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Topic 3

The Lorentz Group and its
Representations

3.1 The Lorentz group and its Lie algebra

The Lorentz group is one of the most important examples of a Lie group appearing in physics.
It arises in a very similar way to most of the groups we have discussed so far as a symmetry
group that respects some quadratic form, in this case the ‘invariant length’ of special relativity.
A detailed account of many elementary aspects of the Lorentz group can be found e.g. in
[Scheck, 2010]

The fundamental postulate of relativity is that the speed of light is the same in all inertial
frames. Let us take two points p and ¢ in space-time through which a ray of light passes
and assume that they have coordinates ¢,, x, and ¢, x, in one inertial frame, and coordinates
t,,x, and t, x, in another. We hence need

¢t = (z, — m,)*/(ty —1,)" = (x, — 2)°/(t, — 1,)° (3.1)
In other words
— Pty —ty)* + (¢, —x,)* =0 (3.2)
must be invariant under a change of frames. It is not hard to come up with coordinate transfor-
mation that satisfy this requirement, e.g a rotation € SO(3) acting purely on the coordinates
x works. If time is involved in our coordinate change, we need to take the relative minus sign
into account. An example would be acting the matrix

cosh(A)  —sinh(\)
—sinh(A)  cosh()\)
0 0
0 0

Aor = (3.3)

o= O O
_ o O O
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This keeps —(ct)? + 2% invariant as
—(ct)* + 2] = —(ct')* + (2})°
= —(cosh(\) ct — sinh(\) 21)? + (—sinh(A) ¢t + cosh(\) x1)?
= —(ct)*(cosh?*(\) — sinh?*(\)) + z%(cosh?(\) — sinh?()))
= —(ct)* + 22

(3.4)

as cosh?(\) — sinh?*(\) = 1 for any X (this is the hyperbolic analogue of cos? ¢ + sin? ¢ = 1).

Note that the origin of the primed system at 2, = 0 satisfies
—sinh(A) ¢t + cosh(A) 1 =0 (3.5)
so that it moves in the unprimed system with a velocity

sinh(\) et —e
= ctanh(\) = ¢ — . 3.6
cosh(\) ctanh(}) = ¢ A e € (3.6)

v=m/t=c

For this reason ) is called rapidity in the literature. Note that for every , this speed is always
less that the speed of light. Instead of using such transformations to figure out time dilation,
length contraction, etc ... we are going to examine the structure of

Definition 3.1. The Lorentz group L is the group of linear maps on R* (with coordinates
(2°, 21, 2%, 2%)) that preserve the quadratic form

iy = = (") + (@) + (2%)" + (27)* (3.7)

REMARK:R* with this quadratic form is also often called R or ‘Minkowski space’. It is
then appropriate to call the Lorentz group O(1, 3). We have already learned that the principle
of relativity is obeyed by (at least) two types of transformations: rotations in R® which leave
time untouched, and boosts such as which mediate between relatively moving systems.

Note that |z|3, is not an inner form as it is not positive definite.
For two coordinate systems with relative velocity v the coordinate change is

Definition 3.2. A boost associated with two relatively moving inertial frames with rela-
tive speed v is a Lorentz transformation B with B(v)% = cosh ), B(v){, = B(v)% =
—v'/c cosh )\, and
, , (cosh \)? vivk
B(v)", = 0" + . 3.8
(V) ¥ 14 coshA ¢2 (38

where tanh A = |v|/c.
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In order to facilitate the book-keeping of the minus sign in this deﬁnitiohe following nota-
tion is in widespread use. Define (2°, 2!, 22 23) = (ct, z,y, 2) as the ‘four-vector’ of coordi-
nates combining spatial coordinates and time. Define

Ty = N’ (3.9)

where 1), are the components of the diagonal matrix

n = 1 (3.10)

and we are using the summation convention. The inverse of the matrix 7 is clearly 7 again,
we need to put the indices up as this satisfies

at =n"x, (3.11)
where n* = (diag(—1,1,1,1))"". Note that

nuunyp = 5,up7 (3.12)

0,” is the usual Kronecker delta which is 1 if both indices are equal and zero otherwise. We
can hence write the length |z|); of a vector in Minkowski space as

[} = 22" = vat = zEnt (3.13)

Let A have components A* and assume A linearly maps a 4-vector x to a 4-vector '’
= A 27 (3.14)
Now if A is in the Lorentz group we need |7/|3, = |z|3,, i.e.
lZ'|3, = AR 27N 2Py, = 2P Ny, N, = aa¥n,, . (3.15)
In other words

NN N = Ty (3.16)

or in matrix notation
AN =n = npATn = A1 (3.17)

Up to the insertion of s AT is hence the same as A~!. Note that we have the transformation
behaviour

ot — " =AM ¥

v vo o - (318)
Ty = N’ — xL = Uupm/p = N\, 2" =, N 0"z, = xa(nATﬁ) = T (A 1)

o
0

"There is a deeper meaning which is that these are in the tangent (z*) and cotangent spaces (x,,) of space-time.
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Thats how it had to be, as we constructed Lorentz transformations in such a way that x, 2" is
invariant!

Objects z* transforming as above are called ‘Lorentz vectors’. Objects transforming like z,
are called ‘Lorentz covectors’. We can think of the matrix 7 as a map which sends every
vector to a covector and vice-versa.

Whenever we contract upper and lower indices, we hence get something that is in-
variant under the Lorentz group. By extension, it is customary to put upper/lower indices
on objects that have the same transformation behaviour as 2* and z,,. The same rule for con-
structing invariants then exists there as well. The positioning of indices hence serves as a
book keeping device for the transformation behaviour and consequently for the constructing
of Lorentz scalars, i.e. invariant quantities.

Exercise 1. Consider a Lorentz vector with components z", which transforms under Lorentz
transformations as
at — 't = A Y

Note that throughout this problem we are using summation convention.

a) Let f* = atx". Find the transformation behavior of f*, f*, = x*x, and f,, = v,2,
under Lorentz transformations.

b) For another Lorentz vector y*, find the transformation behavior of f*"y,, under Lorentz
transformations.

c) Compute

d) Work out the transformation behavior of
0

oxH

under Lorentz transformations. Use c) to argue for the same result.

Let us now examine the global structure of the Lorentz group L. Clearly, the determinant of
A is £1, so that we get two disconnected components L., just as for SO(3). The component
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L, that is connected to the identity is called proper Lorentz group. Furthermore the (0, 0)
component of nATnA = 1 implies

1= (A%)% — (A9)* — (A%)* — (A%)* | (3.19)

so that (AOO)2 > 1 which has again two components:
LT where A% > 1 are called the orthochronous Lorentz transformations.
L' where A% < —1 are called the non-orthochronous Lorentz transformations.

The orthochronous transformations keep the arrow of time pointing in the same direction.
Altogether we hence have four components. The maps Ay = diag(—1, 1,1, 1) (time reversal)
and Ap = diag(1,—1,—1, —1) (parity) generate the whole group together with Ll: we can
use Az, Ap and ApAp to map any group element to L' , which implies we can write any group
element in L as a product of A € L] with A%AY, for a,b e (0,1).

The component of L that is continously connected to the identity is the proper orthochronous
Lorentz group LL. LL admits the following decomposition

Theorem 3.1. * Every proper orthochronous Lorentz transformation A € LL has a unique de-
composition as

A = B(v) (1 R) (3.20)
where B(v) is a boost with parameter
v'/c = Ny/AY (3.21)
and R is an element of SO(3) given by

. ‘ 1 ,
R* = Al — = A A (3.22)
I U

Proof. : First of all, it follows from that 3, (A%/A%)? < 1as

DUNG/AT) = (A(R)T;l <1. (3.23)

2

A boost associated to the speed v/c hence makes sense. From definition [3.2|above it follows
that BY (v) = cosh A = A% and B%(v) = —v'/ccosh A = A%. Hence

Bi(v) = 6, + —

0AO
; 1+A00AiAj (3.24)
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using (3.8). We now show that
R := B(—v)A = B }(v)A (3.25)

is indeed a rotation and R = 1 @ R, which finishes the proof. We work out

ROO = (A00)2 - Z(Aio)Q =1

0 _ AO AO i AJ
RS _AOAi_ZAJOA]i =0 (3.26)
J

i i 1 i AO
Ry =Ny, — TAOOA ok
Here we used ATn)A = 7 repeatedly. This is a rotation with the right block-diagonal structure
as claimed. o

To understand the global structure of Ll = SO(1, 3);, we can repeat the trick we used when
describing the relationship between SO(3) and SU(2). For a 4-vector (z°, z!, 2, 2%) we write
it as a matrix M, with M| = M,:

0 3 1 2
T +x T — 1T

We can now formulate a map SL(2,C) — L by sending g € SL(2,C)

g— F(g) F(g)M, := gM,g". (3.28)

Proposition 3.1. F(g) is a surjective group homomorphism from SL(2,C) to L.
Proof. :

Exercise 2.

a) Show that F is a surjective homomorphism from SL(2,C) to L' .

hint: Try to follow a similar logic as for the homomorphism from SU (2) to SO(3) studied
before. You can take for granted that SL(2,C) is connected.

b) For a rotation in the x', x?-plane, find the element g € SL(2, C) that is mapped to it by F'.
Repeat the same for a boost along the x' direction.
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Finally, we can work out the Lie algebra of the Lorentz group. As we have seen, a
general Lorentz transformation is uniquely given in terms of an element of SO(3) (which is
real three-dimensional) and a boost (which is parametrized by a real three-dimensional vector
v). We hence conclude that the Lorentz group is a real six-dimensional manifold. This fits with
the fact that a real 4 x 4 matrix has 16 components and A’nA = 7 imposes 10 independent
constraints. Using rotation and boost matrices like with parameters gives us paths in the
group, and we find that the Lie algebra is generated by the six matrices

0 -1 00 0 0 -1 0 0 00 —1

o1 _ -1 0 00 02 _ 0O 0 0 O 108 _ 0 00 O

0 0 00 -1 0 0 0 0 00 O

0 0 00 0 0 0 0 -1 00 O
(3.29)

0 0 00 0 0 00 00 0 O

12 _ 0 0 10 18 _ 0 0 01 128 _ 00 0 O

0 -1 00 0 0 00 00 0 1

0 0 00 0 -1 00 00 —-10

These can be summarized by

(I")% = 00" — 0", (3.30)

Note that ¢ and v in the equation above label different elements of the Lie algebra, and «,
are the components of the corresponding matrix.

