$$

Hence

$$
\begin{equation*}
\Lambda_{1 / 2}^{\dagger} \gamma^{0}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\left(S^{\mu \nu}\right)^{\dagger} \theta_{\mu \nu}\right)^{k} \gamma^{0}=\sum_{k=0}^{\infty} \frac{1}{k!} \gamma^{0}\left(-S^{\mu \nu} \theta_{\mu \nu}\right)^{k}=\gamma^{0} \Lambda_{1 / 2}^{-1} \tag{0.10}
\end{equation*}
$$

and we are done.

