3) Verify that

$$
\begin{gather*}
l^{01}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad l^{02}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad l^{03}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
l^{12}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad l^{13}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad l^{23}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) \tag{0.1}
\end{gather*}
$$

are in the Lie algebra of L.

solution:

There are essentially two approaches here: a) finding the general form of Lie algebra elements of the Lie algebra $\mathfrak{s o}(1,3)$ of the Lorentz group, and verifying that the above have this form, or b) finding paths in L_{+}^{\uparrow} which give rise to these Lie algebra elements.

Let us first do approach a):
We have

$$
\eta \Lambda^{T} \eta=\Lambda^{-1}
$$

which after writing $\Lambda=e^{\ell}$ gives

$$
\eta e^{\ell^{T}} \eta=e^{-\ell}
$$

This needs to hold for any real rescaling of ℓ as well, after all the set of Lie algebra elements ℓ form a vector space. We can hence write

$$
\eta e^{t \ell^{T}} \eta=e^{-t \ell}
$$

for $t \in \mathbb{R}$. Taking a derivative w.r.t to t and setting $t=0$ (which is equivalent to expanding to linear order) gives us

$$
\eta \ell^{T} \eta=-\ell .
$$

This says that $\ell^{\mu}{ }_{\mu}=-\ell^{\mu}{ }_{\mu}$ (no summation) so the diagonal is zero. For off-diagonal terms we have $\ell^{i}{ }_{j}=-\ell^{j}{ }_{i}$ for $i, j=1,2,3, i \neq j$ and $\ell^{0}{ }_{i}=-\ell^{i}{ }_{0}$ for $i=1,2,3$. The six matrices above are a basis of the vector space which is defined by these conditions.

Let us now do b):
As discussed in the lectures, rotations are in L, e.g. here is a path in L :

$$
g^{12}(t)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{0.2}\\
0 & \cos t & \sin t & 0 \\
0 & -\sin t & \cos t & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which gives

$$
\begin{equation*}
\ell^{12}=\left.\frac{\partial}{\partial t} g^{12}(t)\right|_{t=0} \tag{0.3}
\end{equation*}
$$

and similarly for ℓ^{23} and ℓ^{13}. Then we have boosts, where we might look at

$$
g^{01}(t)=\left(\begin{array}{cccc}
\cosh t & -\sinh t & 0 & 0 \tag{0.4}\\
-\sinh t & \cosh t & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which gives

$$
\begin{equation*}
\ell^{01}=\left.\frac{\partial}{\partial t} g^{01}(t)\right|_{t=0} \tag{0.5}
\end{equation*}
$$

and again similar for ℓ^{02} and ℓ^{03}.
4) The Dirac matrices are

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2 \times 2} \tag{0.6}\\
-\mathbb{1}_{2 \times 2} & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right) \quad i=1,2,3
$$

where $\mathbb{1}_{2 \times 2}$ is the 2×2 identity matrix and σ_{i} are the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{0.7}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Show that the Dirac matrices obey $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}_{4 \times 4}$.
b) Show the 'freshers dream':

$$
\begin{equation*}
\left(a_{\mu} \gamma^{\mu}\right)^{2}=a_{\mu} a^{\mu} \mathbb{1}_{4 \times 4} \tag{0.8}
\end{equation*}
$$

solution:
(a) First note that $\left(\gamma^{0}\right)^{2}=-\mathbb{1}_{4 \times 4}$ and $\left(\gamma^{i}\right)^{2}=\mathbb{1}_{4 \times 4}$ (which follows from $\left(\sigma_{i}\right)^{2}=\mathbb{1}_{2 \times 2}$). Now we work out (for $i \neq j$)

$$
\begin{array}{r}
\left\{\gamma^{0}, \gamma^{i}\right\}=\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & -\sigma_{i}
\end{array}\right)+\left(\begin{array}{cc}
-\sigma_{i} & 0 \\
0 & \sigma_{i}
\end{array}\right)=0 \\
\left\{\gamma^{i}, \gamma^{j}\right\}=\left(\begin{array}{cc}
\left\{\sigma_{i}, \sigma_{j}\right\} & 0 \\
0 & \left\{\sigma_{i}, \sigma_{j}\right\}
\end{array}\right)=0 \tag{0.9}
\end{array}
$$