Exercise 3. Verify that the matrices above are elements in the Lie algebra of the Lorentz group.

After a slightly tedious computation one finds that they obey the Lie algebra

R I et K (331)

3.2 Representations of the Lorentz group

Let us now investigate representations of the Lorentz group. We have already seen the defingin
representation:

" — Az (3.32)
with
ATpA = p (3.33)
so that
aly, = at et = — (%) + (21)? + (2%)? + (27)? (3.34)

stays invariant. Now we will ask about other representations of this group. Note that SO(3)
is a subgroup of L, and that the fundamental representation of its spin group, SU(2), had
physical significance as a spinor.
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As SO, (1,3) = L! has SL(2,C) as a double covering group (Proposition , so it will not

be suprising if we make the
Definition 3.3. The group Spin(1, 3) is equal to the group SL(2,C).

And it is again a fact of life that what matters to describing relativistic processes in the real
world, are representations of SL(2,C) = Spin(1, 3) instead of representations of L.
Spinors of the Lorentz Group

For SO(3) we found irreducible representations by using Lie algebra of SO(3), which is the
same as the Lie algebra of SU(2). Not all representations of this algebra descended to represen-
tations of SO(3), but the extra representations we found were exactly the ‘spin 1/2’ spinorial
representations of SU(2) of physical significance. We can use a similar strategy here, which
leads us to what are called spinors of the Lorentz group. Our presentation of spinors mostly
follows [Peskin and Schroeder, 1995], see also [Woit, 2017]]. Note that these books use some-
what different convention however.

Recall the Lorentz algebra

L G R e L K (335)

Proposition 3.2. Let v*, ;1 = 0, 1, 2, 3 be matrices that obey the algebra

{797} ==ty Ayt =21 (3.36)
Then we can construct a representation of the Lorentz algebra, (3.35), using the matrices

S = 37T (3.37)

Proof. : we need to check that the S satisfy the Lorentz algebra. First note that the relation
{7*, 7"} = 2n" implies that

iy = —yP for pu#v (3.38)

and
(v*)? = p1 (no summation) (3.39)

We can now work out the commutator of [S*”, S*?]. First note that i # v and p # o as the
S otherwise vanish (as do the corresponding /. Hence S** = %’y“v” and S*7 = %7”7". Let us
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first assume that p, v, p, o are all different. We get

(u, v, p, o all different) :

v loa 1 12 g (o2 ) v
[, 8P7) = — (W9 — 4P ")

4
/
1 WV PO U PAO AV (340)
21(7777 — Py yY)
e
1 v (o v g
=1 ("7 = ""yP%) =0

As the colours and arrows are supposed to show you, this looks more complicated than it is.
All we have done in the second equality is swapped the v* with v” and 77, which produced
two minus sign, hence no sign at all. In the third equality we did the same with +”. This is the
same as what tells us.

Now we assume that ;1 = p (note that there is no summation over p in the below expressions):

7,41, [1.471] = == 172, 727 ]]

uwy  Qpo _
(57, 5] -

(3.41)

12 (oa 1 v o (o v
[29#9", 29447] = 1 (YA ARy — AT yRyY)

(=(7")*9" 7 + (P)*y77") = =S

al==l-

1 =

Here we only had to swap 7* with 7" in the first term and with 77 in the second term, each
giving a minus sign. The final result is exactly what we find from (3.35) when p = p. The
remaining cases can be worked out analogously. o.

REMARK:Algebras of the type {72, 7%} = 21 where n? is a symmetric diagonal matrix with
entries +1 are called ‘Clifford algebras’. We have already seen an example when discussing

the Pauli matrices: the Pauli matrices obey a Clifford algebra generated by three elements with
n® = diag(1,1,1).

When trying to find explicit examples of the four v for 1 = 0,1, 2,3 the above remark is
useful hint. It turns out we need at least 4 x 4 matrices, and one possible choice is

Definition 3.4. The Dirac matrices are

0 1 ; 0 oy
0 _ 2x2 i i -
v = (_12X2 0 ) , vt = <0i O) 1=1,2,3 (3.42)
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where 1 is the 2 x 2 identity matrix and o; are the Pauli matrices

g1 = <(1) é) , O92 = (? _OZ> , 03 = (é _01) . (343)

Note that the v are 4 x 4 matrices which we have written in a 2 x 2 block structure using the
2 x 2 Pauli matrices.

Proposition 3.3. The Dirac matrices obey {7, 7"} = 21,4
Proof. :

Exercise 4.
a) Show that the Dirac matrices obey {y", 7"} = 20" 1 4x4.

b) Show the ‘freshers dream’:
(a,7")? = a,0"Lyxa (3.44)

REMARK:This is not the only realization one can write down (and not Dirac’s original ma-
trices). The above version is often called the “Weyl’ or ‘chiral’ representation.

Proposition 3.4. Using the Dirac matrices, the algebra generators S*” are

S0 =1 (‘6 _(L) L gk %ejkl (%l g) (3.45)
Proof. :
Exercise 5. Using the Dirac matrices, check that the algebra generators S" = ih“, 7] can be

written as .
i o; 0 ; 1 o 0

Definition 3.5. A vector ¥ € C* transforming under Spin(1,3) as
U — U =50y = AP, f,eR (3.47)

is called a Dirac spinor.
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REMARK:Note that a Dirac spinor transforms in a reducible representation, as the matrices
SH are block-diagonal. The irreducible representations we find by restricting to the blocks
are called

Definition 3.6. Decomposing ¥ = (¢, 9g), the objects ¢, and ¢y are called left-handed,
and right-handed Weyl spinors, respectively.

Exercise 6.

a) For an element A(0) = el'o of the Lorentz group (I*? is one of the generators of the Lorentz
algebra introduced in the lectures) show that A(0) = A(2r) = 1. Now compare this behavior to
the corresponding element of the representation acting on a Dirac spinor: Ay 5(0) = 50

b) Let v° := in°y'y*y*. What is 5 (v° + 1) ¥ for ¥ a Dirac spinor written in terms of Weyl
spinors?

Having defined the ‘Dirac spinor’ representation of the (spin group of the) Lorentz group, we
may ask how we can construct Lorentz scalars out of it. Let us denote the complex conjugate
of U by U*, an obvious guess might then be

U* = UHY, (3.48)

where U; are the components of W. It turns out it is not quite (but almost) this easy. The
problem here is that
AT

e # AL (3.49)

1/2

Definition 3.7. For a Dirac spinor W with components ¥; and ¥* its complex conjugate, we
let

U = U*y0 ie. Uy = Uiy, (3.50)

Note the slight break with the general convention that a bar signifies complex conjugation,
but the above notation is almost universally used, so I will follow this as well.

Proposition 3.5. For a Dirac spinor ¥V with components W;
VU = Uiy 0, (3.51)

is a Lorentz scalar.
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Proof. : A direct computation (see problems class) shows that
Al =1AL (3.52)
Now we can work out
YU = U*~ 00

— WAL N0 = TN LA 0 = T

(3.53)

Theorem 3.2. For a Dirac spinor V with components VU the expression
Uy = Ui,y Uk (3.54)
transforms as a Lorentz vector.

Note that this means we can effectively take the # index we gave the Dirac matrices seriously,
which is the reason for this notation. Before showing this, we need an important lemma:

Lemma 3.1. The matrices A1 = e satisfy
Agl’}/MA% — Auy,yu _ (elmepo)ﬂy ’YV- (3'55)
Proof. : First we show that
(7", 5771 = (I"7)". " . (3.56)

Don’t get confused by the rhs of this equation: p and o label the matrices [, and we are talking
about the ;2 and v components of that matrix. As observed earlier in the lectures, these can be
written as

(P7)5, = 0%, — 7ot . (3.57)
Let’s first take pt # p and @ # o. The rhs then vanishes and we can the work out the lhs as
27,977 = 2(y#9"7 = *779*) = 0. (3.58)
Now we take ;1 = p # o and compute
(n=p):  [",57] =2[+"7"7"] = n"9" (no summation) (3.59)

which equals the rhs of what we want to show for ;1 = p # o. Finally, we take i = 0 # p and
find
(=0): [1*,57] = 2[4*,v*4] = —1f*1 (no summation) (5.60)
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which equals the rhs of what we want to show for 1 = o # p.

The above is equivalent to the statement that, for very small 6,,,
(1 = 5”70,0)7" (L + 5770,,) = (8", + ((770,5)" ) v~ (3.61)

Let’s look at this equation from the following perspective: consider the vector space of matri-
ces spanned by the v*. We can write any element of such a vector space as A := a,7y". The
right hand side can be understood as a linear map acting on A mapping it to

A = a, (6" + (0770,,)" ) v (3.62)
and says that (for 0,, very small) we can also write this map as
A= (1-50,,)A(1 + 50,,,) (3.63)
We can apply the same map n times to find
(L —5770,5)" (1 + S770,,)" = (1 + £770,,)" )"+ (3.64)
so also
T (1~ §% 00 /n)" (L + 50y /n)" = lim (1 +676,,/n)") 7" (365)

which shows what we wanted to show using the description of the matrix exponential estab-

lished before. o

Proof. (of the theorem): We can now work out
Uy — \If*yoAl_/lﬂ“Al/g\I/ = U*A A" AT = AF UyY T (3.66)

where we have used the identity Al_/lﬂf‘Al /2 = A »” shown in the lemma above. o

Corollary 3.1. For a Lorentz vector a*, a, V"V = WV transforms as a Lorentz scalar.

Proof. : We have already seen that a,b" for a* and b* any Lorentz vectors gives us a scalar. In
the theorem above we saw that b* = U~*W is a Lorentz vector, so the statement follows.

Exercise 7. How does )
B = U~Hy" T (3.67)

transform under Lorentz transformations for U a Dirac spinor?
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Exercise 8. For a Dirac spinor W write B
Wy (3.68)

in terms of Weyl spinors.

