24) By considering infinitesimal gauge transformations $\left(\left|\alpha^{a}\right| \ll 1\right)$

$$
\begin{equation*}
g=e^{i \alpha^{a} t_{a}} \equiv e^{i \alpha}=1+i \alpha+O\left(\alpha^{2}\right) \tag{1.1}
\end{equation*}
$$

and Taylor expanding finite gauge transformations to leading order in $\alpha \in$ $\mathfrak{g}=\operatorname{Lie}(G)$, show that the infinitesimal gauge variations of the fields are

$$
\begin{align*}
\delta_{\alpha} \phi & =i \alpha \phi \\
\delta_{\alpha} A_{\mu} & =i\left[\alpha, A_{\mu}\right]+\partial_{\mu} \alpha \tag{1.2}\\
\delta_{\alpha} F_{\mu \nu} & =i\left[\alpha, F_{\mu \nu}\right],
\end{align*}
$$

where $\phi \mapsto \phi+\delta_{\alpha} \phi$ and so on to leading order.
solution: By construction, these have to give us the associated Lie algebra representations (but now space-time dependent): Expanding to linear order

$$
\begin{align*}
& \delta \phi=e^{i \alpha} \phi-\phi \simeq(1+i \alpha) \phi-\phi=i \alpha \phi \tag{1.3}\\
& \delta A_{\mu}=e^{i \alpha}\left(A_{\mu}+i \partial_{\mu}\right) e^{-i \alpha}-A_{\mu} \\
& \simeq(1+i \alpha)\left(A_{\mu}+i \partial_{\mu}\right)(1-i \alpha)-A_{\mu} \tag{1.4}\\
& \simeq i \alpha A_{\mu}-i A_{\mu} \alpha+\partial_{\mu} \alpha=i\left[\alpha, A_{\mu}\right]+\partial_{\mu} \alpha .
\end{align*}
$$

where we have used that $\alpha \partial_{\mu} \alpha \ll \partial_{\mu} \alpha$. Finally

$$
\begin{align*}
\delta F_{\mu \nu} & =e^{i \alpha} F_{\mu \nu} e^{-i \alpha}-F_{\mu \nu} \\
& \simeq(1+i \alpha) F_{\mu \nu}(1-i \alpha)-F_{\mu \nu} \tag{1.5}\\
& \simeq i \alpha F_{\mu \nu}-i F_{\mu \nu} \alpha=i\left[\alpha, F_{\mu \nu}\right] .
\end{align*}
$$

26) Consider a field ϕ in the adjoint representation, with components ϕ^{a}, where $a=1, \ldots, \operatorname{dim} \mathfrak{g}$.
(a) Show that

$$
\begin{equation*}
\left(A_{\mu} \phi\right)^{a}=i f_{b c}{ }^{a} A_{\mu}^{b} \phi^{c} \tag{1.6}
\end{equation*}
$$

and similarly for $\left(F_{\mu \nu} \phi\right)^{a}$.
[Hint: we worked out the matrices defining the adjoint representation in problem 29 of Michaelmas term, but wrote group elements as $e^{\alpha^{a} \hat{t}_{a}}$ instead of the physics convention $e^{i \alpha^{a} t_{a}}$ used here]
(b) Let $\Phi:=\phi^{a} t_{a}$, and $A_{\mu}=A_{\mu}^{a} t_{a}, F_{\mu \nu}=F_{\mu \nu}^{a} t_{a}$ as usual. Show that

$$
\begin{equation*}
\left(A_{\mu} \phi\right)^{a} t_{a}=\left[A_{\mu}, \Phi\right] \tag{1.7}
\end{equation*}
$$

and similarly for $F_{\mu \nu} \phi$. Show that therefore

$$
\begin{align*}
D_{\mu} \Phi & =\partial_{\mu} \Phi-i\left[A_{\mu}, \Phi\right] \\
{\left[D_{\mu}, D_{\nu}\right] \Phi } & =-i\left[F_{\mu \nu}, \Phi\right] \tag{1.8}
\end{align*}
$$

solution:

(a) In problem 29 MM we have seen that the matrices defining the adjoint representation are

$$
\begin{equation*}
\rho\left(\hat{t_{a}}\right)^{b}{ }_{c} \equiv\left(\hat{t}_{a}^{a d j}\right)^{b}{ }_{c}=f_{a c}{ }^{b} \tag{1.9}
\end{equation*}
$$

but then we did not include the i in the exponent and simply defined $g=e^{\hat{t}_{a} \alpha^{a}}$ as well as $\left[\hat{t}_{a}, \hat{t}_{c}\right]=f_{a c}{ }^{b} \hat{t}_{b}$, whereas using the physics conventions with $g=e^{i t_{a} \alpha^{a}}$. Clearly $\hat{t}_{a}=i t_{a}$ which implies $\left[t_{a}, t_{c}\right]=i f_{a c}{ }^{b} t_{b}$. Using $\hat{t}_{a}=i t_{a}$ we find

$$
\begin{equation*}
\left(t_{a}^{a d j}\right)^{b}{ }_{c}=i f_{a c}{ }^{b} \tag{1.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(A_{\mu} \phi\right)^{a}=A_{\mu}^{b}\left(t_{b}^{a d j}\right)^{a}{ }_{c} \phi_{c}=A_{\mu}^{b}\left(t_{b}\right)^{a}{ }_{c} \phi_{c}=i f_{b c}{ }^{a} A_{\mu}^{b} \phi^{c} . \tag{1.11}
\end{equation*}
$$

(b) Using part (a) we find

$$
\begin{equation*}
\left(A_{\mu} \phi\right)^{a} t_{a}=i f_{b c}{ }^{a} A_{\mu}^{b} \phi^{c} t_{a}=A_{\mu}^{b} \phi^{c}\left[t_{b}, t_{c}\right]=\left[A_{\mu}, \phi\right] \tag{1.12}
\end{equation*}
$$

and repeating part (a) for $F_{\mu \nu}$ gives

$$
\begin{equation*}
\left(A_{\mu} \phi\right)^{a}=i f_{b c}{ }^{a} F_{\mu \nu}^{b} \phi^{c} . \tag{1.13}
\end{equation*}
$$

so that the same computation shows that

$$
\begin{equation*}
\left(F_{\mu \nu} \phi\right)^{a} t_{a}=i f_{b c}{ }^{a} F_{\mu \nu}^{b} \phi^{c} t_{a}=F_{\mu \nu}^{b} \phi^{c}\left[t_{b}, t_{c}\right]=\left[F_{\mu \nu}, \phi\right] \tag{1.14}
\end{equation*}
$$

Now we can work out

$$
\begin{equation*}
D_{\mu} \Phi=D_{\mu} \phi^{a} t_{a}=\partial_{\mu} \Phi-i\left(A_{\mu} \phi\right)^{a} t_{a}=\partial_{\mu} \Phi-i\left[A_{\mu}, \Phi\right] \tag{1.15}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right] \Phi=\left[D_{\mu}, D_{\nu}\right] \phi^{a} t_{a}=\left(F_{\mu \nu} \phi\right)^{a} t_{a}=\left[F_{\mu \nu}, \Phi\right] \tag{1.16}
\end{equation*}
$$

Here are some things to ponder:

1. How are convariant derivative and field strength defined for a non-abelian gauge theory?
2. What is the impact of charged matter in different representations?
