
Andreas Braun Geometry of Mathematical Physics III MM Problem Class 3

Problem Class 3

Problem 1: In section 5.3. we have assumed for simplicity that φ transforms as

φ→ eiαφ

under a global U(1) symmetry and then gauged this symmetry. Assume that φ is
acted on in a different complex irreducible representation of U(1) and adjust all
equations in section 5.3. accordingly.

solution:
First we need to recall what complex irreducible representations of U(1) are

like: parametrizing U(1) by eiα, they are given by rk : eiα 7→ eikα for k ∈ Z. A
field φ̂ transforming under a gauge transformation associated with rk would then
transform as

φ̂→ eikα(x)φ̂ , (0.1)
while the gauge field Aµ still behaves as

Aµ → eiα (Aµ + ∂) e−iα = Aµ + ∂µα (0.2)

The key point in the construction of gauge invariant dynamics is 5.3. was the
covariant derivative

Dµφ = ∂µφ− iAµφ (0.3)
which had the property that

Dµφ 7→ D′µφ
′ = eiαDµφ , (0.4)

i.e. it transforms the same way as φ. Hence we now want that

Dµφ̂→ eikαDµφ̂ . (0.5)

The construction of the covariant derivative was motivated by cancelling the
unwanted derivative of α by the shift, and we can do the same thing here with a
little tweak by defining

Dµφ̂ := ∂µφ̂− ikAµφ̂ . (0.6)
Let us check this does what it should:

Dµφ̂ 7→ D′µφ̂
′ = ∂µ

(
eikαφ̂

)
− ik(Aµ + (∂µα))eikα(x)φ̂

= eikα∂µφ̂+ ikeikαφ̂∂µα− iAµkeikαφ̂− ikeikαφ̂∂µα
= eikα

(
∂µφ̂− ikAµφ̂

)
= eikαDµφ̂

(0.7)
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All we need to do is hence to use the covariant derivative Dµ = ∂µφ̂− ikAµφ̂
instead thoughout 5.3 and we are done. It is common to still write Dµ in the
understanding that a covariant derivative acts on a field depending on its trans-
formation behavior.

Note that the current jµ and hence the coupling of φ to Aµ gets rescaled by a
factor of k, which can even be negative. For this reason k is called the charge of
the field φ̂.

Problem 2: We have seen the Schroedinger action

S =
∫
dtd3x−∇ψ ·∇ψ + i1

2

(
ψ̄∂tψ − ψ∂tψ̄

)
(0.8)

in the lectures which gave Schroedinger’s equation as the equation of motion
of a classical field theory, and observed that it has a global U(1) symmetry

ψ → eiαψ (0.9)

which guaranteed conservation of the charge Q =
∫
d3x|ψ|2 interpreted as proba-

bility conservation in quantum mechanics.
Turn this U(1) into a gauge symmetry by letting α = α(t, x) and derive the

equations of motion of ψ (we have made the dependence of α on both time and
space explicit, i.e. are using a non-relativistic notation here).

solution:
Again it is the derivatives which are an issue, but we can solve this in the same

way as done for a relativistic scalar. We simply replace

∇→D := ∇− iA ∂t → Dt := ∂t − iφ (0.10)

where A0 = φ and A = A1, A2, A3 are the usual electrostatic and vector potential
appearing in a non-relativistic formulation of Maxwell’s equations. With these
replacements the gauged Schroedinger action reads (omitting a kinetic term for
the gauge field Aµ):

S =
∫
dtd3x−Dψ ·Dψ + i1

2

(
ψ̄Dtψ − ψDtψ

)
=
∫
dtd3x− ((∇− iA)ψ) ·

(
(∇ + iA)ψ

)
+ i1

2

(
ψ̄(∂t − iφ)ψ − ψ(∂t + iφ)ψ̄

)
(0.11)

The Euler-Lagrange equations for ψ are the complex conjugates of those of ψ̄, and
to get an equation for ψ we work out those. To write down the Euler-Lagrange
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equations for ψ̄, we work out

∂

∂ψ
L = φψ + 1

2i∂tψ − iA · (∇− iA)ψ

∂

∂∂tψ
L = −1

2iψ

∂

∂∂jψ
L = − ((∇− iA)ψ)j

(0.12)

where ∂j = ∂/∂xj, j = 1, 2, 3.
Hence the Euler Lagrange equation

∂

∂ψ
L− ∂t

∂

∂∂tψ
L− ∂j

∂

∂∂jψ
L = 0 (0.13)

gives

0 = φψ + 1
2i∂tψ −A · (∇− iA)ψ + 1

2i∂tψ + ∇(∇− iA)ψ

= iDtψ + DDψ
(0.14)

To no surpise the e.o.m. contains covariant derivates only and is gauge covariant.
Note that we can rewrite this as

DDψ + φψ = −i∂tψ (0.15)

which means that in QM we would use

Ĥ = −(∇− iA)2 − φ (0.16)

as the Hamilton operator. This is just the quantum version of the Hamiltonian
of a charged particle of mass 1/2 and charge −1 in an electro-magnetic field.

Problem 3: Repeat problem 2 for the Dirac action

S =
∫
d4xΨ̄ (γµ∂µ +m) Ψ (0.17)

Here we can use the same principle and replace ∂µ → Dµ := ∂µ − iAµ. resulting
in (again ignoring the kinetic term for the gauge field Aµ):

S =
∫
d4xΨ̄ (γµDµ +m) Ψ (0.18)

The e.o.m is simply
(γµDµ +m) Ψ = 0 . (0.19)
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This is the Dirac equation describing a charged electron in an electro-magnetic
field and can be used to find the celebrated result that the magnetic moment of an
electron (or rather the so-called g-factor) is 2. Combining the ideas of the spin-1

2
’representation’ of the Lorentz group and gauge invariance forces us to write down
the above version of the Dirac equation, which in turn explains and experimental
result which had been a mystery before.
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