General Representation Theory *

Working with the Lie algebra so(1, 3) of LL reveals the following. Taking this as a Lie algebra
over C instead of R we can define

Ap = 3(=02 +il%) Ay = (0P +il®) Ay = (0" 4 il®) (369)
By = 3(=* —il™) By = (£ —il®) By = (" —il®) |
these satisfy the algebra
Ai; B == 0 V., ]
[ il b (3.70)
[Ai, Aj] = €ijrAx [Bi, Bj] = €ijiBi

which is two copies of the Lie algebra s[(2, C). Hence

Proposition 3.6. The complexification of so(1, 3) is equal to sl(2, C)®Psl(2, C): so(1,3)RC =
sl(2,C) @sl(2,C).

Proof. : We can write 50(1,3) ® C as (3.70). o

We have studied representations of SL(2, C) in Michaelmas term, and found them to be com-
plex d + 1 dimensional and labelled by an integer d. Furthermore, we have seen that e.g. the
complex conjugate representation 2 becomes the same as 2 after a change of basis in exercise
15. This is not true for SL(2, C): conjugation does not change the eigenvalues of a matrix and
g and g have different eigenvalues for g € SL(2, C). || We hence get different representations
after taking complex conjugation. At the level of the algebras we can repeat the classification
of irreucible representations of s0(1, 3) by taking a detour via s0(1, 3) ® C (just as we did for
su(2) ® C = sl(2,C)), and it turns out that (we will not prove this here)

Theorem 3.3. The complex irreducible representations of SL(2, C) are the tensor products rs, ®
Ts, labelled by pairs (s1, so) where s; take half-integer values. They act on a complex vector space
of dimension (2s1 + 1)(2s2 + 1).

ZFor r4(g), g € SU(2), the eigenvalues are real or come in pairs of complex conjugates, so this does not
happen.
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For the first values of (sq, s5) these representations have the following names

« (0,0) This does not transform at all, so this is a scalar.

(3, 0) This is a Weyl spinor. For the same reasons we discussed representations of SU (2)

vs. SO(3), this is only a representation of Spin(1,3) = SL(2,C) but not SO(1,3)..
« (0,3) This is another Weyl spinor.

(%, %) This has dimension four and is a vector. It is the representation we have used to

define the Lorentz group. Its action is exactly the one written down in proposition
when we studied the map from SL(2,C) to L' .

« (3,0)® (0, 1) This reducible representation is a Dirac spinor.




Topic 4
Symmetries and Action Principles

In this section we will review some aspects of action principles for field theories and use these
to construct field theories with symmetries. Those of you that have take Mathematical Physics
IT should be familiar with many of the things we are doing here, but I can also recommend
[Goldstein et al., 2001] for an introduction to actions for both systems with finitely many
degrees of freedom and field theories. Some of the more advanced topics treated here are also
covered in [Peskin and Schroeder, 1995].

4.1 Actions and Symmetries for a finite number of degrees
of freedom

Recall the action principle for systems with finitely many degrees of freedom. Given the action

S, 4] = fdt L(gi, G:) (4.1)

the paths ¢(t) described by this systems are those of stationary action. Let us consider paths
taking us from ¢(ty) to ¢(¢1). The stationary points are found by varying

qi(t) — qi(t) + 6qi(t)

(6) — alt) + S0 lt) = a(t) + 6 (0

(4.2)

where §¢;(t) is an arbitrary smooth function such that d¢;(tg) = d¢;(t1) = 0. We then set

0S = S[q +6qi, ¢ + 6q;] — Slai, 4] =0 (4.3)

17
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to find . 5 -
0S = | dt ——L(qi, ¢:)0G: + = L(q:, G:) 5

J 0q; 0q;
i 0 d (0

— | at =L(a: c:)6a: — — Ll ¢ A
] 45 (Gis Gi)0qi o (6@ (qz,qz)) g , (4.4)
[ 0 d o

— Ll ) — — " T(a:. ¢ -
[ (sontai) - Gt )

where we have used partial integration in the second equality. The boundary term has been
discarded because d¢g; vanishes there.

As dq;(t) is an arbitrary smooth function we hence see that the paths described by the system
must obey the Euler-Lagrange equation

0

d 0
—L(gi, ¢i) — — = L(gi, ;) =0 4.5
70 (4> i) T (415 &) (4.5)

Exercise 9. For a relativistic point particle moving on path C' through space-time, the only
Lorentz invariant property of C' is its length. Taking the action of a relativistic particle to be
the length of C' and parametrizing C' as x*(s) we can write this as

Slat, at] = —cmf ds = —cmf v —ahx,ds . (4.6)
c C

for a constant m and c the speed of light and z* = 0/0s x*. C'is called the world-line of the
particle.

a) Show that this action is invariant under Lorentz transformations.
b) Find the equations of motions and show that they are solved by straight lines in space-time.

c) Set s =t and expand the action for slow particles to recover the action of a non-relativistic
point particle.

Proposition 4.1. Adding a term d/dtF'(q, ¢) to L does not change the equations of motion.

Definition 4.1. An invertible transformation of the generalized coordinates

q; — q; = f(a)

¢ — cjg = f(qz') .

is called a symmetry of L if
L' = L(q;, ¢;) = L(qi, ;) + d/dtF (i, ;) (4.8)
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Definition 4.2. If the symmetries of L contain a Lie group G, then elements of the Lie algebra
g of (G are called infinitesimal transformations.

REMARK:In the following, we will restrict ourselves to linear group actions. This means that
the ¢; transform in a representation r of G:

q—q =r(9)q

a—d = rlo)i 4

and that the infinitesimal transformations act as the associated Lie algebra representation p

q—q=01+p0))q

g—d =144 (410)

for every v € g.

Theorem 4.1. (Noether’s Theorem) Let G be a Lie group of symmetries of L acting linearly on
the generalized coordinates in a representation r. Then

oL

Q) = % (r(v)a); — F(a,4,7) (4.11)

is a conserved quantity for each v € g. Here p is the Lie algebra representation associated with
the group representation r.

Proof. : (see MPII notes).

REMARK:As the Lie algebra g and its representation p(vy) are vector spaces we have for
a,b € R that

ap(v) +bp(v') € p(g) (4.12)
and (as /' must be a linear function of p(7))
Qav) + Q(bY') = Qay + bY). (4.13)

It is of course not surprising that the lhs is again conserved as any function of conserved
quantities is again conserved.

Example 4.1. Consider a particle in n dimensions in a spherically symmetric potential. Then

s = [t 1l - vilaP) (419
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where |g|*> = >, ¢?. The Lagrangian is invariant under rotations in O(n) which act in the
defining representation on q. Hence

Q(v) = mqvyq (4.15)

is conserved for any element v of the Lie algebra of O(n), which equals the Lie algebra of
SO(n) E.g. recalling the form of the matrices in the Lie algebra of SO(3) we can write

for ; € R and matrices ¢; with components (¢;);; = €;;x. This gives the conserved quantity
Q = \iL; (4.17)

for any choice of \; € R and L = x x p. Hence each component of the angular momentum
L is conserved. Note that the appearance of the ¢;;;, in the vector cross product is now seen
to be due to the form of the matrices in the Lie algebra of SO(3).
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4.2 Actions for Field Theories

Let us now consider field theories, i.e. instead of functions ¢(¢) we consider functions ¢(¢, x)
that depend on « as well. Consequently, the equations of motions for ¢(¢, ) will have to
involve derivatives w.r.t. the components of x as well.

An action for a field theory with a field ¢ is written in terms of a Lagrangian density £ as

16,016, 00] = [ d' £(6,06,06)). (418)
where we use 0; as a shorthand for 0/0x; and ¢, as a shorthand for d/0t. We now vary
¢— @+ 00

0i9 — 0 + 00 = 0;¢ + 03¢
Let us set the limits of the integral to be that of aboxt = ¢, ... %y, x; = a; ... 0b;. The variational
principle now tells us that 0.5 = 0, where 05 is S|, 0;¢, 0;0|—S[d+00, O;d+0,0, O;0+0; ).

Expanding 9.5 to linear order in the variation of ¢ gives us

OZ“ZJCZ%(a; )‘W(aw{i@ ) a””( e )W)
:Jd%(aqs )5“(&(;@ )W*( o )W

Similar to the treatment of systems with finitely many degrees of freedom, we now integrate
the terms that involve derivates of d¢ by parts to get something proportional to d¢. This gives

0~ [ae] (5e) - e (5550) o (5ige) |00+ B G

where B are the boundary terms

(4.20)

- , P t=t
B[ [(aw) E) M]t:ta
~ r 0 r3=>b3
+ J dtdﬂ?ldl'g _(0((}3¢) £> (S¢— -
] 3 A a—b (4.22)
+J dtdzr,dzs ( 3029) >(5¢ o
~ r 0 Jr1=b1
+ J dtdzydrs ( 310) >5¢ .

We will now assume that the field ¢ vanishes when approaching infinity. We can then send
the volume of the box to infinity which also makes the boundary terms vanish. This also
immediately implies that any boundary term vanishes. Alternatively, we can keep ¢ at the
boundary of the box we have chosen fixed so that ¢ vanishes therefl]

'One may choose other boundary conditions as well.
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As d¢ is arbitrary, we conclude that
Theorem 4.2. The Euler-Lagrange equations for a field theory are

<%£> — (ﬁﬁ) o (a(aaiqs) E) =0 (4.23)

REMARK:If the action S depends on several fields and their derivatives, we get an Euler-
Lagrange equation as above for every single field. L.e. indexing the fields by an index /

S|or, 01, 0ipr] = Jd% L(¢r, 0rb1,0i01)) 5 (4.24)

we have

0 0 0
(aTsf) O (a@@)ﬁ) 0 (a@qﬁ»ﬁ) =0 (429)

for every 1.

Example 4.2. Let us consider the theory of a real scalar field ¢ with action
S = f dtd*z — (0,0)* + (i) + m*¢?. (4.26)

Then the equation of motion for ¢ is

(7 =VP+m?*) =0 (4.27)

Example 4.3. We can also use complex fields to write actions. Let us consider the theory of a
complex scalar field ¢ with action

S = fdtd% — |0i0]* + |0s0)* + m?|o|* . (4.28)

Then the equation of motion for ¢ is again
(7 =V?+m?) ¢ =0. (4.29)

This can be seen in two different ways:

1. We can just write S in terms of real and imaginary parts (which are two real fields) and
derive their equations of motion, which can be combined to give the above.
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2. Treating the real and imaginary parts of ¢ as different fields is equivalent to (after a
complex redefinition of fields) treating ¢ and ¢ as independent fields. The equation of

motion of ¢ is (@.29).

