13) Show that using the field strength $F_{\mu \nu}$ and the 4-current J^{μ} we can write the Maxwell equations as

$$
\partial_{\nu} F^{\mu \nu}=J^{\mu}, \quad \epsilon^{\mu \nu \rho \sigma} \partial_{\nu} F_{\rho \sigma}=0
$$

14) Show that

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

can be written as

$$
\boldsymbol{E}=-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t}, \quad \boldsymbol{B}=\nabla \times \boldsymbol{A}
$$

15) Show

$$
\frac{\partial}{\partial X_{a_{1} \ldots a_{n}}}\left(X^{b_{1} \ldots b_{n}} X_{b_{1} \ldots b_{n}}\right)=2 X^{a_{1} a_{2} \ldots a_{n}}
$$

for any tensor X with components $X_{a_{1} \ldots a_{n}}$.

Here are some things to ponder:

1. How do electric and magnetic fields behave under Lorentz transformations?
2. Which action reproduces the Maxwell equations?
3. What is the relationship of the potential A_{μ} to observable physics?
