
Andreas Braun Geometry of Mathematical Physics III EP, problems week 8

21) A magnetic monopole of magnetic charge m located at the origin O of
three-dimensional space is described by a divergence-free magnetic fieldB in
R3\O, with non-vanishing magnetic flux though the 2-sphere that surrounds
the origin O:

1
2π

∫
S2
B · dσ = m 6= 0.

(a) Show that all of the above can be reformulated as the equation

∇ ·B = 2πm δ(3)(x)

in R3.
(b) Using that

∇1
r

= − x
r3 , ∆1

r
= −4π δ(3)(x) ,

where r = |x| and ∆ = ∇2 is the Laplacian, show that

B = m

2
x

r3

solves the equation in part (a).
(c) For

A±x = ∓m2
y

r(r ± z) , A±y = ±m2
x

r(r ± z) , A±z = 0 . (1)

Show that the corresponding magnetic field is

∇×A± = m

2
x

r3 . (2)

solution:

(a) If x 6= 0 then ∇ ·B = 0 is equivalent to ∇ ·B = 2πm δ(3)(x).
If we extend R3\O to R3, a 2-sphere S2 (of any radius) surrounding the
origin is the boundary of a 3-ball B3 of the same radius, and Gauss’
theorem gives ∫

S2
B · dσ =

∫
B3
∇ ·B d3x .

The volume integral on the right-hand side can only receive contribu-
tion from the origin, because B is divergence-free elsewhere. (Alter-
natively, the flux of the magnetic field through a 2-sphere surrounding

1



Andreas Braun Geometry of Mathematical Physics III EP, problems week 8

the origin is independent of the radius of the sphere.) Then it must be
that

∇ ·B = c δ(3)(x)

for some constant c.1 Plugging this in the above equation and compar-
ing with the given magnetic flux we find

2πm =
∫
S2
B · dσ =

∫
B3
∇ ·B d3x = c

∫
B3
δ(3)(x) d3x = c .

(b) We just need to remember that the Laplacian is the divergence of the
gradient, or mathematically ∆ = ∇ · ∇. Then

∇ ·
(
m

2
x

r3

)
= −m2 ∇ ·

(
− x
r3

)
= −m2 ∇ · ∇

1
r

= −m2 ∆1
r

= −m2 (−4π) δ(3)(x) = 2πm δ(3)(x) .

(c) We can do the computation in two ways here: using Cartesian coordi-
nates, with r =

√
x2 + y2 + z2; or using polar coordinates, which make

the gauge field easier to write and its field strength easier to calculate,
but then we need to switch back to Cartesian coordinates.
Let’s use Cartesian coordinates, which is the approach I expect most
of you will have taken. We start by writing

A±x = −± m

2
y

r(r +±z) , A±y = ±m2
x

r(r +±z) , A±z = 0

with ±2 = 1, so that we can treat the two cases ± = ±1 in one go.
We’ll also use

∂xr = x

r
, ∂yr = y

r
, ∂zr = z

r
,

and write r for
√
x2 + y2 + z2.

1To be precise, derivatives of the delta function would also be allowed, but it’s easy to see
that they wouldn’t reproduce the desired magnetic flux. I would give full marks even if this is
not noticed.
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Next we calculate the derivatives

∂xA
±
y = ±m2

[
1

r(r +±z) − x
x/r

r2(r +±z) − x
x/r

r(r +±z)2

]

= ±m2
1

r3(r +±z)2

[
r2(r +±z)− x2(r +±z)− x2r

]
∂yA

±
x = −± m

2
1

r3(r +±z)2

[
r2(r +±z)− y2(r +±z)− y2r

]
∂zA

±
y = ±m2 x

[
− z/r

r2(r +±z) −
z/r

r(r +±z)2 −
±

r(r +±z)2

]

= −± m

2
x

r3(r +±z)2

[
z(r +±z) + zr +±r2

]
= −± m

2
x

r3(r +±z)2 ± (r +±z)2 = −m2
x

r3

∂zA
±
x = m

2
y

r3

∂yA
±
z = ∂xAz = 0 .

From this we find the components of ∇×A±:

(∇×A±)x = ∂yA
±
z − ∂zA±y = m

2
x

r3

(∇×A±)y = ∂zA
±
x − ∂xA±z = m

2
y

r3

(∇×A±)z = ∂xA
±
y − ∂yA±x

= ±m2
1

r3(r +±z)2

[
(r +±z)(2r2 − r2 + z2)− r(r2 − z2)

]
= ±m2

1
r3(r +±z)

[
r2 + z2 − r(r −±z)

]
= ±m2

1
r3(r +±z) ± z(r +±z) = m

2
z

r3

as required.

22) Write the A± = A±x dx+ A±y dy + A±z dz in (1) in spherical coordinates as

A = m

2 (±1− cos θ)dϕ

using dx = ∂x
∂r
dr + ∂x

∂θ
dθ + ∂x

∂ϕ
dϕ and similarly for dy. solution:
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Spherical coordinates are defined by

x = r sin θ cosϕ
y = r sin θ sinϕ
z = r cos θ

(1.1)

Using dx = ∂x
∂r
dr + ∂x

∂θ
dθ + ∂x

∂ϕ
dϕ and similarly for dy we find

2
m

(
A±x dx+ A±y dy + A±z dz

)
= dr

(
−± r sin θ sinϕ

r(r ± z) sin θ cosϕ± r sin θ cosϕ
r(r ± z) sin θ sinϕ

)

+ dθ

(
−± r2 sin θ sinϕ

r(r ± z) cos θ cosϕ± r2 sin θ cosϕ
r(r ± z) cos θ sinϕ

)

+ dϕ

(
−± r sin θ sinϕ

r(r ± z) (−r sin θ sinϕ)± r sin θ cosϕ
r(r ± z) (r sin θ cosϕ)

)

= 1
1± cos θ

(
± sin2 θ sin2 ϕ± sin2 θ cos2 ϕ

)
dϕ

= ±(1− cos2 θ)
1± cos θ dϕ = (±1− cos θ)dϕ

(1.2)

23) The energy stored in electromagnetic fields is

E = 1
2

∫
d3x(E2 +B2) .

Show that the energy of the magnetic monopole solution (2) is infinite. How
about an electric monopole?
solution:
Using spherical coordinates we have

1
2

∫
dVB2 = 1

2

∫
r2drdϕdθ sin θm

2

4
r2

r6 = π

2m
2
∫
dr r−2 = π

2m
2 [−1/r]∞0

(1.3)
which is not finite at r = 0. We can make the integral start at r = ε which
makes it finite, showing that the point-like nature of the monopole is the
problem making the energy diverge. For an electric monopole, one would
write

E = q

2
x

r3

for some charge q. As the energy is symmetrical w.r.t. electric and magnetic
fields, the answer will be same as above, i.e. electric point charges have
infinite energy stored in their fields.
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Here are some things to ponder:

1. How can we get away with defining a magnetic monopole in a U(1) gauge
theory?

2. How would you go about defining a non-abelian gauge theory?
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