Example 4.4. Consider a complex scalar field ¢ with action

S = J Qi — [V + Li (G0 — o)) (4.30)

While this is obviously real for the first term, taking the complex conjugate of the second term
shows that the whole action is real. The equations of motion for 1 are

0 0 0
0=—0=——=L| -0/ | —=L —L]1 =0
(awiw) ) («mw) ) * (aw )
=V - V¢ + 3i0) + Lidw)

=AY + 0

(4.31)

This is nothing but the Schroedinger equation for a free particle with m = 1/2 and /i = 1, but
now 7 is just a classical field. The Euler Lagrange equations for ¢ give the complex conjugate
of the above equations.

We can repeat the same steps above to deal with actions written in a Lorentz covariant notation
(0, = 0/0x*)

S[o, 0,0] = Jd‘lx L(,0,0)), (4.32)

to arrive at

Theorem 4.3. The Euler-Lagrange equations specifying stationary points of the action S¢, 0,,¢] =
§d*z L(¢,0,¢) of a field theory are

0 0
L 06.00) 0, (mﬁ<¢> am)) 0 (433

Exercise 10. Consider the following action of a real scalar field
S = J d*z 00" + m2¢* . (4.34)

Show that the equations of motion are

(=0,0" +m*)p=0. (4.35)
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4.3 Noether’s theorem

Let us now consider symmetries of field theories. Our discussion will mirror what we did
in the section above, except that we will restrict ourselfs to linear maps acting on the fields,
and we will assume for simplicity that £ is invariant, i.e. the group action does not lead to a
boundary term.

Definition 4.3. For a Lie group G and a representation 7 : G — GL(V), a linear map

or—op  =[r(9)ol;

bubr — 08y = [r(9)0], (436)

is called a symmetry of L if

£(¢Ia 6u¢1)) = ‘C((b/b a/ﬁ(bll)) (4-37)

REMARK:We could allow a total derivative here as well, but will content ourselves with this
stricter definition here.

REMARK:The infinitesimal version of the map is (here g = ¢€7)
¢1 — o1+ 0,01 = [(L + p(v)) @], (4.38)

ie.
5,01 = [p(M]; (4.39)

where p is the Lie algebra representation associated with the group representation r-.

Theorem 4.4. Let GG be a Lie group of symmetries of L acting in a representation r on the fields
¢r. Then

oL
G = ¢, ——— (4.40)
(summation convention: there is a sum over I in the above) is a conserved current:
0" = 0. (4.41)

Proof. : For the associated infinitesimal transformation we have (to linear order in d¢; and
using summation convention)

oL oL oL oL
0=0L = 0,0 — |4 =00
Eys Oy 1 + 30,01 Q1 = ((’7‘ u(bl) SO + 20,01 ~OT

_(9 0L .
(w (‘”)

(4.42)
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where we have used the Euler-Lagrange equations of motion. Using (4.39) then shows the
statement.

REMARK:As a consequence, we can write

A

R L J dA'j =0. (4.43)
ot Jy ov

for any volume V. If the charge inside the volume (the first term) changes, it must be due to a
current leaving the volume. Letting V' increase arbitrarily and recalling our assumption that
fields at infinity vanish the right hand term is zero and we can write

0 0
— | #2i®=-=—0= 4.44
ot fw o= 5@ =0, (4.44)

i.e. the total charge is unchanged.

4.4 Lorentz symmetry and field theories

The symmetries we have considered above are not symmetries of space-time, but ’internal
symmetries’ acting on the fields. In relativity, we demand invariance of physics under maps

R A\ G i

4.45
r—x =Ax (4.45)

We can take the following perspective on Lorentz transformations: we map our coordinates
of space-time x to Ax. If a given solution has an isolated zero at some g, ¢(x() = 0, this will
map ¢(x) to a new solution ¢'(x) that has a zero at Ax, i.e. the action of a group element A
of the Lorentz group on our scalar field ¢ is

A:gp—¢(x)=d(A'x). (4.46)
Note that this plays nicely with the group composition
(AroA2)¢ — Mp(Ay ') — @(Ay AT ) = §((A1A2) ') (4.47)

Definition 4.4. A field ¢ is a Lorentz scalar if its behavior under Lorentz transformations is

p(x) — (A ). (4.48)

In a similar fashion

Definition 4.5. A field (actually, four fields) A* is a Lorentz vector if its behavior under
Lorentz transformations is

Af(x) — A* A (A ) . (4.49)
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Definition 4.6. A field (actually, four fields) A, is a Lorentz covector if its behavior under
Lorentz transformations is

Ay(x) — (A—l)”u A, (A ). (4.50)

Definition 4.7. A field (actually, four fields) ¥ is a Dirac spinor if its behavior under Lorentz
transformations is

For a field theory, invariance under Lorentz transformation means is that if a scalar field ¢(x)
is a solution to our equations of motion, then so must be ¢(A~'x). What this means is that we
do not want to transform the derivatives in our equations of motion, but only the arguments

of the fields.

Definition 4.8. A field theory is called Lorentz invariant if for every solution ¢(x) to the
equations of motion, there is another solution ¢(Az) forall A € L.

REMARK:You might find it suprising that we only ask for Ll here. The reason is that parity
and time reversal are not symmetries of fundamental physics, but we still want to call such
theories Lorentz invariant as they are invariant under rotations and boosts.

Proposition 4.2. Transforming only the argument of the field, but not the derivative, 0,¢(x)
is a Lorentz covector field.

Proof. : Let y = A~'a. We have

0

Q60 1) = o te) = (A7)

- o(y) (@52)

This also implies that 0¥ ¢(x) = 1"*0,¢(x) transforms as Lorentz vector (besides replacing
by y).

As we find our field equations from a Lagrangian £, ¢(x) being a solution implies that ¢(A~'x)
is also a solution to the equations of motion if £ behaves as a Lorentz scalar. Hence

Definition 4.9. An action S = (d*zL is called Lorentz invariant if the associated La-
grangian L is a Lorentz scalar for A € LL:

A L(o(x),0,0(x)) — L(¢(x), 0,8 (x)) = LGN ), 0, 0(A ")) (4.53)
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REMARK:

As the Lagrangian is a scalar, all that is happening is that « is replaced by y. Furthermore,
d*x transforms with the Jacobian, which is just det A = 1 for A € LL. Hence S is invariant
if we integrate over all spacetime. This implies that for an extremum ¢(x) of S, ¢(y) is also
an extremum. As extrema are found as solutions to the equations of motion, it must hence be
that for any solution ¢ (), #(y) = ¢(A~'x) must also be a solution.

REMARK:Above we have been carefully keeping track of the change of coordinates from
to y. As you can see, the template is to replace  to y and to simulataneously transform all
indices with appropriate matrices A. It is common to supress the change from x to y and
simply summarize the transformation of scalars, their derivative, vectors, and spinors as

¢— ¢
V-
’ Af R ﬁﬂiifb (4.54)
U — AU
Exercise 11. Consider the action
S = Jd4x\if (Y0, +m) V. (4.55)
a) Show that it is Lorentz invariant.
b) Find the equations of motion.
¢) Find the conserved charge associated to the U (1) symmetry ¥ — €.
d) Show that
(v*0,, —m) (770, + m) = 0,0" — m? (4.56)

Exercise 12. Consider a field ® transforming in the adjoint representation of the Lie group
SU(n). Show that

S = Jd‘lx tr (0,90 ®)

is invariant under the action of SU(n) and find the associated conserved current.



Topic 5
Abelian gauge theories

In the rest of this term we will learn how to formulate gauge theories, a special subset of field
theories which describe most forces in modern physics. For example, the Standard Model of
elementary particles is a gauge theory based on the group G = SU(3) x SU(2) x U(1),
and accounts for the strong, weak and electromagnetic interaction. In this chapter we will
start by looking at abelian gauge theories, the formulation of which is based on an abelian Lie
group, called the gauge group. The abelian restriction will allow us to acquaint us with the
key concepts in gauge theory without complicating the underlying mathematics too much.

5.1 Electromagnetism as a U(1) gauge theory

We will soon delve into the abstract idea that underlies abelian gauge theories, starting from
a field theory with a U(1) global symmetry and promoting the constant U(1) parameter to
a local function of spacetime. But before we do that, let us take a fresh look at Maxwell’s
theory of electromagnetism, and describe it as a relativistic field theory that can be based on
a gauge symmetry principle. Excellent references for some foundational material are [Landau
and Lifshitz, 2013, [Griffiths, 2014] and [Jackson, 2021]]. The coupling of electromagnetism to
field theories, which we will study later, is a standard topic in nearly all books on quantum
field theory, see e.g. [Peskin and Schroeder, 1995].

28
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5.1.1 Maxwell’s equations and relativity

The Maxwell equations describing which electric (F) and magnetic fields (B) are induced by
the electric charge density p and current j are (in natural units)

E
VE:p, VXB—aa—:J,

aé (5.1)
V.- B=0, VxE+—= =0

C

We call the equations in the first line the inhomogeneous Maxwell equations, since they have
sources for the electric and magnetic fields in the right-hand side, and the equations in the
second line the homogeneous Maxwell equations, since they don’t.

The behaviour of Maxwell equations under Lorentz transformations can be worked out as
follows. Starting from an inertial frame with a charge distribution p at rest, we can perform a

boost
cosh A sinh A

0
sinh A coshA 0
0 0 1
0 0 0

to another inertial frame moving at a relative speed tanh )\, in which there is now also a non-
zero current j. As resting charges only source electric fields and steady currents source mag-
netic fields, this implies that Lorentz transformations will also mix up electric and magnetic

fields.