(b) The reason this is called the 'freshers dream' is that it seems to say that $\left(\sum a_{i}\right)^{2}=\sum a_{i}^{2}$ which is of course wrong. Using the Dirac matrices we can get something similar though. Let us first rewrite

$$
\begin{align*}
\left(a_{\mu} \gamma^{\mu}\right)^{2}=\left(a_{\mu} \gamma^{\mu}\right)\left(a_{\nu} \gamma^{\nu}\right)=a_{\mu} \gamma^{\mu} a_{\nu} \gamma^{\nu} & =\frac{1}{2}\left(a_{\mu} a_{\nu} \gamma^{\mu} \gamma^{\nu}+a_{\mu} a_{\nu} \gamma^{\mu} \gamma^{\nu}\right) \\
& =\frac{1}{2}\left(a_{\mu} a_{\nu} \gamma^{\mu} \gamma^{\nu}+a_{\nu} a_{\mu} \gamma^{\nu} \gamma^{\mu}\right) \tag{0.10}
\end{align*}
$$

where we simply relabelled $\mu \leftrightarrow \nu$ in the second term. We can now write

$$
\begin{equation*}
\left(a_{\mu} \gamma^{\mu}\right)^{2}=\frac{1}{2} a_{\mu} a_{\nu}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right)=\frac{1}{2} a_{\mu} a_{\nu} 2 \eta^{\mu \nu}=a^{\mu} a_{\mu} \tag{0.11}
\end{equation*}
$$

It is equally fine to observe that all of the cross-terms cancel due to the Clifford algebra relation of the Dirac matrices.
5) Using the Dirac matrices, show that $S^{\mu \nu}=\frac{1}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ are equal to

$$
S^{0 i}=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{i} & 0 \tag{0.12}\\
0 & -\sigma_{i}
\end{array}\right), \quad S^{j k}=\frac{i}{2} \epsilon_{j k l}\left(\begin{array}{cc}
\sigma_{l} & 0 \\
0 & \sigma_{l}
\end{array}\right)
$$

where i, j, k only take values $1,2,3$. What does this imply about the reducibility of the representation of $S L(2, \mathbb{C})$ defined by exponentiating the $S^{\mu \nu}$?

solution:

Using that $\gamma^{\nu} \gamma^{\mu}=-\gamma^{\mu} \gamma^{\nu}$ when $\mu \neq \nu$ we have

$$
S^{0 i}=\frac{1}{4}\left[\gamma^{0}, \gamma^{i}\right]=\frac{1}{2} \gamma^{0} \gamma^{i}=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{i} & 0 \tag{0.13}\\
0 & -\sigma_{i}
\end{array}\right)
$$

Furthermore

$$
S^{j k}=\frac{1}{2} \gamma^{j} \gamma^{k}=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{j} \sigma_{k} & 0 \tag{0.14}\\
0 & \sigma_{j} \sigma_{k}
\end{array}\right)
$$

Now observe that (using $\sigma_{j} \sigma_{k}=-\sigma_{k} \sigma_{j}$ when $k \neq j$)

$$
\begin{equation*}
\sigma_{j} \sigma_{k}=\frac{1}{2}\left(\sigma_{j} \sigma_{k}+\sigma_{j} \sigma_{k}\right)=\frac{1}{2}\left(\sigma_{j} \sigma_{k}-\sigma_{k} \sigma_{j}\right)=\frac{1}{2}\left[\sigma_{j}, \sigma_{k}\right]=i \epsilon_{j k l} \sigma_{l} \tag{0.15}
\end{equation*}
$$

Hence

$$
S^{j k}=\frac{i}{2} \epsilon_{j k l}\left(\begin{array}{cc}
\sigma_{l} & 0 \tag{0.16}\\
0 & \sigma_{l}
\end{array}\right)
$$

As discussed in the lectures, all of these are block diagonal, so this is a reducible representation. It is a representation of $S L(2, \mathbb{C})$ as we are effectively exponentiating complex linear combinations of Pauli matrices, which form the Lie algebra of $S L(2, \mathbb{C})$ as shown in Problem class 4 of Michaelmas term.

Here are some things to ponder:

1. What is the global structure of the Lorentz group?
2. How can we construct a representation of the Lie algebra of L using the Dirac matrices?
