Problem Class 3

Problem 1: In section 5.3. we have assumed for simplicity that ϕ transforms as

$$
\phi \rightarrow e^{i \alpha} \phi
$$

under a global $U(1)$ symmetry and then gauged this symmetry. Assume that ϕ is acted on in a different complex irreducible representation of $U(1)$ and adjust all equations in section 5.3. accordingly.

solution:

First we need to recall what complex irreducible representations of $U(1)$ are like: parametrizing $U(1)$ by $e^{i \alpha}$, they are given by $r_{k}: e^{i \alpha} \mapsto e^{i k \alpha}$ for $k \in \mathbb{Z}$. A field $\hat{\phi}$ transforming under a gauge transformation associated with r_{k} would then transform as

$$
\begin{equation*}
\hat{\phi} \rightarrow e^{i k \alpha(x)} \hat{\phi} \tag{0.1}
\end{equation*}
$$

while the gauge field A_{μ} still behaves as

$$
\begin{equation*}
A_{\mu} \rightarrow e^{i \alpha}\left(A_{\mu}+\partial\right) e^{-i \alpha}=A_{\mu}+\partial_{\mu} \alpha \tag{0.2}
\end{equation*}
$$

The key point in the construction of gauge invariant dynamics is 5.3 . was the covariant derivative

$$
\begin{equation*}
D_{\mu} \phi=\partial_{\mu} \phi-i A_{\mu} \phi \tag{0.3}
\end{equation*}
$$

which had the property that

$$
\begin{equation*}
D_{\mu} \phi \mapsto D_{\mu}^{\prime} \phi^{\prime}=e^{i \alpha} D_{\mu} \phi, \tag{0.4}
\end{equation*}
$$

i.e. it transforms the same way as ϕ. Hence we now want that

$$
\begin{equation*}
D_{\mu} \hat{\phi} \rightarrow e^{i k \alpha} D_{\mu} \hat{\phi} \tag{0.5}
\end{equation*}
$$

The construction of the covariant derivative was motivated by cancelling the unwanted derivative of α by the shift, and we can do the same thing here with a little tweak by defining

$$
\begin{equation*}
D_{\mu} \hat{\phi}:=\partial_{\mu} \hat{\phi}-i k A_{\mu} \hat{\phi} \tag{0.6}
\end{equation*}
$$

Let us check this does what it should:

$$
\begin{align*}
D_{\mu} \hat{\phi} & \mapsto D_{\mu}^{\prime} \hat{\phi}^{\prime}=\partial_{\mu}\left(e^{i k \alpha} \hat{\phi}\right)-i k\left(A_{\mu}+\left(\partial_{\mu} \alpha\right)\right) e^{i k \alpha(x)} \hat{\phi} \\
& =e^{i k \alpha} \partial_{\mu} \hat{\phi}+i k e^{i k \alpha} \hat{\phi} \partial_{\mu} \alpha-i A_{\mu} k e^{i k \alpha} \hat{\phi}-i k e^{i k \alpha} \hat{\phi} \partial_{\mu} \alpha \tag{0.7}\\
& =e^{i k \alpha}\left(\partial_{\mu} \hat{\phi}-i k A_{\mu} \hat{\phi}\right)=e^{i k \alpha} D_{\mu} \hat{\phi}
\end{align*}
$$

All we need to do is hence to use the covariant derivative $D_{\mu}=\partial_{\mu} \hat{\phi}-i k A_{\mu} \hat{\phi}$ instead thoughout 5.3 and we are done. It is common to still write D_{μ} in the understanding that a covariant derivative acts on a field depending on its transformation behavior.

Note that the current j_{μ} and hence the coupling of ϕ to A_{μ} gets rescaled by a factor of k, which can even be negative. For this reason k is called the charge of the field $\hat{\phi}$.

Problem 2: We have seen the Schroedinger action

$$
\begin{equation*}
S=\int d t d^{3} x-\boldsymbol{\nabla} \psi \cdot \bar{\nabla} \psi+i \frac{1}{2}\left(\bar{\psi} \partial_{t} \psi-\psi \partial_{t} \bar{\psi}\right) \tag{0.8}
\end{equation*}
$$

in the lectures which gave Schroedinger's equation as the equation of motion of a classical field theory, and observed that it has a global $U(1)$ symmetry

$$
\begin{equation*}
\psi \rightarrow e^{i \alpha} \psi \tag{0.9}
\end{equation*}
$$

which guaranteed conservation of the charge $Q=\int d^{3} x|\psi|^{2}$ interpreted as probability conservation in quantum mechanics.