A= (5.2)

_ o O O

In order to understand how to write the Maxwell equations in a manifestly Lorentz invariant
way, and how the electric and magnetic field transform under Lorentz transformations, let
us first focus on the sources appearing in the right-hand side of the inhomogeneous Maxwell
equations. The charge density p and the current j can be repackaged into a Lorentz 4-vector
J#, such that J° = p and J* = j’. The continuity equation (or local conservation law)

A

op .
—+V-3=0 5.3
p J (5.3)
can then be written as
o J" =0. (5.4)
Since J* is a Lorentz vector, a Lorentz transformation acts as
Ji(x) — JH(x) = A%, JY (A ) (5.5)

which indeed leaves the continuity equation invariant[|]

1Recall that dy = a% and 0; = a%;, = (V);, and that the Lorentz transformation z* — z'# = A" x" of the
spacetime coordinates implies the following Lorentz transformation of the derivatives:

O & = NP0, = (A)P,0, .



TOPIC 5. ABELIAN GAUGE THEORIES 30

REMARK:

In the following I may use the shorthand notation J* — A#,J" for the transformation law
(5.5), with the understanding that if the object in question is a field then the argument must
transform appropriately.

The transformation property of J* and the assumption of Lorentz symmetry (or ‘Lorentz in-
variance’) requires that the inhomogeneous Maxwell equations in the first line of be the
temporal and spatial components of a Lorentz 4-vector equation respectively. The similar-
ity between the two rows of suggests that the same should be true of the homogeneous
Maxwell equations in the second line of (5.1).

Let’s now focus on the left-hand side of the inhomogeneous Maxwell equations, which is equal
to the current 4-vector J*. Spacetime derivatives appear linearly, so we need a 0, on the left-
hand side, with the v index suitably contracted with a tensor linear in the electric and magnetic
field, in such a way that a ;2 index stays free (that is, uncontracted). The simplest option is
that the left-hand side is 0# X for a scalar field X, but an equation of the form 0*X = J*
is immediately ruled out by counting degrees of freedom: it cannot account for the electric
and magnetic fields 2 and B and hence reproduce the left-hand side of the inhomogeneous
Maxwell equation. In order to match the upper index of J* on the right-hand side, the deriva-
tive J, must therefore act on a second rank Lorentz tensor F**F|which is linear in the electric
and magnetic field, with the v index contracted so that only the i index remains free.

The electric and magnetic field E and B have 3+3 = 6 components in total, whereas a second
rank tenso has 4 - 4 = 16 components, so there still appears to be a mismatch of degrees of
freedom. This is fixed by requiring that F'** be antisymmetric, that is F'** = —F"* : then it

has % = 6 components.

To summarize, we are led to write the inhomogeneous Maxwell equations as
O M = J* (5.6)

for a second rank antisymmetric tensor F'*¥ = —F"* which is linear in E and B. Comparing

with the first line of (5.1) determines

0 E, Ey Ej
—E1 0 B3 —BQ
—EQ —Bg 0 B1
—-FEs By, —-B; 0

[F] = (5.7)

%Recall that by definition a Lorentz tensor with two indices transforms as
FM(x) — F'"(x) = A“pAVUF””(A*Ix)

under a Lorentz transformation.
3Vocabulary: a tensor with n indices is called an n-th rank tensor or equivalently a rank-n tensor.
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Lowering indices to F},, = 1,,7,,F""’, we have
0 —FE, —FEy —Fj
[Fw] = g; _%3 b _Bf? (58)
Es By, —-B; 0
In other words for ¢ = 1,2, 3 we have
Fyo=—Fy =L Fij = GijkBk . (5.9)

F,,, used to be called the Faraday tensor, and is now most commonly called the field strength

tensor, because its components encode the strength of the electric and magnetic fields.

By a similar logic, it is not hard to see that the homogeneous Maxwell equations in the second

line of (5.1) can also be written covariantly — that is, in Lorentz tensor notation - as

Vpo
"0, F,e =0,

(5.10)

where €777 is the completely antisymmetric tensor with four indices, normalized such that

0123 _ 1

REMARKS:

1. In practice this means that one gets a relative minus sign when swapping any two in-

dices. E.g. €329

there from €°'?3. One way to see that is

3201 _ _ 3021 _ 1023 _ _ 0123

= —1 as one needs to swap indices an odd number of times to arrive

2. A fancier mathematical way of saying the same thing is: for any permutation o of

0,1,2,3 we set ¢?(00(1).02.06) = sion (), where sign(c) is the signature of o. The
signature of a permutation o is defined to be +1 (respectively —1) if the permutation is
even (resp. odd), which means that (¢(0),0(1),0(2),0(3)) is obtained from (0, 1, 2, 3)
by an even (resp. odd) number of transpositions (or swaps).

. Note that in a situation with four indices the ‘cyclical’ vs. ‘anti-cyclical’ method useful
for €;;, does not work anymore.

. If we lower all four indices using the Minkowski metric, one of them is temporal and
three of them are spatial, so we pick up a minus sign:

€0123 = NooTh1M22Naze > = —1. (5.11)
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Exercise 13. Show that using the field strength I}, and the 4-current J" we can write the
Maxwell equations as

o, Fm = Jr 0, Fy = 0. (5.12)

The inhomogeneous Maxwell equations imply the local conservation equation for the electro-
magnetic current J#:

0,J" = 0. (5.13)

Proof. Using the inhomogeneous Maxwell equations we find
opJ" = 0,0, F" =0 (5.14)

The first equality are just Maxwell’s equations and the second equality follows from the anti-
symmetry of the field strength F'*¥ = — F""*, along with the commutativity of partial deriva-
tives 0,0, = (9“(91, We have

0,0, F" = —0,0,F"" = —0,0,F"" = —0,0,F" (5.15)

where we have relabelled (v, 1) as (i, v) in the last step. As we see, this expression is equal
to minus itself, so it must be zero.

5.1.2 Maxwell’s equations: variational principle

How can we write down a Lorentz invariant Lagrangian density that will give us as its
Euler-Lagrange equations (or equations of motion, or EoM)? You can try playing around but
you will soon realise that using F** as the dynamical field(s) will not allow you to recover
Maxwell’s equations.

Let us hence try something else. The second equation of (5.12) implies that we can write
F. =0,A, —0,A, (5.16)

in any star-shaped open subset in R*f| We say that holds locally. Conversely,

implies

P70, Fy = 770, (0,Ay — 0,A,) = €770,0,A, — €°70,0,A,=0—0=0 (5.17)

*We assume that all fields are smooth functions, hence they have continuous second partial derivatives and
Schwarz/Clairaut’s theorem applies. It turns out that this assumption is false for generic field configurations in
quantum field theory, but we are only doing classical field theory here, and we’ll leave that story for another day.

5This is known as the Poincaré lemma, which is a generalization of the fact that V x F' = 0 implies F' = V¢
locally (see AMV). An open set U is called star-shaped (or a star domain) if there exists a point p € U such that
for any g € U, the line segment from p to ¢ is contained in U.
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by using that each of the two terms is symmetric with respect to swapping the order of the
derivatives but is contracted with an epsilon tensor, which is antisymmetric in all indices. The
second equation of is hence automatic (it is called the Bianchi identity) and we need
only worry about the first one.

In the theory of electromagnetism, A* is called the electromagnetic 4-vector potential: its time
component A’ = ¢ is the electric ‘scalar potential’, and its space components A’ = A; are the
components of the magnetic ‘vector potential’ A. (In this pre-relativistic terminology, ‘scalar’
and ‘vector’ refer to spatial rotations, not to Lorentz transformations). Using and ,
we recover the relations between electromagnetic fields and electromagnetic potentials from
the theory of electromagnetism:

A
E=V¢f&;—t, B=VxA. (5.18)

Proof.

Exercise 14. Show the relationship above between electric and magnetic fields and the potentials.

We now declare that A, is the dynamical field, which also enables us to include J* as a source
in the action.

Proposition 5.1. Maxwell’s equations follow from the actiorﬂ

S[A,] = Jd% (—}lFWFW + AuJ“> . (5.19)

Proof. We work out the Euler-Lagrange equations

oL oL
n 0”0(@14#) =0 (5.20)

for the Lagrangian density

L= —%lFWFW + AT (5.21)
For the first term we have
oL 0 0A
A, " an, (A,J") p uJ onJ JH . (5.22)

®The overall minus sign is there to ensure that the Hamiltonian of the electromagnetic field is positive definite.
More about this later.
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Remember: repeated indices are summed over and are dummy. You should never use the same
letter for different indices, or you will get wrong results: this is the reason why I relabelled
the dummy index as v here. For the second term we have

0L R 2 (L
(0,A,)  0(0,A,) OFys 4

1 0

= = .9FP 0, A3 — 05A,
4 8(8,,14#)( 5~ Opddo) (5.23)
1

= —5 (348 — 530t

= —%(FW — FM) = Fm

In deriving (5.23) we used the chain rule in the first line. In the second line we used the
definition (5.16)) of the field strength F,5 in terms of derivatives of A,,, and the identity

Exercise 15. Show .

(Xt X = 2 X102 0n 5.24
(?Xal...an( br...bn) : (5.24)

for any tensor X.

In the third line of (5.23)) we just calculated derivatives, and in the final equality in the fourth
line we used the antisymmetry of the field strength.

The Euler-Lagrange equations then give
Jt—0o0,F" =0, (5.25)

which reproduce the inhomogeneous Maxwell’s equations.

REMARK:

It is also possible to derive the action (without the source term) by using the Lorentz force
to show that the energy stored in the electromagnetic fields (which equals the Hamiltonian)
is 1 {@®z (E* + B?), and then finding the associated Lagrangian.

5.1.3 Gauge Symmetry

The technical trick we have used has an interesting consequence: the physical fields that we
can measure are the electric and magnetic field £ and B, i.e. the components of the field
strength tensor F),,, not the dynamical field A, that we use to define the action and obtain
equations of motion. In fact, A, is not uniquely defined: we are free to shift A,(x) by a
derivative of an arbitrary smooth function «/(x)

A, (z) — Au(x) + dpa(x) (5.26)
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without altering the physical fields which appear in the Maxwell equations and which can be
measured:

Fl = 0,A, — 0,A, > 0,A, — 0,A, + 0,0,0 — 3,0,0 = F, . (5.27)

A symmetry for which the parameters of the transformation depend on space-time is called a
gauge symmetryﬂ Equation is called the gauge transformation of A,,. The field A4,
is then called the gauge field (or the gauge connection). Gauge field configurations which
differ by a gauge transformations are considered physically equivalent, since they give rise to
the same physically observable electric and magnetic fields.

