1) Consider a Lorentz vector with components x^{μ}, which transforms under Lorentz transformations as

$$
x^{\mu} \rightarrow x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu} .
$$

Note that throughout this problem we are using summation convention.
a) Let $f^{\mu \nu} \equiv x^{\mu} x^{\nu}$. Find the transformation behavior of $f^{\mu \nu}, f^{\mu}{ }_{\nu}=x^{\mu} x_{\nu}$ and $f_{\mu \nu}=x_{\mu} x_{\nu}$ under Lorentz transformations.
b) For another Lorentz vector y^{μ}, find the transformation behavior of $f^{\mu \nu} y_{\mu}$ under Lorentz transformations.
c) Compute

$$
\sum_{\mu} \frac{\partial}{\partial x^{\mu}} x^{\mu} .
$$

d) Work out the transformation behavior of

$$
\frac{\partial}{\partial x^{\mu}}
$$

under Lorentz transformations. Use c) to argue for the same result.

solution:

(a) We can infer the transformation of $f^{\mu \nu}, f_{\nu}^{\mu}, f_{\mu \nu}$ from that of x^{μ} and x_{μ}

$$
\begin{align*}
f^{\mu \nu} & \rightarrow \Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} f^{\mu^{\prime} \nu^{\prime}} \\
f_{\nu}^{\mu} & \rightarrow \Lambda_{\mu^{\prime}}^{\mu} f_{\nu^{\prime}}^{\mu^{\prime}}\left(\Lambda^{-1}\right)^{\nu^{\prime}} \tag{0.1}\\
f_{\mu \nu} & \rightarrow f_{\mu^{\prime} \nu^{\prime}}\left(\Lambda^{-1}\right)_{\mu}^{\mu^{\prime}}{ }_{\mu}\left(\Lambda^{-1}\right)_{\nu}^{\nu^{\prime}}
\end{align*}
$$

Here the ordering of things I used on the rhs is not really important, I have written things in such a way that serves the slogan upper indices transform with Λ and lower indices transform with Λ^{-1} from the right.
(b) Using the result of a) and the fact that y_{μ} transforms with a Λ^{-1} we immediately see that

$$
\begin{equation*}
f^{\mu \nu} y_{\mu} \rightarrow \Lambda_{\nu^{\prime}}^{\nu} f^{\mu \nu^{\prime}} y_{\mu} \tag{0.2}
\end{equation*}
$$

I.e. μ is a contracted dummy index and the only non-trivial transformation is coming from ν.
(c) This is simply

$$
\begin{equation*}
\sum_{\mu} \frac{\partial}{\partial x^{\mu}} x^{\mu}=\frac{\partial x^{0}}{\partial x^{0}}+\frac{\partial x^{1}}{\partial x^{1}}+\frac{\partial x^{2}}{\partial x^{2}}+\frac{\partial x^{3}}{\partial x^{3}}=4 \tag{0.3}
\end{equation*}
$$

(d) Writing

$$
\begin{equation*}
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \tag{0.4}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\frac{\partial}{\partial x^{\prime \mu}}=\frac{\partial}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial x^{\prime \mu}}=\frac{\partial}{\partial x^{\nu}}\left(\Lambda^{-1}\right)^{\nu}{ }_{\mu} \tag{0.5}
\end{equation*}
$$

The derivative witht respect to a Lorentz vector hence transforms like a Lorentz covector. For this reason people usually write $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$. This result can also be seen from part c): The number 4 is a Lorentz scalar and as x^{μ} is a Lorentz vector $\frac{\partial}{\partial x^{\mu}}$ must be a covector to get something invariant.
2) Write a 4 -vector $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ as a matrix M_{x} with $M_{x}^{\dagger}=M_{x}$:

$$
M_{x}:=\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}-i x^{2} \tag{0.6}\\
x^{1}+i x^{2} & x^{0}-x^{3}
\end{array}\right)
$$

For $g \in S L(2, \mathbb{C})$ define an action $F(g)$ on \mathbb{R}^{4} by

$$
\begin{equation*}
g \rightarrow F(g) \quad F(g) M_{x}:=g M_{x} g^{\dagger} \tag{0.7}
\end{equation*}
$$

a) Show that F is a homomorphism from $S L(2, \mathbb{C})$ to L.
b) For a rotation in the x^{1}, x^{2}-plane, find the element $g \in S L(2, \mathbb{C})$ that is mapped to it by F. Repeat the same for a boost along the x^{1} direction.

