6) Verify that

- a) For an element $\Lambda(\theta) = e^{l^{12}\theta}$ of the Lorentz group $(l^{12}$ is one of the generators of the Lorentz algebra introduced in the lectures) show that $\Lambda(0) = \Lambda(2\pi) = \mathbb{1}$. Now compare this behavior to the corresponding element of the representation acting on a Dirac spinor: $\Lambda_{1/2}(\theta) = e^{S^{12}\theta}$.
- b) Let $\gamma^5 := i\gamma^0\gamma^1\gamma^2\gamma^3$. What is $\frac{1}{2}(\gamma^5 \pm 1)\Psi$ for Ψ a Dirac spinor written in terms of Weyl spinors?

solution:

(a) We compute

$$\Lambda(\theta) = e^{l^{12}\theta} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\theta & \sin\theta & 0\\ 0 & -\sin\theta & \cos\theta & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(0.1)

which shows what we wanted to see. Now consider

$$\Lambda_{1/2}(\theta) = e^{S^{12}\theta} = \exp\left(\frac{i}{2} \begin{pmatrix} \sigma_3 & 0\\ 0 & \sigma_3 \end{pmatrix} \theta\right) = \begin{pmatrix} f(\theta) & 0 & 0 & 0\\ 0 & \bar{f}(\theta) & 0 & 0\\ 0 & 0 & f(\theta) & 0\\ 0 & 0 & 0 & \bar{f}(\theta) \end{pmatrix}$$
(0.2)

where $f(\theta) = \cos(\theta/2) + i\sin(\theta/2)$. Hence $\Lambda_{1/2}(0) = -\Lambda_{1/2}(2\pi) = \Lambda_{1/2}(4\pi)$, similar as for the spinors in \mathbb{R}^3 as we observed before.

(b) We compute

$$\gamma^5 = \begin{pmatrix} -\mathbb{1} & 0\\ 0 & \mathbb{1} \end{pmatrix} \tag{0.3}$$

For a Dirac spinor Ψ written in terms of Weyl spinors this maps $\psi_{L/R}$ to $\mp \psi_{L/R}$. We can use this to project to $\psi_{L/R}$:

$$\frac{1}{2}\left(\gamma^5 + \mathbb{1}\right)\Psi = \begin{pmatrix} 0\\\psi_R \end{pmatrix} \tag{0.4}$$

and

$$\frac{1}{2}\left(\gamma^{5}-\mathbb{1}\right)\Psi=-\begin{pmatrix}\psi_{L}\\0\end{pmatrix}\tag{0.5}$$

7) How does

$$B^{\mu\nu} \equiv \bar{\Psi} \gamma^{\mu} \gamma^{\nu} \Psi$$

transform under Lorentz transformations for Ψ a Dirac spinor? solution: We can work this out using the same logic used in the lectures.

$$B^{\mu\nu} \rightarrow \Psi^* \Lambda^{\dagger}_{1/2} \gamma_0 \gamma^{\mu} \gamma^{\nu} \Lambda_{1/2} \Psi = \Psi^* \gamma_0 \Lambda^{-1}_{1/2} \gamma^{\mu} \gamma^{\nu} \Lambda_{1/2} \Psi$$

$$= \Psi^* \gamma_0 \Lambda^{-1}_{1/2} \gamma^{\mu} \Lambda_{1/2} \Lambda^{-1}_{1/2} \gamma^{\nu} \Lambda_{1/2} \Psi$$

$$= \Psi^* \gamma_0 \Lambda^{\mu}_{\ \mu'} \gamma^{\mu'} \Lambda^{\nu}_{\ \nu'} \gamma^{\nu'} \Lambda_{1/2} \Psi$$

$$= \Lambda^{\mu}_{\ \mu'} \Lambda^{\nu}_{\ \nu'} B^{\mu'\nu'} \qquad (0.6)$$

Hence $B^{\mu\nu}$ transforms as we would expect given its indices!

