3) Verify that

$$
\begin{gather*}
l^{01}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad l^{02}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) l^{03}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
l^{12}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad l^{13}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad l^{23}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) \tag{0.1}
\end{gather*}
$$

are in the Lie algebra of L.
4) The Dirac matrices are

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2 \times 2} \tag{0.2}\\
-\mathbb{1}_{2 \times 2} & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right) \quad i=1,2,3
$$

where $\mathbb{1}_{2 \times 2}$ is the 2×2 identity matrix and σ_{i} are the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{0.3}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Show that the Dirac matrices obey $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}_{4 \times 4}$.
b) Show the 'freshers dream':

$$
\begin{equation*}
\left(a_{\mu} \gamma^{\mu}\right)^{2}=a_{\mu} a^{\mu} \mathbb{1}_{4 \times 4} \tag{0.4}
\end{equation*}
$$

5) Using the Dirac matrices, show that $S^{\mu \nu}=\frac{1}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ are equal to

$$
S^{0 i}=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{i} & 0 \tag{0.5}\\
0 & -\sigma_{i}
\end{array}\right), \quad S^{j k}=\frac{i}{2} \epsilon_{j k l}\left(\begin{array}{cc}
\sigma_{l} & 0 \\
0 & \sigma_{l}
\end{array}\right)
$$

where i, j, k only take values $1,2,3$. What does this imply about the reducibility of the representation of $S L(2, \mathbb{C})$ defined by exponentiating the $S^{\mu \nu}$?

Here are some things to ponder:

1. What is the global structure of the Lorentz group?
2. How can we construct a representation of the Lie algebra of L using the Dirac matrices?
