1) Consider a Lorentz vector with components x^{μ}, which transforms under Lorentz transformations as

$$
x^{\mu} \rightarrow x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu} .
$$

Note that throughout this problem we are using summation convention.
a) Let $f^{\mu \nu} \equiv x^{\mu} x^{\nu}$. Find the transformation behavior of $f^{\mu \nu}, f^{\mu}{ }_{\nu}=x^{\mu} x_{\nu}$ and $f_{\mu \nu}=x_{\mu} x_{\nu}$ under Lorentz transformations.
b) For another Lorentz vector y^{μ}, find the transformation behavior of $f^{\mu \nu} y_{\mu}$ under Lorentz transformations.
c) Compute

$$
\sum_{\mu} \frac{\partial}{\partial x^{\mu}} x^{\mu}
$$

d) Work out the transformation behavior of

$$
\frac{\partial}{\partial x^{\mu}}
$$

under Lorentz transformations. Use c) to argue for the same result.
2) Write a 4 -vector $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ as a matrix M_{x} with $M_{x}^{\dagger}=M_{x}$:

$$
M_{x}:=\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}-i x^{2} \tag{0.1}\\
x^{1}+i x^{2} & x^{0}-x^{3}
\end{array}\right) .
$$

For $g \in S L(2, \mathbb{C})$ define an action $F(g)$ on \mathbb{R}^{4} by

$$
\begin{equation*}
g \rightarrow F(g) \quad F(g) M_{x}:=g M_{x} g^{\dagger} \tag{0.2}
\end{equation*}
$$

a) Show that F is a homomorphism from $S L(2, \mathbb{C})$ to L.
b) For a rotation in the x^{1}, x^{2}-plane, find the element $g \in S L(2, \mathbb{C})$ that is mapped to it by F. Repeat the same for a boost along the x^{1} direction.

Here are some things to ponder:

1. How is the Lorent group defined? Why is it defined that way?
2. What's the point about upper/lower indices?