You should contrast gauge symmetries with the symmetries you studied so far: their parame-
ters did not depend on space-time in any way. They are called global symmetries, and they
relate physically inequivalent (though isomorphic) configurations.

Performing a gauge transformation (5.26)) has the following effect on the action (5.19):

1
S[Au] — S[A, + dua] = Jd‘*:p (——F’“’FW + AT+ (@Loz)(]“)
4
(5.28)
_ S[A,] + J diz (0,0)."
At first sight the action does not seem to be invariant under a gauge transformation, since

6aS[AL] = S[A, + 0,0] — S[A,] = J d*z (0,a)J" (5.29)

does not seem to vanish. But this is too fast: we can perform a partial integration of the extra
term and discard the boundary ternf|to write the gauge variation of the action as

%ﬂ&szfxa@JﬂzO, (5.30)

which vanishes thanks to the conservation of the current J# that couples to the electromag-
netic gauge field A,,.

REMARKS:

1. We can write ‘ ‘
AM — Au + Oua =" (AM + i&u) e ', (5.31)

7As 1 will stress later, this is a misnomer: a gauge ‘symmetry’ is not really a symmetry of a physical system.
Rather, it is a redundancy in our description of the system.

8We assume that the fields obey boundary conditions such that this holds, e.g. that they vanish fast enough
at infinity, or that they obey (along with the gauge parameter) periodic boundary conditions.
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so we can think about our gauge transformations as being related to the group G =
U(1), but now its parameter o depends on where we are in space-time. G = U(1) is
called the gauge group. The field A, transforms in the adjoint representation, except
for the derivative term. This rewriting may look silly since the adjoint representation of
G = U(1) is trivial, but we will see later that this form generalizes to other gauge groups
in a natural way. We will also understand the role and meaning of the extra derivative
term.

2. You have encountered field theories with U(1) global symmetries and conserved cur-
rents before. Can we use the currents found there to couple them to electromagnetism?
If so, can we identify the U(1) global symmetry of these field theories with the U(1)
gauge symmetry found above?

The answer to the previous question is yes, and we will learn how to do this systematically
next. But first, let us briefly remind ourselves of the concept of U(1) global symmetry and set
notation for what follows.

5.2 U(1) global symmetry

Consider (for simplicity) a complex scalar field gzﬁ(x)ﬂ

The action [

$l0.0] = [ ' £a(0,3.,6.0,9).
Lo = 13,07 = V(9,6) = ~12,0f = U(lo?) 52
= [0 = V6P = U(1of)
is invariant under global G = U(1) transformations
g: 0lx) = ()

9Recall that mathematically, this is a map from Minkowski space-time R to C, which associates a complex
number to each point in space-time:

¢ RY - C
- ()

Greek indices i, v, ... are space-time indices running from 0 to 3. (Roman indices 4, j, ... are spatial indices
running from 1 to 3. Index 0 is for time.) Unless we explicitly state otherwise, we will typically assume that all
fields are smooth.

ORecall that |(9#¢|2 is a short-hand notation for (9H58“¢, where Einstein summation convention (re-
peated indices are summed over) is understood. Recalling that we work with Minkowski metric [7,,] =

diag(—1,+1,+1, +1), this means that |,¢|> = —|dp¢|? + |0:i¢|? = —|9|* + [V
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where @ ~ a + 27 is a constant parameter, and g = ¢’ € U(1) is a constant group element.
The requirement of U(1) invariance restricts the scalar potential V (¢, ¢) to only depend on
the invariant |¢|*. Because the scalar field ¢ is multiplied by a single power of the U(1) group
element g = ¢'*, we say that it has charge 1.

REMARKS:

1. The continuous U(1) symmetry ensures the existence of a conserved current

' = —i(9d"p — ¢0"9)

o =0 (5.33)
and of a conserved charge
Q|
p (5.34)
a? ="

by Noether’s theorem.

2. A global symmetry relates physically distinct configurations.

Exercise 16. Consider a field theory with action (5.32) and scalar potential
V(6,0) = A|o|* —a*)?,
with parameters X\, a > 0, see figure[5.1 The energy (or “Hamiltonian”) is

E=J$mﬂ%ﬁ+@@?+W¢@)
~ [ (198 + 1VoF +V(0.8))

1. Show that the configurations of least energy (“vacua’, or “ground states”) parametrize a
circle in field space.

2. Show that different vacua are related by global U (1) transformations.

5.3 U(1) gauge symmetry

To make the global symmetry local, or a gauge symmetry, we promote the constant param-
eter « to a function of spacetime «(z). For subtle reasons that we might return to later, the
parameter a(x) of a gauge transformation should approach 0 (sufficiently fast) at infinity.
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Figure 5.1: The scalar potential V (¢, ) = A(|¢|? — a?)2.

If we try to write a kinetic term for ¢, we immediately seem to run into trouble. Under a U(1)
gauge transformation

0t — 0,0 = 0,(e"¢) = € (0, + i(0,0)P) (5.35)

since now « depends on spacetime. Therefore the naive kinetic term —|J,¢|? is not invariant
under a U(1) gauge transformation. We say that it is not gauge invariant.

This is a serious problem. But there is a way to fix it: we replace the derivative ¢d,¢ by the so
called gauge covariant derivative

Dt i= 0t — i (5.36)

which includes a new field A, (the gauge field), whose purpose is to transform under gauge
transformations precisely in such a way to cancel the unwanted second term in (5.35). This
happens if under a U(1) gauge transformation

Ay A = AL+ Ou, (5.37)

because then
D,¢ = (0,0 —iA,0) — DLQS’ = (0,0 — z'A;Lgb')
= e (0u¢ +i(0pa)p —iAud — i(0,) ) (5.38)
=€ (0,0 —iA,0) = *D,¢,

using (5.35) and (5.37). Replacing derivatives ¢, by gauge covariant derivatives D, makes the
gauge kinetic term of ¢ invariant under U(1) gauge transformations.

Note that mimics precisely the gauge transformation of the 4-vector potential in
the theory of electromagnetism. Having introduced a new U (1) gauge field A,,, we now need
to write a gauge invariant kinetic term for it. But we know how to do it: we just write the
Maxwell Lagrangian from the theory of electromagnetism.
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Putting everything together, we find that the action
5166, 4, = [ ' £06.6.4,.0,6.0,6.0,,).
L= £0(¢7 é? Du¢a Du¢) + ‘CMaxwell(auAV) (539)
- 1 y
= —Dyu¢D"¢ — U(|¢]*) - g2 ™
where A, is a real gauge field (or mathematically, a “gauge connection”) and
D,¢ = (0, —1A,)¢ covariant derivative of ¢ (5.40)
Fu = 0,A, —0,A, field strength of A, , '
is invariant under G = U(1) gauge transformations
s ota(z)
o) = " o(a) s
Ay (z) — Au(z) + da(z) .
REMARKS:
1. To linear order in the gauge field A,
L=Ly+7"A+ ... (5.42)

The scalar field is coupled (via covariant derivatives) to the gauge field A,,, and not to the
field strength F},,. To leading order, the gauge field A, couples directly to the conserved
current j# of the theory with U (1) global symmetry, which is built out of the scalar field.
This type of coupling is called the minimal coupling.

A common alternative normalization to the one we use is obtained by rescaling the
gauge field by one power of the gauge coupling: A, — gA,. In that normalization the
Lagrangian density is

_ 1
L=—((0"+igA")9) (0y —igAu)d — U(|9]*) — 7 P P

— Lo+ gj" Ay, + ...

where the ellipses denote terms quadratic in the gauge field. This alternative normal-
ization makes it clear that the gauge coupling g controls the strength of the coupling
between the conserved current j* of the theory with U(1) global symmetry and the
gauge field A,. In the following we will typically stick to the convention in which the
gauge coupling g appears in front of the kinetic term for the gauge field, rather than
inside gauge covariant derivatives.
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2. The group of gauge transformations

G=U(l) = { g: RY = G=U) } (5.43)

- g(x) — eia(x)

is infinite-dimensional, since it associates independent transformations g(z) for the
fields at different points z#, and there are infinitely many points in space-time. We use
calligraphic letters to distinguish the gauge group from the associated finite-dimensional
(for G = U(1), one-dimensional) Lie group. Later on, once we have familiarized our-
selves with this distinction, we will typically drop this notation and simply use G for
the gauge group, with a common abuse of notation.

3. A “gauge symmetry” relates physically equivalent configurations, which are to be
identified. The term “ gauge symmetry” is therefore a misnomer: it is not a symmetry,
but rather a redundancy in our description of the theory.

The identification of field configurations which differ by a gauge transformatio leads
to non-trivial topological properties of gauge fields, which in turn ensure the existence
of topological solitons and instantons, non-trivial gauge field configurations which are
stable for topological reasons. We will study these configurations in later chapters.

From now on we omit writing the dependence on the space-time coordinate z. It is
understood that all fields and all gauge transformation parameters depend on z.

4. Under a U(1) gauge transformation (5.41),

D¢ — €“D,¢,

5.4
F oo Fo, (5.44)

We say that the covariant derivative D, ¢ of ¢ is gauge covariant, because it transforms
in a representation of GG for all x (the same representation of ¢, namely the charge 1
representation here), and that the field strength [, is gauge invariant, because it does
not change under a gauge transformation (in fancy language, it transforms in the trivial,
or “singlet”, representation).

5. Itis useful to think of the covariant derivative D,, = 0, —iA,, as a differential operator,
which acts on everything to its right. The partial derivative 0, acts by differentiating all
that appears to its right, while the gauge field A, like all functions of z, acts by multi-
plying all that appears to its right. Requiring that under a U(1) gauge transformation

Dy, =0, —iA, — D, =0, —iA), = e“Dye™ (5.45)

1See section 2.6 of [Manton and Sutcliffe, 2004] if you want to read more about this.
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so that ‘ o }
D,¢p— e“D,e "¢ = e D, ¢ (5.46)
as desired, implies the gauge transformation of the gauge field
Ay— A=A, + 0 (5.47)

and vice versa.

