
Andreas Braun Geometry of Mathematical Physics III EP, problems week 7

16) Consider a field theory with Lagrangian

L0 = −∂µφ∂µφ− U(|φ|2) (0.1)

and scalar potential U(|φ|2) = λ(|φ|2−a2)2 , with parameters λ, a > 0. The
energy (or “Hamiltonian”) is

E =
∫
d3x

(
|∂0φ|2 + |∂iφ|2 + U(|φ|2)

)
(a) Show that the configurations of least energy (“vacua”, or “ground

states”) parametrize a circle in field space.
(b) Show that different vacua are related by global U(1) transformations.

solution:

(a) First note that this is a sum of squares, i.e. all terms are positive
definite and the integral E only vanishes if

∂0φ = ∂iφ = U(|φ|2) = 0 (0.2)

This means we are talking about constant fields φ = c where U(|c|2) =
0. This implies that

|c|2 = a2 i.e. c = eiθa . (0.3)

We need to make sure these also solve the equations of motion:

∂µ∂
µφ = U ′(|φ|2)φ (0.4)

(taken from problem 19). The lhs here is clearly zero for constant fields.
The rhs is

2λ(|φ|2 − a2)φ (0.5)
which vanishes for φ = c = eiθa.
The set of vacua is hence

{φθ = eiθa|θ = 0..2π} (0.6)

which is a circle!
(b) A global U(1) acts as

φ→ eiβφ (0.7)
for β ∈ 0..2π. Hence we have

φθ → φθ+β , (0.8)

and for a given vacuum we can reach all of the others by an appropriate
choice of β.
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17) Show that
[Dµ, Dν ] = −iFµν ,

where Fµν = ∂µAν − ∂νAµ is the field strength and Dµ = ∂µ − iAµ the
covariant derivative.
solution:

The above equation must be read as a relation between differential operators,
so we need to check that it holds when applied to any function f(x):

[Dµ, Dν ]f = [(∂µ − iAµ)(∂ν − iAν)− (∂ν − iAν)(∂µ − iAµ)] f
= [∂µ∂ν − i∂µAν − iAµ∂ν − AµAν − ∂ν∂µ + i∂νAµ + iAν∂µ + AνAµ]

(0.9)
The terms with 2 or 0 derivatives cancel right away, we can use the product
rule and write ∂µAνf = f∂µAν + Aν∂µf and likewise for the other term of
this type. Then

[Dµ, Dν ]f = −i(f∂µAν + Aν∂µf)− iAµ∂νf + if(∂νAµ + Aµ∂νf) + iAν∂µf

= −if(∂µAν − ∂νAµ) = −ifFµν = −iFµνf
(0.10)

where it is understood that the derivatives in Fµν do not act on f , i.e. Fµν
is just a function.

19) Consider “scalar electrodynamics”, the field theory with Lagrangian density

L = −DµφD
µφ− U(|φ|2)− 1

4g2FµνF
µν ,

where
Dµφ = (∂µ − iAµ)φ , Fµν = ∂µAν − ∂νAµ .

Show that the equations of motion (Euler-Lagrange equations) for the com-
plex scalar field φ and for the real U(1) gauge field Aµ are

DµD
µφ = U ′(|φ|2)φ , ∂νF

µν = g2Jµ ,

where
Jµ = −i(φ̄Dµφ− φDµφ) .

solution:

We need to use the Euler-Lagrange equation, which for a field X read

0 = ∂L

∂X
− ∂µ

∂L

∂(∂µX) ≡
∂L

∂X
− ∂0

∂L

∂(∂0X) − ∂i
∂L

∂(∂iX) ,
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applied to X = φ̄ and X = Aν . (The Euler-Lagrange equation for X = φ
is the complex conjugate of the Euler-Lagrange equation for X = φ̄, since
the Lagrangian density is real.)
Let us first work out the equation of motion for φ, which is obtained by
using X = φ̄ in the Euler-Lagrange equation above. The simplest way to
proceed is perhaps to integrate by parts the kinetic term of φ in the action,
or write the Lagrangian density as

L = φ̄DµD
µφ− U(|φ|2)− 1

4g2FµνF
µν + ∂µ(. . . ) ≡ L′ + ∂µ(. . . ) .

The last term is a total derivative, which integrates to a boundary (or ‘sur-
face’) term in the action, which in turn does not contribute to the equations
of motion (which are obtained by setting to zero the first variation of the
action under any variations of the fields, see Math Phys II or the first term).
Then the E-L eqn becomes ∂L′/∂φ̄ = 0, which leads to

DµD
µφ− U ′(|φ|2)φ = 0 .

Alternatively, let us write down the covariant derivative explicitly:

L = −(∂µφ̄+ iAµφ̄)(∂µφ− iAµφ)− U(|φ|2)− 1
4g2FµνF

µν .

Then
∂L

∂φ̄
= −iAµ(∂µφ− iAµφ)− U ′(|φ|2)φ

∂L

∂(∂µφ̄)
= −(∂µφ− iAµφ) ,

which leads to the E-L equation

0 = (∂µ − iAµ)(∂µ − iAµ)φ− U ′(|φ|2)φ ≡ DµD
µφ− U ′(|φ|2)φ .

The equation of motion for the gauge field (X = Aν) is a little more involved
to derive, but we can make progress if we notice that Aν only appears inside
the covariant derivatives Dνφ and Dνφ̄, whereas ∂µAν only appears inside
the Maxwell term, which depends on the field strength. Using the chain rule
and ∂Aµ/∂Aν = δνµ, we calculate

∂L

∂Aν
= ∂L

∂(Dµφ)
∂(Dµφ)
∂Aν

+ ∂L

∂(Dµφ)
∂(Dµφ)
∂Aν

= −Dµφ(−iδνµφ) + (c.c)

= i(φDνφ− φ̄Dνφ) ≡ Jν .
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Then we have

∂L

∂(∂µAν)
= ∂L

∂Fρσ

∂Fρσ
∂(∂µAν)

,

where we first view Fρσ as independent variables that the Lagrangian density
depends on, and then express them as Fµν = ∂µAν − ∂νAµ. Let’s compute
the two factors separately. Being explicit with indices,

∂L

∂Fρσ
= − 1

4g2η
µαηνβ

∂

∂Fρσ
(FµνFαβ) = − 1

4g2η
µαηνβ

(
∂Fµν
∂Fρσ

Fαβ + Fµν
∂Fαβ
∂Fρσ

)

= − 1
4g2η

µαηνβ
(
δρµδ

σ
νFαβ + Fµνδ

ρ
αδ

σ
β

)
= − 1

2g2F
ρσ .

(Having done this exercise once, later on we will use ∂
∂Xν

(XµXµ) = 2Xν ,
∂

∂Xρσ
(XµνXµν) = 2Xρσ etc. without further proof.) For the second factor,

∂Fρσ
∂(∂µAν)

= ∂

∂(∂µAν)
(∂ρAσ − ∂σAρ) = δµρ δ

ν
σ − δµσδνρ .

Putting the previous results together, we find

∂L

∂(∂µAν)
= ∂L

∂Fρσ

∂Fρσ
∂(∂µAν)

= − 1
2g2F

ρσ
(
δµρ δ

ν
σ − δµσδνρ

)
= − 1

g2F
µν = 1

g2F
νµ

So the equation of motion for the gauge field reads

0 = Jν − ∂µ
(

1
g2F

νµ

)
⇐⇒ ∂µF

νµ = g2Jν .

Here are some things to ponder:

1. What is a gauge symmetry and how does it differ form an ordinary global
symmetry?

2. What is a covariant derivative?
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