Problem Class 4

Problem 1: Write down the most general real gauge invariant and Lorentz invariant Lagrangian with at most two derivatives for two complex scalar fields, ϕ of charge 1 and χ of charge 2 , and a $U(1)$ gauge field A_{μ} which contains

1. standard kinetic terms for ϕ and χ;

solution:

Since the scalar fields are charged under a $U(1)$ gauge symmetry, we should replace the partial derivatives in the standard kinetic term $-\partial^{\mu} \bar{\phi} \partial_{\mu} \phi-$ $\partial^{\mu} \bar{\chi} \partial_{\mu} \chi$ by gauge covariant derivatives. We need to remember that the gauge covariant derivative of a field of charge q is $D_{\mu}=\partial_{\mu}-i q A_{\mu}$. So we have the gauge invariant kinetic terms

$$
\mathcal{L}_{\text {kin }}=-\left(\partial^{\mu} \bar{\phi}+i A^{\mu} \bar{\phi}\right)\left(\partial_{\mu} \phi-i A_{\mu} \phi\right)-\left(\partial^{\mu} \bar{\chi}+2 i A^{\mu} \bar{\chi}\right)\left(\partial_{\mu} \chi-2 i A_{\mu} \chi\right) .
$$

2. a kinetic term for A_{μ};

solution:

This is simply the Maxwell Lagrangian density that we saw in the gauge theory formulation of electromagnetism:

$$
\mathcal{L}_{\mathrm{Maxwell}}=-\frac{1}{4 g^{2}} F^{\mu \nu} F_{\mu \nu}
$$

where $F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
3. a real gauge invariant potential which is a polynomial of degree at most 4 in ϕ, χ and their complex conjugates.

solution:

We start by noticing that for any fields f_{1}, f_{2} of charges q_{1}, q_{2} respectively under a $U(1)$ symmetry (global or local/gauge), their product $f_{1} f_{2}$ has charge $q_{1}+q_{2}$. Indeed under a $U(1)$ transformation with group element $e^{i \alpha}$ the fields transform as

$$
\left(f_{1}, f_{2}\right) \mapsto\left(e^{i q_{1} \alpha} f_{1}, e^{i q_{2} \alpha} f_{2}\right) \quad \Longrightarrow \quad f_{1} f_{2} \mapsto e^{i\left(q_{1}+q_{2}\right) \alpha} f_{1} f_{2} .
$$

This generalizes by induction to monomials in the fields: the charge of a monomial is the sum of the charges of its factors. In particular, a monomial in the fields is invariant under a $U(1)$ gauge transformation if and only if it has charge 0 .

The scalar potential is a polynomial in $\phi, \chi, \bar{\phi}, \bar{\chi}$. Demanding gauge invariance (i.e. vanishing total charge), we see that the only allowed monomials are

$$
1, \quad|\phi|^{2}=\bar{\phi} \phi, \quad|\chi|^{2}=\bar{\chi} \chi, \quad \bar{\chi} \phi^{2}, \quad \bar{\phi}^{2} \chi
$$

and products/powers thereof. Therefore the most general real gauge invariant potential which is a polynomial of degree at most 4 in ϕ, χ and their complex conjugates is
$V(\bar{\phi}, \bar{\chi}, \phi, \chi)=V_{0}+m_{\phi}^{2}|\phi|^{2}+m_{\chi}^{2}|\chi|^{2}+\operatorname{Re}\left(a \bar{\chi} \phi^{2}\right)+\lambda_{\phi}|\phi|^{4}+\lambda_{\chi}|\chi|^{4}+\lambda_{\phi \chi}|\phi|^{2}|\chi|^{2}$,
where $V_{0}, m_{\phi}^{2}, m_{\chi}^{2}, \lambda_{\phi}, \lambda_{\chi}, \lambda_{\phi \chi}$ are real constants, and a is a complex constant. The constant V_{0} (the 'vacuum energy density') is often ignored since it drops out of the equations of motion, and the energy is defined up to an additive constant.

Problem 2: Check by direct computation that

$$
\begin{equation*}
D_{\mu} \phi:=\left(\partial-i A_{\mu}\right) \phi \rightarrow g(x) D_{\mu} \phi \tag{0.1}
\end{equation*}
$$

for

$$
\begin{align*}
\phi & \rightarrow g \phi \\
A_{\mu} & \rightarrow g\left(A_{\mu}+i \partial_{\mu}\right) g^{-1} \tag{0.2}
\end{align*}
$$

solution: We work out

$$
\begin{array}{r}
\left(\partial-i A_{\mu}\right) \phi \rightarrow\left(\partial_{\mu}-i g\left(A_{\mu} g^{-1}+i \partial_{\mu} g^{-1}\right)\right) g \phi \\
=\left(\partial_{\mu} g\right) \phi+g \partial_{\mu} \phi-i g A_{\mu} g^{-1} g \phi+\left(g \partial_{\mu} g^{-1}\right) g \phi \tag{0.3}\\
=g D_{\mu} \phi+\left(\partial_{\mu} g\right) \phi+\left(g \partial_{\mu} g^{-1}\right) g \phi
\end{array}
$$