Proof. We have already proven the implication (5.45) < (5.47) in (5.38). For the opposite

implication (5.45) = (5.47), we expand (5.45) and act with ¢, on everything to its right.
There are two options: either d,, acts on e, which produces the function (J,e~"*) =

—ie~"(d,), or 0, goes through e~**, which produces the differential operator e~ (3’H
Then we find
D, =0,—iA,— D,=0,— 1A, = (0, —iA,)e"™
= e7(—id,a) + Y70, — ie'¥e A,

=0, — (A, + dua) ,

which comparing the initial expression and the final result implies

Au'_’AL:AM"'auO"

Furthermore, defining the commutator [ X, Y] := XY — Y X, we have
[D,ua Du] = _iF;w ) (5.48)

so the field strength controls the non-commutativity of covariant derivatives.

Proof. :

Exercise 17. Show that
[D,,D,] = —iF,,, (5.49)

6. The gauge field A, is only defined locally, namely in a patch, which we take to be
such that the Poincaré lemma applies. As we saw in the gauge theory formulation of
electromagnetism, the Bianchi identity ¢/ 0, F,, = 0 implies F},, = d,A, —0, A, only
if the Poincaré lemma applies.

121f you are confused by these statements and manipulations, act with the differential operator on any smooth
test function f(x). If X and Y are two differential operators, then X = Y iff X f = Y f for all smooth test
functions. Similarly X — Y iff X f — Y f for all smooth test functions.
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What this means is the following. Consider two patches U") and U?) with a non-trivial
overlap UV n U®?) £ (. Then the gauge fields Af}) and ALQ) defined in the two patches

are related by a gauge transformation

AD = AB) 4 9,007

on the overlap UMD ~ U®), so that the field strengths agree: F\y) = F,E,z,) Mathe-
matically, the gauge transformation parameter a(!? that relates the gauge fields in the
two patches is called a “transition function”. Charged fields are also defined locally,
in patches. For consistency, they also transform by a gauge transformation when we
switch to another patch.

This local definition of A,, is responsible for most of the topological and geometric prop-
erties of gauge theories. To give you an appetizer, consider a space-time of the form
R x (R*\p), where the first factor of R is parametrized by time, and the second factor
is space, which is flat Euclidean space R® except that we excise the point p (we could
equally excise a 3-ball).It turns out that this space-time is not contractible to a point, but
only to a 2-sphere surrounding the point p. (Perhaps you can figure it in your mind. If
not, just trust me for now.) Last term, when you learned about stereographic projections,
you saw that a 2-sphere can be covered by two patches, see figure For instance, we
can take patch UV to cover everything north of the southern tropic, and patch U® to
cover everything south of the northern tropic. The two patches overlap in the region be-
tween the two tropics near the equator, so we need to specify how the gauge field in the
northern patch and the gauge field in the southern patch are related in this region where
both are defined. As we will see, this freedom allows us to define a magnetic monopole,
namely a pointlike magnetic charge, sitting at point p. This is very surprising, because
Maxwell’s equations allow electric charge densities but not magnetic charge densities
in the right-hand sides. As we will see later, we can by-pass this limitation by exploiting
the topology of the gauge field.

7. The appearance of the covariant derivative can also be understood by studying the
Lorentz force and writing down the associated Lagrangian. Crucially, for such models
there is a difference between the kinematic momentum (the conserved charge following
from translation invariance) and the canonical momentum associated with the coordi-
nates in the Hamiltonian formalism. See [Sakurai, 1994] for a detailed explanation in
the context of quantum mechanics.

Exercise 18. So far I have assumed for simplicity that the complex scalar field ¢ has charge 1.
Go through this chapter and work out how all formulae change if ¢ has charge q € Z rather than
charge 1.

3Naively you might want to impose the simpler identification A,(}) = A,(f), but taking into account that gauge

fields are only defined modulo gauge transformations, one is led to the more general (and mathematically correct)
identification in the main text. It took physicists several decades to appreciate this point.
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Figure 5.2: Two patches which cover a 2-sphere S?, and their overlap.

5.4 Gauge redundancy and gauge fixing

A good reference for this topic is section 6 of David Tong’s QFT lecture notes [[Tong, 2006].

Let us start from the equations of motion (EoM) of the theory of scalar electrodynamics,
which is described by the action (5.39). We recall here the Lagrangian density

- 1
L= _|l),u‘¢|2 - V(gbv ¢) - 4_‘92F,31/ )

where F;, = F,, F* etc, and the scalar potential takes the form V(9,¢) = U(|¢|?) to ensure
gauge invariance.

Exercise 19. Show that the Euler-Lagrange equations of the above Lagrangian are

) DuDo= == U'(1¢*)¢ (5.50)

2) O F" =gt

where B B

Ju = _i<¢Du¢ - ¢Du¢) = ju - 2Au‘¢’2 (5.51)
is a conserved current. The EoM for ¢ is the complex conjugate of the EoM for ¢, so I will not write
it explicitly. Note that upon gauging the global U(1) symmetry, the conserved current j, (5.33)) of

the scalar field theory with global U (1) symmetry gets a correction term, due to the presence of
the gauge field A, in the covariant derivatives.

Let us now consider the transformation properties of the EoM (5.2) under a U(1) gauge trans-
formation (5.41). The equations transform as

1) N e’ial) (gauge covariant) (5 52)
2) > 2) (gauge invariant) |
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Therefore, if a field configuration (¢, A,,) solves the EoM (5.50), then any gauge transformed
field configuration (¢’ = €*¢, A, = A, + 0,«) also solves the EoM (5.50): the EoM only

determine (¢, A,,) up to a gauge transformation.

Given some initial data (¢(©), AELO)) specifying the field configuration at an initial time ¢,, we
cannot uniquely determine the field configuration (¢, A,,) at a later time ¢ > ¢,. Indeed (¢’ =
"¢, A, = A, + 0,) is as good a solution of the EoM as (¢, A,,), and obeys the same initial
condition provided that the gauge parameter « obeys the conditions «(t, ) = 0 (mod 27)
and 0,a(ty, £) = 0 at the initial time ¢.

We appear to be in trouble: we would like the EoM to define a well-posed initial value prob-
lem and determine uniquely physically observable fields at later times. This is not the case if
we regard field configurations which differ by a gauge transformation as physically inequiv-
alent. If instead we declare field configurations which differ by a gauge transformation to be
physically equivalent, then the issue disappears and the initial value problem is well-posed.
We will therefore identify field configurations related by a gauge transformation,

(9, A4u) ~ (¢ =P, A, = Ay + 0,0) . (5.53)

Physically observable quantities must then be gauge invariant, such as for example the
field strength F,,, the magnitude of the scalar field | 2 or the conserved current J,. This
explains remark 3 in the previous section.

The picture to keep in mind for gauge theories is that field space 7 = {¢(z), A,(x)} is foli-
ated"| by gauge orbits traced by the action of the gauge group

G - (¢(x), Au(x)) = {(¢*6(2), Au(x) + Ouar(w) | a(x) ~ afx) + 27} .

In down to earth terms, a gauge orbit simply consists of all the field configurations which are
related by a gauge transformation.

Then the identification (5.53) of field configurations related by gauge transformations states
the correspondencd”|

Physical configuration <«— Gauge orbit .

MFoliation is a mathematical term, from ‘folia’, Latin for ‘leaf’. You can look up the technical definition if you
are interested. For our purposes, you can take it to mean that field space is a union of disjoint orbits of the gauge
group.

BIf you are formally minded, you would say that the physical configuration space C is the quotient of the field
space F by the gauge group G,

c=F/g,

namely the set of equivalence classes of field configurations under the equivalence relation (5.53).
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Figure 5.3: The space of all field configurations decomposes into the disjoint union of gauge
orbits, each represents a single physical configuration. A complete gauge fixing selects a single
representative for each orbit.

Rather than working with the redundant description of field space F subject to the gauge
symmetry G, it is often useful to “fix a gauge” (or pick a gauge, that is, picking a single
representative for each gauge orbit). Any representative does the job — after all any two
representatives of a given gauge orbit are physically equivalent — but we need to ensure that
the gauge fixing cuts each orbit once and only once, as in figure If that is not the case,
and there is some leftover gauge symmetry that is not fixed, we refer to the gauge fixing as
partial or incomplete, and further conditions must be specified in order to have a complete
gauge fixing. The topic of gauge fixing is rather technical, and plays an important role in the
quantization of gauge theories. Here we will content ourselves with giving a few standard
examples of (partial) gauge fixing, which may be useful later on.

EXAMPLES:

1. Lorenz gauge:
This gauge is defined by imposing the constraint

0, A" =0 (5.54)

on the gauge field 4-vector A,. This can always be achieved. Indeed, if we are given a
representative A, which does not obey the Lorenz gauge condition (5.54), then we can
find another representative A;, = A, + 0, in the same gauge orbit which obeys the
Lorenz gauge constraint

0=0,A" = J,A" + 00" (5.55)
by picking « to be a solution of the inhomogeneous equation
0,0 = =0, A", (5.56)
which exists[[¥

!Here the right-hand side —d,, A" is given and acts as a source in a relativistic Poisson equation for . Solu-
tions can be found by the method of Green’s functions.
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Let us discuss pros and cons of the Lorenz gauge. The main advantage of the Lorenz
gauge is that the constraint is Lorentz invariant[”| The main disadvantage of the
Lorenz gauge is that it only fixes the gauge partially. Indeed, if we are in Lorenz gauge
we are free to perform gauge transformations with parameters « such that d,0*a = 0
and we will remain in the Lorenz gauge. (This corresponds to adding a solution of the
homogeneous equation in (5.56).)

2. Coulomb gauge (or radiation gauge):
This gauge is defined by imposing the constraint

V-A=0 (5.57)

on the vector potential A, which is the spatial part of the 4-vector A,,. This can always
be achieved, by a similar reasoning to above.

Compared to the Lorenz gauge, the Coulomb gauge has the clear drawback of not being
Lorentz covariant. So this gauge fixing spoils the manifest relativistic symmetry of the
formalism, which is not ideal. (The physics of the system remains Lorentz invariant,
because gauge transformations are unphysical, they are just a redundancy in our de-
scription.) Another drawback, in common with the Lorenz gauge, is that the Coulomb
gauge constraint only fixes the gauge partially. The argument is the same as for
the Lorenz gauge, except that we are using spatial indices only instead of full space-time
indices.