solution:

a) First note that M_{x} is the most general 2×2 matrix with the property $M_{x}=M_{x}^{\dagger}$. This property is preserved by $F(g)$ as

$$
\begin{equation*}
\left(g M_{x} g^{\dagger}\right)^{\dagger}=g^{\dagger \dagger} M_{x}^{\dagger} g^{\dagger}=g M_{x} g^{\dagger} . \tag{0.8}
\end{equation*}
$$

Furthermore $F(g)$ acts as a linear map on $\mathbb{R}^{1,3}$ which preserves $\operatorname{det} M_{x}$:

$$
\begin{equation*}
\operatorname{det} M_{x} \rightarrow \operatorname{det}\left(g M_{x} g^{\dagger}\right)=\operatorname{det} g \operatorname{det} M_{x} \operatorname{det} g^{\dagger}=\operatorname{det} M_{x} \tag{0.9}
\end{equation*}
$$

As $x_{\mu} x^{\mu}=-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}=-\operatorname{det} M_{x}$, the linear map $F(g)$ preserves the length of vectors in $\mathbb{R}^{1,3}$ and is hence in L.

In fact, we can argue that $F(g)$ is contained in L_{+}^{\uparrow} (you weren't asked this for the assignment, but it is good to know). The group $S L(2, \mathbb{C})$ is connected as the following argument shows: by a standard result from linear algebra, we can write any matrix in $S L(2, \mathbb{C})$ as

$$
g=B\left(\begin{array}{cc}
a & b \tag{0.10}\\
0 & a^{-1}
\end{array}\right) B^{-1}
$$

We can now simply let b go to zero and a go to 1 continuously to connect any element in $S L(2, \mathbb{C})$ continuously to the identity. As $S L(2, \mathbb{C})$ is connected and L has four connected components, F can only map to one of them (it is a continuous map). Using $g=\mathbb{1}$ we see that F maps to L_{+}^{\uparrow}, the component containing the identity. This map is not injective, as g and $-g$ are mapped to the same $F(g)$.
b) Now let us consider how different matrices in $S L(2, \mathbb{C})$ act on M_{x}. First we investigate elements of $S L(2, \mathbb{C})$ that are in $S U(2)$. For $\theta \in \mathbb{R}$ set

$$
\begin{align*}
& g_{3}(\theta):=e^{i \theta \sigma_{3}}=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right) \\
& g_{2}(\theta):=e^{i \theta \sigma_{2}}=\left(\begin{array}{cr}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) \tag{0.11}\\
& g_{1}(\theta):=e^{i \theta \sigma_{1}}=\left(\begin{array}{cc}
\cos (\theta) & i \sin (\theta) \\
i \sin (\theta) & \cos (\theta)
\end{array}\right)
\end{align*}
$$

Their action on M_{x} is
$g_{3} M_{x} g_{3}^{\dagger}=\left(\begin{array}{cc}x^{0}+x^{3} & e^{2 i \theta}\left(x^{1}-i x^{2}\right) \\ e^{-2 i \theta}\left(x^{1}+i x^{2}\right) & x^{0}-x^{3}\end{array}\right)$
$g_{2} M_{x} g_{2}^{\dagger}=\left(\begin{array}{cc}x^{0}+x^{1} \sin (2 \theta)+x^{3} \cos (2 \theta) & x^{1} \cos (2 \theta)-i x^{2}-x^{3} \sin (2 \theta) \\ x^{1} \cos (2 \theta)+i x^{2}-x^{3} \sin (2 \theta) & x^{0}-x^{1} \sin (2 \theta)-x^{3} \cos (2 \theta)\end{array}\right)$
$g_{1} M_{x} g_{1}^{\dagger}=\left(\begin{array}{cc}x^{0}-x^{2} \sin (2 \theta)+x^{3} \cos (2 \theta) & x^{1}-i x^{2} \cos (2 \theta)-i x^{3} \sin (2 \theta) \\ x^{1}+i x^{2} \cos (2 \theta)+i x^{3} \sin (2 \theta) & x^{0}+x^{2} \sin (2 \theta)-x^{3} \cos (2 \theta)\end{array}\right)$
This is the same we observed when we studied the same action of $S U(2)$ on $\mathbb{R}^{3}: g_{i}$ defines a rotation by angle of magnitude 2θ around the x_{i} axis is \mathbb{R}^{3} with coordinates x^{1}, x^{2}, x^{3}. Similarly, one can parametrize rotations around arbitrary axis. As we can write any matrix in $S O(3)$ as product of such elementary rotations (see again problem class 1), the map from $S U(2) \subset S L(2, \mathbb{C})$ is surjective onto $S O(3) \subset L_{+}^{\uparrow}$.

