Andreas Braun — Geometry of Mathematical Physics III MM Problem Class 2

Problem Class 2

Problem 1: The action
S = / dtds — [V + Li (0 — vo) (0.1)

has a U(1) symmetry ¢ — €1, ¢ — =), 6 € R. Find the associated conserved
current.

solution:

First note that we should treat 1) and ) as independent fields. There is only
a single Lie algebra element v = i to consider and

5.0 = i) 5,1h = —ib) (0.2)
and oL oL
0 . 0 _ 2
YR )y
7= 500~ " a0 (03)

= 10y (=0;1) — i(—0;¢))
= —i6 (00,0 — ;1))
and the conservation equation is
Ol + 0; (idy — idy) =0 (0.4)

This equation guarantees that the probability density ||? is conserved in quantum
mechanics:

a 3 2
g/de 22 =0, (0.5)

and what we have just seen is that this is enforced by a U(1) symmetry!

Problem 2: Consider the following action of a complex scalar field:
£ = 0,60 + m?|gf. (0.6)
a) Show that this Lagrangian is Lorentz invariant.
b) Show the equation of motion
(=0,0" +m*)p=0.

is Lorentz invariant.
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¢) Find the conserved current j* associated to a U(1) symmetry of £ acting
as ¢ — e¢, § € R.

d) Show that j# is real. Is j° always positive? [hint: try plane wave solutions

¢ = exp{ik,z"}].

solution:

a) We work out
L — 0,0/ (x)0"¢ () +m?|¢/|*(x)
— N A (0,7 6(A )0, (A ) + mAg (A ) (0.7)
= (90 (A2)(0,)" o (A" @) +m?|¢|* (A7 )
where 0, = 0/0z* and (9,), = 0/0y".
Hence all that is happening here is that we move the entire action from «
to A~'x, which is what we defined as the behavior of a Lorentz invariant
Lagrangian:

L(¢(x), 0/9z"p(x)) = L(o(y),9/0y"$(y)) (0.8)

with y = A~'xz. What made that work was the 9,00"¢ for which the
‘exterior’ A cancelled out.

b) Let’s look at the equations of motion from problem 10:

0= 0,0~ wyote) = (s~ 0@ (09

Let us assume that we have found a solution ¢g(x). Then an argument as
done in the lecture shows that

o 0

=" (A7) (A1) (aiai - m) b0(v)

B a0
(g~ 4w

Here we used that ATnA = 7 holds for Lorentz transformations (and hence
for inverses of Lorentz transformations). As this equation must be true for
all x, it is also true for all y, in other words ¢g(y) is also a solution to the
equations of motion.

(0.10)

y=A"lz

y=A"lz
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c)

We have
oL oL -
= =—=00+ ——=—0,0 0.11
50,0 " 00,0 o1
Furthermore - -
oy =160 oy = —i6¢. (0.12)
We can write -
£ = 10,0056 + m? 2. (0.13)
so that _
0L o’ 0,00, ¢ -
00,5)  00,0) ’ 010
and _
po
0L _ 000,000 _ g, (0.15)
9(0,9) 9(0u9)
Hence we have all the ingredients in place to write down
"= —(0")i06 — (0"9)(—ib9) = i6 (60" — $0"0) (0.16)
Of course this is conserved for any 6, so that we might as well write this as
' =1i(00"¢ — ¢0"9) (0.17)
We work out
J = =i (60"6 — 4 = (0.18)
so that the current must be real. A plane wave solution might be
() = exp (ik,x") . (0.19)
Plugging this into the equations of motion gives
0

_ w2 : vy poc_~ 2 2 : v
0= (0,0" —m®)exp (tk,z") = (n 5or e " )exp (ik,z")

= (=n"k,k, — m?) exp (ik"x,) = (—k,k” — m?) exp (ik"z,)

so that we need to choose k, such that ¥k, = —k3 + kI + k2 + k3 = —m?.
Note that we could e.g. have solutions with kg = +m and k; = 0 for
1 =1,2,3. We then have that

(0.20)

G0 = —2k° (0.21)

and depending on the sign of &° this is either positive or negative. If we
wanted to use ¢ as a wave-function we would then be in trouble when
trying to interpret j° as a probability density. This is why the Klein-Gordon
equation could not be used to describe relativistic quantum mechanics using
wave-functions.



