13) Show that using the field strength $F_{\mu \nu}$ and the 4 -current J^{μ} we can write the Maxwell equations as

$$
\partial_{\nu} F^{\mu \nu}=J^{\mu}, \quad \epsilon^{\mu \nu \rho \sigma} \partial_{\nu} F_{\rho \sigma}=0
$$

solution: We need to unpack those equations by discriminating between indices being 0 or $i=1,2,3$ (we use latin letters for indices running from 1 to 3). As $F^{0 i}=E_{i}$ the first equation gives

$$
\begin{equation*}
\partial_{i} E_{i}=\nabla \cdot \boldsymbol{E}=J^{0}=\rho \tag{0.1}
\end{equation*}
$$

when $\mu=0$. For $\mu=i$ we use $F_{i 0}=-E_{i}$ and $F^{i j}=\epsilon_{i j k} B_{k}$ to find

$$
\begin{equation*}
\partial_{0} F^{i 0}+\partial_{j} F^{i j}=-\partial_{t} E_{i}+\epsilon_{i j k} \partial_{j} B_{k}=j^{i} \tag{0.2}
\end{equation*}
$$

which reads

$$
\begin{equation*}
\nabla \times \boldsymbol{B}-\frac{\partial}{\partial t} \boldsymbol{E}=\boldsymbol{j} \tag{0.3}
\end{equation*}
$$

in vector notation. These are the inhomogeneous Maxwell eqns.
Let us no unpack the homogeneous eqs. Let us first set $\mu=0$. Then $\epsilon^{0 i j k}=\epsilon_{i j k}$ and hence

$$
\begin{equation*}
0=\epsilon_{i j k} \partial_{i} F_{j k}=\epsilon_{i j k} \partial_{i} \epsilon_{j k l} B_{l}=2 \delta_{i l} \partial_{i} B_{l}=\partial_{i} B_{i} \tag{0.4}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\nabla \cdot \boldsymbol{B}=0 \tag{0.5}
\end{equation*}
$$

Finally let $\mu=i$ in the inhomogeneous Maxwell eq. Then one of the other 3 indices must be 0 so that we can write

$$
\begin{align*}
0 & =\epsilon^{i 0 j k} \partial_{0} F_{j k}+\epsilon^{i j 0 k} \partial_{j} F_{0 k}+\epsilon^{i j k 0} \partial_{j} F_{k 0} \\
& =\epsilon^{i 0 j k} \partial_{0} \epsilon_{j k l} B_{l}+2 \epsilon^{0 i j k} \partial_{j}\left(-E_{k}\right) \\
& =-\epsilon_{i j k} \epsilon_{j k l} \partial_{0} B_{l}+2 \epsilon^{0 i j k} \partial_{j}\left(-E_{k}\right) \tag{0.6}\\
& =\left(-2 \frac{\partial}{\partial t} \boldsymbol{B}-2 \nabla \times \boldsymbol{E}\right)_{i}
\end{align*}
$$

14) Show that

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

can be written as

$$
\boldsymbol{E}=-\nabla \phi-\frac{\partial \boldsymbol{A}}{\partial t}, \quad \boldsymbol{B}=\nabla \times \boldsymbol{A}
$$

solution: We can proceed similar as above. Let us first set $\mu=0$ and $\nu=k$. We get

$$
\begin{equation*}
F_{0 k}=-E_{k}=\partial_{0} A_{k}-\partial_{k} A_{0}=\frac{\partial}{\partial t} A_{k}+\partial_{k} \phi \tag{0.7}
\end{equation*}
$$

where we have used $A_{0}=-A^{0}=-\phi$. Now let us look at the situation $\mu=i$ and $\nu=j$. We find

$$
\begin{equation*}
F_{i j}=\epsilon_{i j k} B_{k}=\partial_{i} A_{j}-\partial_{j} A_{i} . \tag{0.8}
\end{equation*}
$$

The fastest way to understand this equation is to fix e.g. $i=1, j=2$. In this case we find

$$
\begin{equation*}
\epsilon_{12 k} B_{k}=B_{3}=\partial_{1} A_{2}-\partial_{2} A_{1}=(\nabla \times \boldsymbol{A})_{3} \tag{0.9}
\end{equation*}
$$

and similarly for other cases. This can also be seen by contracting the above with $\epsilon_{i j l}$ to find

$$
\begin{equation*}
\epsilon_{i j l} \epsilon_{i j k} B_{k}=\epsilon_{i j l}\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right) \tag{0.10}
\end{equation*}
$$

which gives

$$
\begin{equation*}
2 B_{l}=2 \epsilon_{i j l} \partial_{i} A_{j}=2(\nabla \times \boldsymbol{A})_{l} \tag{0.11}
\end{equation*}
$$

15) Show

$$
\frac{\partial}{\partial X_{a_{1} \ldots a_{n}}}\left(X^{b_{1} \ldots b_{n}} X_{b_{1} \ldots b_{n}}\right)=2 X^{a_{1} a_{2} \ldots a_{n}}
$$

for any tensor X with components $X_{a_{1} \ldots a_{n}}$.
solution:
We have

$$
\begin{aligned}
& \frac{\partial}{\partial X_{a_{1} \ldots a_{n}}}\left(X^{b_{1} \ldots b_{n}} X_{b_{1} \ldots b_{n}}\right)=\frac{\partial}{\partial X_{a_{1} \ldots a_{n}}}\left(X_{c_{1} \ldots c_{n}} X_{b_{1} \ldots b_{n}} \eta^{c_{1} b_{1}} \cdots \eta^{c_{n} b_{n}}\right) \\
& =\left(\delta_{c_{1}}^{a_{1}} \cdots \delta_{c_{n}}^{a_{n}} X_{b_{1} \ldots b_{n}}+X_{c_{1} \ldots c_{n}}^{\left.\left.\delta_{b_{1}}^{a_{1}} \cdots \delta_{b_{n}}^{a_{n}}\right) \eta^{c_{1} b_{1}} \cdots \eta^{c_{n} b_{n}}\right)}\right. \\
& =X^{a_{1} \ldots a_{n}}+X^{a_{1} \ldots a_{n}}=2 X^{a_{1} \ldots a_{n}}
\end{aligned}
$$

Here are some things to ponder:

1. How do electric and magnetic fields behave under Lorentz transformations?
2. Which action reproduces the Maxwell equations?
3. What is the relationship of the potential A_{μ} to observable physics?
