
Andreas Braun Geometry of Mathematical Physics III EP, problems week 4

6) Verify that

a) For an element Λ(θ) = el
12θ of the Lorentz group (l12 is one of the

generators of the Lorentz algebra introduced in the lectures) show that
Λ(0) = Λ(2π) = 1. Now compare this behavior to the corresponding
element of the representation acting on a Dirac spinor: Λ1/2(θ) = eS

12θ.
b) Let γ5 := iγ0γ1γ2γ3. What is 1

2 (γ5 ± 1) Ψ for Ψ a Dirac spinor written
in terms of Weyl spinors?

solution:

(a) We compute

Λ(θ) = el
12θ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (0.1)

which shows what we wanted to see. Now consider

Λ1/2(θ) = eS
12θ = exp

(
i

2

(
σ3 0
0 σ3

)
θ

)
=


f(θ) 0 0 0

0 f̄(θ) 0 0
0 0 f(θ) 0
0 0 0 f̄(θ)


(0.2)

where f(θ) = cos(θ/2) + i sin(θ/2). Hence Λ1/2(0) = −Λ1/2(2π) =
Λ1/2(4π), similar as for the spinors in R3 as we observed before.

(b) We compute

γ5 =
(
−1 0
0 1

)
(0.3)

For a Dirac spinor Ψ written in terms of Weyl spinors this maps ψL/R
to ∓ψL/R. We can use this to project to ψL/R:

1
2

(
γ5 + 1

)
Ψ =

(
0
ψR

)
(0.4)

and
1
2

(
γ5 − 1

)
Ψ = −

(
ψL
0

)
(0.5)

7) How does
Bµν ≡ Ψ̄γµγνΨ

1
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transform under Lorentz transformations for Ψ a Dirac spinor?
solution: We can work this out using the same logic used in the lectures.

Bµν →Ψ∗Λ†1/2γ0γ
µγνΛ1/2Ψ = Ψ∗γ0Λ−1

1/2γ
µγνΛ1/2Ψ

=Ψ∗γ0Λ−1
1/2γ

µΛ1/2Λ−1
1/2γ

νΛ1/2Ψ
=Ψ∗γ0Λµ

µ′γµ
′Λν

ν′γν
′Λ1/2Ψ

=Λµ
µ′Λν

ν′Bµ′ν′

(0.6)

Hence Bµν transforms as we would expect given its indices!

8) For a Dirac spinor Ψ write

Ψ̄γµΨ and Ψ̄Ψ

in terms of Weyl spinors.
solution: All we need to do is unpack the above expression and write
Ψ = (ψL, ψR). For µ = 0 we find

Ψ̄γµΨ =
(
ψ∗L
ψ∗R

)
(γ0)2

(
ψL
ψR

)
= −|ψL|2 − |ψR|2 (0.7)

while for µ = i we find

Ψ̄γµΨ =
(
ψ∗L
ψ∗R

)
γ0γi

(
ψL
ψR

)
= ψ∗LσiψL − ψ∗RσiψR (0.8)

using the expressions for Dirac matrices in terms of Pauli matrices.

9) For a relativistic point particle moving on path C through space-time, the
only Lorentz invariant property of C is its length. Taking the action of a
relativistic particle to be the length of C and parametrizing C as xµ(s) we
can write this as

S[xµ, ẋµ] = −cm
∫
C
ds = −cm

∫
C

√
−ẋµẋµds . (0.9)

for a constant m and c the speed of light and ẋµ = ∂/∂s xµ. C is called the
world-line of the particle.

a) Show that this action is invariant under Lorentz transformations.
b) Find the equations of motions and show that they are solved by straight

lines in space-time.
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c) Set s = t and expand the action for slow particles to recover the action
of a non-relativistic point particle.

solution:

a) Under a Lorentz transformation

xµ → Λµ
νx

ν (0.10)

and so
ẋµ → Λµ

ν ẋ
ν (0.11)

By definition
ẋµẋµ (0.12)

is invariant under Lorentz transformations.
b) The Euler Lagrange eqs are

d

ds

ẋµ
√−ẋµẋµ

= 0 (0.13)

Straight lines are given by e.g. xµ(s) = s cµ + xµ0 , i.e. ẋµ(s) = cµ for cµ
constants such that cµcµ < 0 (‘time-like curves’). As this makes

ẋµ
√−ẋµẋµ

(0.14)

constant as a function of s they obey the equations of motion.
c) We can set s = t and expand for small speeds to find

L = cm
√
−ẋµẋµ = cm

√
c2 − v2 ∼ mc2 − 1

2mv2 . (0.15)

Up to a sign, this is the usual expression for the kinetic energy of a
point particle with a constant ‘potential’ term mc2. This is the origin
of the famous mass-energy relation E = mc2.

Remark: A more elegant treatment starts with the observation that we
can reparametise the action by sending s → s(u) such that −ẋµẋµ = 1 for
all u. This simplifies all formulas, shows that straight lines are the only
solutions and identifies u as the proper time of a observer travelling along
xµ(s).
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Here are some things to ponder:

1. In which ways is the relationship between SO(3) and SU(2) the same as the
relationship between the Lorentz group and SL(2,C).

2. What is a spinor?

3. What is an action?
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