We can realize three other independent elements of $S L(2, \mathbb{C})$ as

$$
\begin{align*}
& h_{3}(\theta):=e^{\theta \sigma_{3}}=\left(\begin{array}{cc}
e^{\theta} & 0 \\
0 & e^{-\theta}
\end{array}\right) \\
& h_{2}(\theta):=e^{\theta \sigma_{2}}=\left(\begin{array}{cc}
\cosh (\theta) & -i \sinh (\theta) \\
i \sinh (\theta) & \cosh (\theta)
\end{array}\right) \tag{0.13}\\
& h_{1}(\theta):=e^{\theta \sigma_{1}}=\left(\begin{array}{cc}
\cosh (\theta) & \sinh (\theta) \\
\sinh (\theta) & \cosh (\theta)
\end{array}\right)
\end{align*}
$$

where again $\theta \in \mathbb{R}$. Note that now $h_{j}^{\dagger} \neq h_{j}^{-1}$ but still $\operatorname{det} h_{j}=1$. We now have

$$
h_{3} M_{x} h_{3}^{\dagger}=\left(\begin{array}{cc}
e^{2 \theta}\left(x^{0}+x^{3}\right) & x^{1}-i x^{2} \tag{0.14}\\
x^{1}+i x^{2} & e^{-2 \theta}\left(x^{0}-x^{3}\right)
\end{array}\right)
$$

As $e^{\theta}=\cosh \theta+\sinh \theta$ for real θ we can summarize this as

$$
\left(\begin{array}{l}
x^{0} \tag{0.15}\\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\cosh 2 \theta & 0 & 0 & \sinh 2 \theta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh 2 \theta & 0 & 0 & \cosh 2 \theta
\end{array}\right)\left(\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)
$$

i.e. this exactly a boost in (minus) the x^{3} direction. Boosts along the x^{2} and x^{1} axis are likewise realized by h_{2} and h_{1} and we can again find a boost along an arbitrary direction by exponentiating appropriate real linear combinations of the σ_{j}. In particular taking

$$
h_{1}=\left(\begin{array}{ll}
\cosh \theta & \sinh \theta \tag{0.16}\\
\sinh \theta & \cosh \theta
\end{array}\right)
$$

gives
$h_{1} M h_{1}^{\dagger}=\left(\begin{array}{ll}x_{3}+x_{0} \cosh 2 \theta+x_{1} \sinh 2 \theta & -i x_{2}+x_{1} \cosh 2 \theta+x_{2} \sinh 2 \theta \\ i x_{2}+x_{1} \cosh 2 \theta+x_{2} \sinh 2 \theta & -x_{3}+x_{0} \cosh 2 \theta+x_{1} \sinh 2 \theta\end{array}\right)$
which is a boost in the x_{1} direction.
You weren't asked to do this for the assignment, but we can now comment on how we should show that $F(g)$ is a surjective homomorphism. Given the above, it should be clear that we can write any rotation and any boost in L_{+}^{\uparrow} as the image of an element of $S L(2, \mathbb{C})$ under $F(g)$. In the lectures we have stated a thoerem that every element of L_{+}^{\uparrow} can be written as the product of an element of $S O(3)$ and a boost, hence every element in L_{+}^{\uparrow} is in the image of F.

Here are some things to ponder:

1. How is the Lorent group defined? Why is it defined that way?
2. What's the point about upper/lower indices?
