
Andreas Braun Geometry of Mathematical Physics III MM Problem Class 2

Problem Class 2

Problem 1: The action

S =
∫
dtd3x − |∇ψ|2 + 1

2i
(
ψ̄∂tψ − ψ∂tψ̄

)
(0.1)

has a U(1) symmetry ψ → eiθψ, ψ̄ → e−iθψ̄, θ ∈ R. Find the associated conserved
current.

solution:
First note that we should treat ψ and ψ̄ as independent fields. There is only

a single Lie algebra element γ = iθ to consider and

δγψ = iθψ δγψ̄ = −iθψ̄ (0.2)

and
j0 = iθψ

∂L

∂∂tψ
− iθψ̄ ∂L

∂∂tψ̄
= −|ψ|2

jj = iθψ
∂L

∂∂jψ
− iθψ̄ ∂L

∂∂jψ̄

= iθψ(−∂jψ̄)− iθψ̄(−∂jψ)
= −iθ

(
ψ∂jψ̄ − ψ̄∂jψ

)
(0.3)

and the conservation equation is

∂t|ψ|2 + ∂j
(
iψ∂jψ̄ − iψ̄∂jψ

)
= 0 (0.4)

This equation guarantees that the probability density |ψ|2 is conserved in quantum
mechanics:

∂

∂t

∫
R3
d3x|ψ|2 = 0 , (0.5)

and what we have just seen is that this is enforced by a U(1) symmetry!

Problem 2: Consider the following action of a complex scalar field:

L = ∂µφ̄∂
µφ+m2|φ|2 . (0.6)

a) Show that this Lagrangian is Lorentz invariant.

b) Show the equation of motion

(−∂µ∂µ +m2)φ = 0 .

is Lorentz invariant.
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c) Find the conserved current jµ associated to a U(1) symmetry of L acting
as φ→ eiθφ, θ ∈ R.

d) Show that jµ is real. Is j0 always positive? [hint: try plane wave solutions
φ = exp{ikµxµ}].

solution:

a) We work out

L→ ∂µφ̄
′(x)∂µφ′(x) +m2|φ′|2(x)

= ηνµΛν
ρΛµ

ρ(∂y)ρφ̄(Λ−1x)(∂y)σφ(Λ−1x) +m2|φ′|2(Λ−1x)
= (∂y)µφ̄(Λ−1x)(∂y)µφ(Λ−1x) +m2|φ|2(Λ−1x)

(0.7)

where ∂µ = ∂/∂xµ and (∂y)µ = ∂/∂yµ.
Hence all that is happening here is that we move the entire action from x
to Λ−1x, which is what we defined as the behavior of a Lorentz invariant
Lagrangian:

L(φ(x), ∂/∂xµφ(x)) 7→ L(φ(y), ∂/∂yµφ(y)) (0.8)

with y = Λ−1x. What made that work was the ∂µφ∂µφ for which the
’exterior’ Λ cancelled out.

b) Let’s look at the equations of motion from problem 10:

0 = (∂µ∂µ −m2)φ(x) = ηµν
(
∂

∂xµ
∂

∂xν
−m2

)
φ(x) . (0.9)

Let us assume that we have found a solution φ0(x). Then an argument as
done in the lecture shows that

0 =ηµν
(
∂

∂xµ
∂

∂xν
−m2

)
φ0(x)

=ηµν
(
Λ−1

)ρ
µ

(
Λ−1

)σ
ν

(
∂

∂yρ
∂

∂yσ
−m2

)
φ0(y)

∣∣∣∣∣
y=Λ−1x

=
(
ηµν

∂

∂yµ
∂

∂yν
−m2

)
φ0(y)

∣∣∣∣∣
y=Λ−1x

(0.10)

Here we used that ΛTηΛ = η holds for Lorentz transformations (and hence
for inverses of Lorentz transformations). As this equation must be true for
all x, it is also true for all y, in other words φ0(y) is also a solution to the
equations of motion.
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c) We have
jµ = ∂L

∂(∂µφ)δγφ+ ∂L

∂(∂µφ̄)
δγφ̄ (0.11)

Furthermore
δγφ = iθφ δγφ̄ = −iθφ̄ . (0.12)

We can write
L = ηρσ∂ρφ̄∂σφ+m2|φ|2 . (0.13)

so that
∂L

∂(∂µφ) = −∂η
ρσ∂ρφ̄∂σφ

∂(∂µφ) = −∂µφ̄ (0.14)

and
∂L

∂(∂µφ̄)
= −∂η

ρσ∂ρφ̄∂σφ

∂(∂µφ̄)
= −∂µφ (0.15)

Hence we have all the ingredients in place to write down

jµ = −(∂µφ̄)iθφ− (∂µφ)(−iθφ̄) = iθ
(
φ̄∂µφ− φ∂µφ̄

)
(0.16)

Of course this is conserved for any θ, so that we might as well write this as

jµ = i
(
φ̄∂µφ− φ∂µφ̄

)
(0.17)

d) We work out
j̄µ = −i

(
φ∂µφ̄− φ̄∂µφ

)
= jµ (0.18)

so that the current must be real. A plane wave solution might be

φ(x) = exp (ikµxµ) . (0.19)

Plugging this into the equations of motion gives

0 = (∂µ∂µ −m2) exp (ikνxν) = (ηρσ ∂

∂xρ
∂

∂xσ
−m2) exp (ikνxν)

= (−ηρσkρkσ −m2) exp (ikνxν) = (−kνkν −m2) exp (ikνxν)
(0.20)

so that we need to choose kν such that kνkν = −k2
0 + k2

1 + k2
2 + k2

3 = −m2.
Note that we could e.g. have solutions with k0 = ±m and ki = 0 for
i = 1, 2, 3. We then have that

j0 = −2k0 (0.21)

and depending on the sign of k0 this is either positive or negative. If we
wanted to use φ as a wave-function we would then be in trouble when
trying to interpret j0 as a probability density. This is why the Klein-Gordon
equation could not be used to describe relativistic quantum mechanics using
wave-functions.
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