Turn this $U(1)$ into a gauge symmetry by letting $\alpha=\alpha(t, x)$ and derive the equations of motion of ψ (we have made the dependence of α on both time and space explicit, i.e. are using a non-relativistic notation here).

solution:

Again it is the derivatives which are an issue, but we can solve this in the same way as done for a relativistic scalar. We simply replace

$$
\begin{equation*}
\boldsymbol{\nabla} \rightarrow \boldsymbol{D}:=\boldsymbol{\nabla}-i \boldsymbol{A} \quad \partial_{t} \rightarrow D_{t}:=\partial_{t}-i \phi \tag{0.10}
\end{equation*}
$$

where $A_{0}=\phi$ and $\boldsymbol{A}=A_{1}, A_{2}, A_{3}$ are the usual electrostatic and vector potential appearing in a non-relativistic formulation of Maxwell's equations. With these replacements the gauged Schroedinger action reads (omitting a kinetic term for the gauge field A_{μ}):

$$
\begin{align*}
S & =\int d t d^{3} x-\boldsymbol{D} \psi \cdot \overline{\boldsymbol{D} \psi}+i \frac{1}{2}\left(\bar{\psi} D_{t} \psi-\psi \overline{D_{t} \psi}\right) \\
& =\int d t d^{3} x-((\boldsymbol{\nabla}-i \boldsymbol{A}) \psi) \cdot((\boldsymbol{\nabla}+i \boldsymbol{A}) \bar{\psi})+i \frac{1}{2}\left(\bar{\psi}\left(\partial_{t}-i \phi\right) \psi-\psi\left(\partial_{t}+i \phi\right) \bar{\psi}\right) \tag{0.11}
\end{align*}
$$

The Euler-Lagrange equations for ψ are the complex conjugates of those of $\bar{\psi}$, and to get an equation for ψ we work out those. To write down the Euler-Lagrange
equations for $\bar{\psi}$, we work out

$$
\begin{align*}
\frac{\partial}{\partial \bar{\psi}} \mathcal{L} & =\phi \psi+\frac{1}{2} i \partial_{t} \psi-i \boldsymbol{A} \cdot(\boldsymbol{\nabla}-i \boldsymbol{A}) \psi \\
\frac{\partial}{\partial \partial_{t} \bar{\psi}} \mathcal{L} & =-\frac{1}{2} i \psi \tag{0.12}\\
\frac{\partial}{\partial \partial_{j} \bar{\psi}} \mathcal{L} & =-((\boldsymbol{\nabla}-i \boldsymbol{A}) \psi)_{j}
\end{align*}
$$

where $\partial_{j}=\partial / \partial x_{j}, j=1,2,3$.
Hence the Euler Lagrange equation

$$
\begin{equation*}
\frac{\partial}{\partial \bar{\psi}} \mathcal{L}-\partial_{t} \frac{\partial}{\partial \partial_{t} \bar{\psi}} \mathcal{L}-\partial_{j} \frac{\partial}{\partial \partial_{j} \bar{\psi}} \mathcal{L}=0 \tag{0.13}
\end{equation*}
$$

gives

$$
\begin{align*}
0 & =\phi \psi+\frac{1}{2} i \partial_{t} \psi-\boldsymbol{A} \cdot(\boldsymbol{\nabla}-i \boldsymbol{A}) \psi+\frac{1}{2} i \partial_{t} \psi+\boldsymbol{\nabla}(\boldsymbol{\nabla}-i \boldsymbol{A}) \psi \tag{0.14}\\
& =i D_{t} \psi+\boldsymbol{D} \boldsymbol{D} \psi
\end{align*}
$$

To no surpise the e.o.m. contains covariant derivates only and is gauge covariant.
Note that we can rewrite this as

$$
\begin{equation*}
\boldsymbol{D} \boldsymbol{D} \psi+\phi \psi=-i \partial_{t} \psi \tag{0.15}
\end{equation*}
$$

which means that in QM we would use

$$
\begin{equation*}
\hat{H}=-(\boldsymbol{\nabla}-i \boldsymbol{A})^{2}-\phi \tag{0.16}
\end{equation*}
$$

as the Hamilton operator. This is just the quantum version of the Hamiltonian of a charged particle of mass $1 / 2$ and charge -1 in an electro-magnetic field.

Problem 3: Repeat problem 2 for the Dirac action

$$
\begin{equation*}
S=\int d^{4} x \bar{\Psi}\left(\gamma^{\mu} \partial_{\mu}+m\right) \Psi \tag{0.17}
\end{equation*}
$$

Here we can use the same principle and replace $\partial_{\mu} \rightarrow D_{\mu}:=\partial_{\mu}-i A_{\mu}$. resulting in (again ignoring the kinetic term for the gauge field A_{μ}):

$$
\begin{equation*}
S=\int d^{4} x \bar{\Psi}\left(\gamma^{\mu} D_{\mu}+m\right) \Psi \tag{0.18}
\end{equation*}
$$

The e.o.m is simply

$$
\begin{equation*}
\left(\gamma^{\mu} D_{\mu}+m\right) \Psi=0 \tag{0.19}
\end{equation*}
$$

This is the Dirac equation describing a charged electron in an electro-magnetic field and can be used to find the celebrated result that the magnetic moment of an electron (or rather the so-called g-factor) is 2 . Combining the ideas of the spin- $\frac{1}{2}$ 'representation' of the Lorentz group and gauge invariance forces us to write down the above version of the Dirac equation, which in turn explains and experimental result which had been a mystery before.

