
Andreas Braun Geometry of Mathematical Physics III EP, problems week 5

10) Consider the following action of a real scalar field

S =
∫
d4x ∂µφ∂

µφ+m2φ2 .

Show that the equations of motion are

(−∂µ∂µ +m2)φ = 0 .

solution:
We have

∂L/∂φ = 2m2φ (0.1)

and
∂

∂(∂µφ)L = ∂

∂(∂µφ) ∂ρφ∂
ρφ = ηρσ

∂

∂(∂µφ)∂ρφ∂σφ

= ηρσ∂σφ
∂

∂(∂µφ) ∂ρφ+ ηρσ∂ρφ
∂

∂(∂µφ) ∂σφ

= ηρσδµρ∂σφ+ ηρσδµσ∂ρφ = 2∂µφ

(0.2)

The equation of motion for φ is hence

(−∂µ∂µ +m2)φ = 0 (0.3)

Note that we can write the Lagrangian density as

L = −( ∂
∂t
φ)2 + (∇φ)2 +m2φ2 (0.4)

so this is really the same as example 4.2. You can check that the equations
of motion are also the same in both cases.

11) Consider the action

S =
∫
d4xΨ̄ (γµ∂µ +m) Ψ .

for a Dirac spinor Ψ.

a) Show that S is Lorentz invariant.
b) Find the equations of motion.
c) Find the conserved charge associated to the U(1) symmetry Ψ→ eiθΨ.
d) Show that

(γµ∂µ −m) (γν∂ν +m) = ∂µ∂
µ −m2
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solution:

(a) We have already seen the transformation behavior of all of the terms
in this action when we replace ∂µ by a constant Lorentz covector aµ
in the third problem class, where we found that they are all invariant.
Transforming the argument of the spinor field Ψ effectively makes ∂µ
transform as a Lorentz covector as well, so that the above action is
Lorentz invariant.
Let’s translate the above into equations. We let xµ → Λµ

νx
ν and

y = Λ−1x, so that a Lorentz transformation maps

Ψ(x)→ Λ1/2Ψ(y) . (0.5)

Note that Λ1/2 is the ‘spinor representation’ matrix associated to Λ,
i.e. if Λ = el

ρσθρσ then Λ1/2 = eS
ρσθρσ .

Using the transformation of Ψ̄ studied before, Ψ̄→ Ψ̄Λ−1
1/2 we find

S → S ′ =
∫
d4xΨ̄(y)Λ−1

1/2

(
γµ

∂

∂xµ
+m

)
Λ1/2Ψ(y)

=
∫
d4yΨ̄(y)Λ−1

1/2

(
γµ
(
Λ−1

)ρ
µ
∂

∂yρ
+m

)
Λ1/2Ψ(y)

where we have used the fact that the dervative behaves like a covector
(via the product rule) and that d4x = d4y for proper Lorentz transfor-
mations. Now we use the magical formula Λ−1

1/2γ
µΛ1/2 = Λµ

νγ
ν . We

then have

S ′ =
∫
d4yΨ̄(y)

(
γν
(
Λ−1

)ρ
µΛµ

ν
∂

∂yρ
+ Λ−1

1/2Λ1/2m

)
Ψ(y) (0.6)

I have rearranged some factors (which are just numbers as we are using
indices) and you can see that (Λ−1)ρ µΛµ

ν = δρν . As also Λ−1
1/2Λ1/2 = 1

we end up with

S ′ =
∫
d4yΨ̄(y)

(
γν

∂

∂yν
+m

)
Ψ(y) = S . (0.7)

as it is now evident that all that has happened is that x has been
relabelled as y everywhere.