8) For a Dirac spinor Ψ write

$$\bar{\Psi}\gamma^{\mu}\Psi$$
 and $\bar{\Psi}\Psi$

in terms of Weyl spinors.

solution: All we need to do is unpack the above expression and write $\Psi = (\psi_L, \psi_R)$. For $\mu = 0$ we find

$$\bar{\Psi}\gamma^{\mu}\Psi = \begin{pmatrix} \psi_L^*\\ \psi_R^* \end{pmatrix} (\gamma^0)^2 \begin{pmatrix} \psi_L\\ \psi_R \end{pmatrix} = -|\psi_L|^2 - |\psi_R|^2 \tag{0.7}$$

while for $\mu = i$ we find

$$\bar{\Psi}\gamma^{\mu}\Psi = \begin{pmatrix} \psi_L^*\\ \psi_R^* \end{pmatrix} \gamma^0 \gamma^i \begin{pmatrix} \psi_L\\ \psi_R \end{pmatrix} = \psi_L^* \sigma_i \psi_L - \psi_R^* \sigma_i \psi_R \tag{0.8}$$

using the expressions for Dirac matrices in terms of Pauli matrices.

9) For a relativistic point particle moving on path C through space-time, the only Lorentz invariant property of C is its length. Taking the action of a relativistic particle to be the length of C and parametrizing C as $x^{\mu}(s)$ we can write this as

$$S[x^{\mu}, \dot{x}^{\mu}] = -cm \int_{C} ds = -cm \int_{C} \sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} ds \,. \tag{0.9}$$

for a constant m and c the speed of light and $\dot{x}^{\mu} = \partial/\partial s x^{\mu}$. C is called the world-line of the particle.

- a) Show that this action is invariant under Lorentz transformations.
- b) Find the equations of motions and show that they are solved by straight lines in space-time.

c) Set s = t and expand the action for slow particles to recover the action of a non-relativistic point particle.

solution:

a) Under a Lorentz transformation

$$x^{\mu} \to \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{0.10}$$

and so

$$\dot{x}^{\mu} \to \Lambda^{\mu}_{\ \nu} \dot{x}^{\nu} \tag{0.11}$$

By definition

$$\dot{x}^{\mu}\dot{x}_{\mu} \tag{0.12}$$

is invariant under Lorentz transformations.

b) The Euler Lagrange eqs are

$$\frac{d}{ds}\frac{\dot{x}^{\mu}}{\sqrt{-\dot{x}^{\mu}\dot{x}_{\mu}}} = 0 \tag{0.13}$$

Straight lines are given by e.g. $x^{\mu}(s) = s c^{\mu} + x_0^{\mu}$, i.e. $\dot{x}^{\mu}(s) = c^{\mu}$ for c^{μ} constants such that $c^{\mu}c_{\mu} < 0$ ('time-like curves'). As this makes

$$\frac{\dot{x}^{\mu}}{\sqrt{-\dot{x}^{\mu}\dot{x}_{\mu}}}\tag{0.14}$$

constant as a function of s they obey the equations of motion.

c) We can set s = t and expand for small speeds to find

$$L = cm\sqrt{-\dot{x}^{\mu}\dot{x}_{\mu}} = cm\sqrt{c^2 - v^2} \sim mc^2 - \frac{1}{2}mv^2.$$
 (0.15)

Up to a sign, this is the usual expression for the kinetic energy of a point particle with a constant 'potential' term mc^2 . This is the origin of the famous mass-energy relation $E = mc^2$.

Remark: A more elegant treatment starts with the observation that we can reparametise the action by sending $s \to s(u)$ such that $-\dot{x}^{\mu}\dot{x}_{\mu} = 1$ for all u. This simplifies all formulas, shows that straight lines are the only solutions and identifies u as the proper time of a observer travelling along $x^{\mu}(s)$.

Here are some things to ponder:

- 1. In which ways is the relationship between SO(3) and SU(2) the same as the relationship between the Lorentz group and $SL(2, \mathbb{C})$.
- 2. What is a spinor?
- 3. What is an action?