Andreas Braun — Geometry of Mathematical Physics IIIl MM  Problem Class 4

Problem Class 4

Problem 1: Write down the most general real gauge invariant and Lorentz in-
variant Lagrangian with at most two derivatives for two complex scalar fields, ¢
of charge 1 and x of charge 2, and a U(1) gauge field A, which contains

1. standard kinetic terms for ¢ and y;
solution:

Since the scalar fields are charged under a U(1) gauge symmetry, we should
replace the partial derivatives in the standard kinetic term —(9“(;38“@5 —
O"x0ux by gauge covariant derivatives. We need to remember that the
gauge covariant derivative of a field of charge ¢ is D, = 9, — igA,. So we
have the gauge invariant kinetic terms

Lin = — (0" + 1A ) (0,0 — 1 A,0) — (9" + 2iA*Y) (Opx — 26 A,X) -

2. a kinetic term for A,;
solution:

This is simply the Maxwell Lagrangian density that we saw in the gauge
theory formulation of electromagnetism:

1
LMaxwell = _TQQFMVFMV

where F,, := 0,A, — 0,A,.

3. a real gauge invariant potential which is a polynomial of degree at most 4
in ¢, x and their complex conjugates.

solution:

We start by noticing that for any fields fi, f of charges ¢y, ¢ respectively un-
der a U(1) symmetry (global or local/gauge), their product f; f> has charge
¢1 + ¢. Indeed under a U(1) transformation with group element e the
fields transform as

(f1, f2) = ("% f1, €' fy) - fifa s enteef g

This generalizes by induction to monomials in the fields: the charge of a
monomial is the sum of the charges of its factors. In particular, a monomial
in the fields is invariant under a U(1) gauge transformation if and only if it
has charge 0.
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The scalar potential is a polynomial in @, y, ¢, Y. Demanding gauge invari-
ance (7.e. vanishing total charge), we see that the only allowed monomials
are

L, P =00, IP=xx, x¢*, ¢x
and products/powers thereof. Therefore the most general real gauge invari-

ant potential which is a polynomial of degree at most 4 in ¢, x and their
complex conjugates is

V(e, X, 0, X) = Votmi|o|>+m2 x> +Re(axd®)+As| 8]+ A X"+ Aox| 67X,

where V), mi, mi, Ags Ay, Agy are real constants, and a is a complex constant.
The constant V; (the ‘vacuum energy density’) is often ignored since it drops
out of the equations of motion, and the energy is defined up to an additive
constant.

Problem 2: Check by direct computation that
D,¢:=(0—-1iA,)0 — g(z)D,¢ (0.1)

for
¢ — g¢
A, — g(A, + iau)g_l
solution: We work out
(a - ZA,u)¢ — (au - ig(AMg_l + iaug_l))ggb
= (0.9)0 + 90,0 — igA,g~ 96 + (99,9 ) g9 (0.3)
= gDu¢ + (3ug)¢ + <gau971)9¢

As 0=0,(997") = (0,9)g~" + g0,g" the two last terms become
(9.9)¢ — (0ug)g ™' 90 =0 (0.4)

and we can declare success!

Problem 3: Consider a gauge group G, with Lie algebra g.
1. Show by explicit calculation that a non-abelian gauge field configuration of
the form

A, =ih(0,h7Y)

where h(z) is a space-time dependent element of G, has field strength F),, =
0.

solution:



Andreas Braun — Geometry of Mathematical Physics IIIl MM  Problem Class 4

We calculate
0,4, =i(0,h)(0,h ) +ih(9,0,h7") ,
therefore
9,4, —0,A, =i(9,h)(0,h ") —i(9,h)(9,h ") +ih(D,0,h7 ") — ih(D,0,h™T)
=i(9,h)(0,h™") —i(9,h)(Dh71)
where the second derivative terms cancel (as usual, we assume that h~!

is sufficiently differentiable so that Schwarz’s/Clairaut’s theorem applies).
The contribution of the commutator is

—i[A,, A)] = i[hd,h" ' hO,h 7]
— ih(8,h " YR(B,h™Y) — ih(D,h (DY) .
Now we use the identity
0=(9,1) =0, (hh™) = (0,h)h~" + h(D,h7")
to get
—i[A,, A)] = —i(0,h)h " h(d,h ") +i(8,h)h " h(D,h7T)
= —i(0,h)(0,h™ ) +1i(0,h)(9,h71) .

Hence
E,=90,A, —0,A, — z’[AM, A)=0.

2. Can you think of a simpler argument to reach the same conclusion?

solution:

Start from a configuration with vanishing gauge field A, = 0. The field
strength trivially vanishes: F,, = 0. Now perform a gauge transformation
with gauge parameter ¢ = h. We find that the new (gauge transformed)
gauge field A/, and field strength F),, are

A, = hA,h™" +ih(9,h7Y) = ih(0,h7")

F,=hF,h"'=0.
Now, what is primed or unprimed is a matter of point of view: I could have
called the primed variables unprimed and vice versa, had I used the inverse
gauge transformation. The key point here is that this shows that the field
strength of A, = ih(9,h™") is F,, = 0. Configurations like A, = ih(d,h™"),
which are obtained by a gauge transformation of the trivial (i.e. zero)
configuration, are called pure gauge configurations.