(b) To find the field equation for Ψ̄, let us write out the Lagrangian in
terms of the components ΨI of the spinors:

L = Ψ∗Iγ0
IJ (γµJK∂µ + δJKm) ΨK (0.8)
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where γ0
IJ and γµJK are the components of these matrices. The Euler-

Lagrange equation for Ψ∗ is simply

∂L

∂Ψ∗I
= 0 (0.9)

as there are no derivatives w.r.t Ψ∗ in L. We hence find

γ0
IJ (γµJK∂µ + δJKm) ΨK = 0 . (0.10)

Multiplying by (γ0)−1 gives

(γµ∂µ +m) Ψ = 0 . (0.11)

This is the celebrated Dirac equation.
(c) Under the U(1) symmetry acting on Ψ as Ψ→ eiθΨ, or in components

ΨI → eiθΨI . Ψ has 4 components ΨI , each of which is complex, so
we need to treat ΨI and Ψ̄I as 8 independent fields. The infinitesimal
transformation are found by expanding to linear order in θ:

δΨI = iθΨI δΨI = −iθΨI (0.12)

and the conserved current is (note we are using summation convention
below, i.e. summing over I)

jµ = δΨI
∂L

∂(∂µΨI)
+ δΨ̄I

∂L

∂(∂µΨ̄I)

= iθΨI
∂L

∂(∂µΨI)
− iθΨ̄I

∂L

∂(∂µΨ̄I)
= iθΨIΨ∗Kγ0

KJγ
µ
JI = iθΨ̄γµΨ .

(0.13)

Again this is conserved for any θ, and we don’t loose anything rescaling
the current to get rid of the iθ in the factor.
Rescaling this we get the conserved charge density j0 = −Ψ̄γ0γ0Ψ =
Ψ̄Ψ, i.e. the conserved charge is

QV =
∫
V
d3x |Ψ|2 (0.14)

which is positive definite. Hence one can use Ψ as a wave-function just
as one does for the Schroedinger equation.
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(d) We work out

(γµ∂µ −m) (γν∂ν +m) =
(
∂µ∂νγ

µγν −m2
)

=
(

1
2∂µ∂νγ

µγν + 1
2∂µ∂νγ

µγν −m2
)

=
(

1
2∂µ∂νγ

µγν + 1
2∂ν∂µγ

µγν −m2
)

=
(

1
2∂µ∂νγ

µγν + 1
2∂µ∂νγ

νγµ −m2
)

=
(

1
2∂µ∂ν{γ

µ, γν} −m2
)

=
(
∂µ∂νη

µν −m2
)

=
(
∂µ∂

µ −m2
)

(0.15)
Note that we have simply relabelled µ and ν for the second term in
the 4th line. The same result can be found by writing out the sums
γµ∂µ and γν∂ν and collecting all the terms. It is in the sense of the
above equation that the Dirac equation is the square root of the Klein-
Gordon equation. The above computation is that prompted Dirac to
introduce the Dirac matrices.

12) Consider a field Φ transforming in the adjoint representation of the Lie group
SU(n). Show that

S =
∫
d4x tr (∂µΦ∂µΦ)

is invariant under the action of SU(n) and find the associated conserved
current.
solution:

We first need to think about what it means to transform in the adjoint
representation. The adjoint representation acts on the vector space that is
equal to the Lie algebra of SU(n). We should hence think of Φ as a (space-
time dependent) element of the Lie algebra of SU(n). In particular, this
means Φ is a traceless anti-hermitian n× n matrix that transforms as

Φ→ g−1Φg (0.16)

for g ∈ SU(n) and also
∂µΦ→ g−1(∂µΦ)g (0.17)

Under this map

tr (∂µΦ∂µΦ)→ tr
(
g−1∂µΦgg−1∂µΦg

)
= tr

(
g−1∂µΦ∂µΦg

)
= tr

(
gg−1∂µΦ∂µΦ

)
= tr (∂µΦ∂µΦ)

(0.18)
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using the properties of the trace. The associated infinitesimal transformation
(Lie algebra representation) is

δγΦ = [Φ, γ] (0.19)

for γ ∈ su(n). For a basis γi of the Lie algebra we can write

Φ = Φiγi (0.20)

so that
L = ∂µΦi∂

µΦjtr (γiγj) (0.21)

and
γiδγΦi = Φj[γj, γ] (0.22)

We can now work out

jµ = ∂L

∂(∂µΦi)
δγφi = 2(∂µΦj)tr(γiγj)δγΦi = 2tr (δγΦ∂µΦ)

= 2tr ([Φ, γ]∂µΦ)
(0.23)

Here are some things to ponder:

1. What is an action?

2. What is a symmetry of an action?

3. When do we consider a physical system to be Lorentz invariant?
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