As $0=\partial_{\mu}\left(g g^{-1}\right)=\left(\partial_{\mu} g\right) g^{-1}+g \partial_{\mu} g^{-1}$ the two last terms become

$$
\begin{equation*}
\left(\partial_{\mu} g\right) \phi-\left(\partial_{\mu} g\right) g^{-1} g \phi=0 \tag{0.4}
\end{equation*}
$$

and we can declare success!
Problem 3: Consider a gauge group G, with Lie algebra \mathfrak{g}.

1. Show by explicit calculation that a non-abelian gauge field configuration of the form

$$
A_{\mu}=i h\left(\partial_{\mu} h^{-1}\right),
$$

where $h(x)$ is a space-time dependent element of G, has field strength $F_{\mu \nu}=$ 0 .
solution:

We calculate

$$
\partial_{\mu} A_{\nu}=i\left(\partial_{\mu} h\right)\left(\partial_{\nu} h^{-1}\right)+i h\left(\partial_{\mu} \partial_{\nu} h^{-1}\right),
$$

therefore

$$
\begin{aligned}
\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} & =i\left(\partial_{\mu} h\right)\left(\partial_{\nu} h^{-1}\right)-i\left(\partial_{\nu} h\right)\left(\partial_{\mu} h^{-1}\right)+i h\left(\partial_{\mu} \partial_{\nu} h^{-1}\right)-i h\left(\partial_{\nu} \partial_{\mu} h^{-1}\right) \\
& =i\left(\partial_{\mu} h\right)\left(\partial_{\nu} h^{-1}\right)-i\left(\partial_{\nu} h\right)\left(\partial_{\mu} h^{-1}\right)
\end{aligned}
$$

where the second derivative terms cancel (as usual, we assume that h^{-1} is sufficiently differentiable so that Schwarz's/Clairaut's theorem applies). The contribution of the commutator is

$$
\begin{aligned}
-i\left[A_{\mu}, A_{\nu}\right] & =i\left[h \partial_{\mu} h^{-1}, h \partial_{\nu} h^{-1}\right] \\
& =i h\left(\partial_{\mu} h^{-1}\right) h\left(\partial_{\nu} h^{-1}\right)-i h\left(\partial_{\nu} h^{-1}\right) h\left(\partial_{\mu} h^{-1}\right) .
\end{aligned}
$$

Now we use the identity

$$
0=\left(\partial_{\mu} \mathbf{1}\right)=\partial_{\mu}\left(h h^{-1}\right)=\left(\partial_{\mu} h\right) h^{-1}+h\left(\partial_{\mu} h^{-1}\right)
$$

to get

$$
\begin{aligned}
-i\left[A_{\mu}, A_{\nu}\right] & =-i\left(\partial_{\mu} h\right) h^{-1} h\left(\partial_{\nu} h^{-1}\right)+i\left(\partial_{\nu} h\right) h^{-1} h\left(\partial_{\mu} h^{-1}\right) \\
& =-i\left(\partial_{\mu} h\right)\left(\partial_{\nu} h^{-1}\right)+i\left(\partial_{\nu} h\right)\left(\partial_{\mu} h^{-1}\right) .
\end{aligned}
$$

Hence

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]=0
$$

2. Can you think of a simpler argument to reach the same conclusion?

solution:

Start from a configuration with vanishing gauge field $A_{\mu}=0$. The field strength trivially vanishes: $F_{\mu \nu}=0$. Now perform a gauge transformation with gauge parameter $g=h$. We find that the new (gauge transformed) gauge field A_{μ}^{\prime} and field strength $F_{\mu \nu}^{\prime}$ are

$$
\begin{aligned}
A_{\mu}^{\prime} & =h A_{\mu} h^{-1}+i h\left(\partial_{\mu} h^{-1}\right)=i h\left(\partial_{\mu} h^{-1}\right) \\
F_{\mu \nu}^{\prime} & =h F_{\mu \nu} h^{-1}=0
\end{aligned}
$$

Now, what is primed or unprimed is a matter of point of view: I could have called the primed variables unprimed and vice versa, had I used the inverse gauge transformation. The key point here is that this shows that the field strength of $A_{\mu}=i h\left(\partial_{\mu} h^{-1}\right)$ is $F_{\mu \nu}=0$. Configurations like $A_{\mu}=i h\left(\partial_{\mu} h^{-1}\right)$, which are obtained by a gauge transformation of the trivial (i.e. zero) configuration, are called pure gauge configurations.