On the other hand, a pro of the Coulomb gauge is that the temporal component A of the
gauge potential (aka the ‘electric scalar potential’ in electromagnetism) is determined by
the charge density p = J as in electrostatics:
t =
Ao(t, T)oc J gy ABT) (5.58)
|7 — |

So if the charge density p = 0, for instance for ‘pure electromagnetism’, in which there
is no charged matter ¢, we have

Ay=0

in Coulomb gauge. On the other hand, if there are charged fields and hence p # 0, then
A # 0.

Exercise 20. Determine the proportionality factor in (5.58).  [Hint: use V> 473'5‘ =
§ON(&).]

"The Lorenz gauge is due to the Danish physicist Ludvig Lorenz, not to be confused with the more famous
Dutch physicist Hendrik Lorentz, who is responsible for the Lorentz transformations which leave the laws of
special relativity invariant, as well as for introducing the Lorentz force which acts on relativistic particles moving
in a magnetic field. Click on the names of the physicists to see who is who.


https://en.wikipedia.org/wiki/Ludvig_Lorenz
https://en.wikipedia.org/wiki/Hendrik_Lorentz
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5.5 U(1) Wilson line and Wilson loop

Let us conclude this chapter with an appetizer of geometric aspects that we will hopefully
return to later. A good reference for this section is section 15.1 of the book by Peskin and
Schroeder [Peskin and Schroeder, 1995]).

We start by recalling that if ¢ is a charged scalar (of charge 1 for definiteness), then its partial
derivative is not gauge covariant, that is, it does not transform under a well-defined repre-
sentation of the U(1) gauge group. You have seen this explicitly in the first term, when you
worked out how 0,,¢ transforms under a U(1) gauge transformation (5.41). One can fix this
problem by introducing the gauge covariant derivative D, ¢ = (7, — iA,)$, which transform
covariantly as a field of charge 1 under the gauge transformation (5.41). Hopefully this is all
clear by now at a technical level. But why is this, conceptually?

To analyze all the partial derivatives in one fell swoop, let us consider the total differential

of ¢(x),

o(z + Edf) — ¢(x) = 0,6(x)dz" (5.59)

where I have introduced an infinitesimal book-keeping parameter € in front of the line incre-
ment dz#, so that I could write the total differential as a limit. The final expression, which
writes the total differential of ¢(x) as the 4-vector 0,¢(x) contracted with the differential in-
crement dz*, follows from Taylor expanding the numerator inside the limit and by taking the
limit (see Calculus and AMV).

The reason why the total differential (5.59) of ¢ (and hence its partial derivatives) does not
transform covariantly under gauge transformations is that the two terms that we are sub-
tracting inside the limit have different gauge transformation properties

o(x + edx) — T G 4 eda)
$a) — ¢ Do(x)

because a(z + edx) # a(z).

This problem can be fixed by introducing the ‘Wilson line’, or the mathematical notion of
‘parallel transport’.

Let C be an open curve (or a path) from point x; to point xo, see figure Mathematically,
this is a smooth map from an interval to space-time R*?

C: I=[n,n]— R

T - at(7)

with (7)) = 21 and x(72) = x5 at the endpoints.
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x i Az
Figure 5.5: A closed curve (or ‘loop) with base-point z; = 5.

The Wilson line (of charge 1) along the path C' is defined to be

We (s, 1) = exp [z J - Au(a:)dzzu} — exp [@ J N Au(a;(f))gw(f)df] C (5:60)

z1,C 1

where the first integral is the line integral from x; to x5 along C, and the second integral is its
expression in the parametrization z* (7). If C' is a closed path (or a ‘loop’), namely if 21 = x5

as in figure [5.5| then

We := exp iﬁAu(x)dx“ (5.61)
c

is called the Wilson loop (of charge 1) along the curve C. By standard results from multi-
variate calculus, the line integral §, A, (z)dz" only depends on the curve C' and not on the
base-point z; = x.
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Under a U (1) gauge transformation (5.41), we claim that the Wilson line (5.60) transforms ag'|

Wo (g, 11) = eI We (g, 21 )" (5.62)

Proof-
A, dxt (Ap+oua)dxt
I1fc(l’2,$1) =¢ Szl c ApdT N ZSII of Opa)d

. . T
et Sml’ o Apdat e Saci o Opodzt

:WC(SUQ, xl)ei(a(xz)*a(xl))

gl Wc(xg,xl)e*m(‘“) .

To go from the second to the third line, we have used the fact that d,adz" = do(x) is an exact
differential, so its integral along a curve C' only receives contribution from the boundary terms.

A corollary of the gauge transformation (5.62) is that the U(1) Wilson loop (5.61) is gauge in-
variant. To see that, simply set z; = x5, or use the fact that the integral of an exact differential
along a closed curve vanishes.

REMARKS:

1. In QM, the Wilson line W (9, 1) is the phase picked up by the wave-function of a
charged point particle slowly (more precisely, ‘adiabatically’) moving from x to 25 along
a path C' in the presence of a gauge field.

2. The Wilson loop is gauge invariant and therefore physically observable. It is the
phase picked up by the wave-function of a charged point particle slowly moving along a
loop C'. This phase controls the Aharonov-Bohm effect in QM, a subtle and unexpected
form of quantum interference which arises because the wave-function couples directly
to the gauge potential A, rather than to the physical electric and magnetic fields E, B.

If the loop C' is the boundary of a surface X, then by a higher-dimensional version of Stokes’

8For the gauge group G = U(1), which we are considering here, the Wilson line and the gauge transforma-
tions e**(®:) commute, so we could have written the gauge transformation of the Wilson line simply as

We (g, 1) — ei(a(xz)fa(xl))wc(u’xl) )

I wrote the result like (5.62) for comparison to the case of a non-abelian gauge group, which we will study later.
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theorem (see Differential Geometry III) one has

1
f}gAu(:c)d:v“ = QJ F(x)dz" A dx”
>

) ! wi(0) d*(o)  2a(0) dah(o) (63
-1 o Foleto) ( - ) do'do

2 ool 0o? ol 0o?

where 7#(c) = 1#(c!, 0?) is a parametrization of the surface ¥['’| The previous formula is a
higher-dimensional analogue of Stokes’ theorem

jgﬁ-df:f(vxﬁ)-ﬂd%:fE-ﬁd%, (5.64)
b Y
C

which is used in electromagnetism to relate the circulation of the vector potential A along C
to the magnetic flux through a surface with boundary C. The formula (5.63) tells us that the
field strength F},, encodes the value of infinitesimal Wilson loops.

If the loop C' is not contractible to a point, it may happen that A, # 0 and therefore

ng#dx“ #0
C

even if the field strength ), = 0 vanishes everywhere in the region probed by a quantum-
mechanical particle (or by a charged scalar field). Examples of spaces which allow these phe-
nomenon are RQ\p, for loops which encircle the removed point p, or the torus 7™, for loops
that wind non-trivially around a circle direction in the torus.

Time permitting, we will return to the Aharonov-Bohm effect later. For an accessible summary,
see section 10.5.3 of [Nakahara, 2003]], up to equation (10.100) or the excellent book [Sakurai,
1994].

5.6 The Dirac monopole (a la Wu and Yang)

For this topic, see sections 1.9, 9.4.1 and 10.5.2 of [Nakahara, 2003]].

In this section we will investigate the question: can we have a magnetic field local-
ized near a point in space R3? The resulting putative configuration is called a magnetic
monopole, to contrast it with the magnetic dipoles which are physically realized and observed
in real world magnets and have two poles.

Pp = %Fwdx“ ndx” is called a differential 2-form. It can be shown that the surface integral of a differential 2-
form is independent under reparametrizations of the surface that preserve its orientation, much like line integrals
of a differential 1-form A = A, dz".
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We can already ask the question of the mathematical existence of magnetic monopoles in
pure electromagnetism. The immediate answer that comes to mind is that no, magnetic
monopoles are forbidden by Maxwell’s equations

0, FH = Jr

e (5.65)
where F# = s€"P7F,, is the dual field strength which is obtained from the original field
strength by the replacement (E, B) — (B, —FE). The vacuum Maxwell equations which
are obtained by setting to zero the sources for the electric and magnetic fields in the right-
hand side, are invariant under the electric-magnetic duality that sends (E, B) — (B, —F) or
equivalently F),, — FW. But the sources break this symmetry: in the first equation of
we have the electric current 4-vector J#, but there is no analogous magnetic current 4-vector
J* in the second equation. It is precisely the absence of a magnetic current 4-vector in the
Maxwell equations that allows us to write the field strength in terms of a gauge field. For static
field configurations, we have

B=VxA — V.-B=0, (5.66)

with no magnetic charge density p in the right-hand side to source the magnetic field B.

The previous argument seems to suggest that if we accept Maxwell’s equations as the cor-
rect mathematical description of the phenomena of electromagnetism, then pointlike electric
charges are allowed, but pointlike magnetic charges are not. But Dirac [Dirac, 1931] found a
loophole in this reasoning and was able to describe a magnetic monopole, which is dubbed
the Dirac monopole since. Or almost... Dirac’s argument involves a so-called Dirac string,
which has a localized magnetic flux inside it, much like an infinitesimally thin solenoid. The
Dirac string ends at a point, from which a radial magnetic field emanates, analogously to
the electric field that emanates from an electrically charged point particle. That’s the Dirac
monopole. The location of the Dirac string turns out to be be unphysical, as it can be moved
around by performing a gauge transformation, but the endpoint of the string, which is the
center of the monopole, is physical. Then by a quantum-mechanical consideration (requiring
that the wave-function of a charged particle is single-valued when the particle loops around
the Dirac string, which is equivalent to requiring that the Wilson line around the Dirac string
is equal to 1) it follows that the magnetic charge is quantized. Note that in Dirac’s point of
view there is no pointlike magnetic charge really, just the endpoint of a movable Dirac string
coming in from infinity. The magnetic flux through a 2-sphere that surrounds the endpoint of
the Dirac string is zero, because the magnetic flux that enters the sphere from the Dirac string
is equal and opposite to the flux that exits the sphere having emanated from the endpoint of
the Dirac string (or the Dirac monopole).

The explanation of the Dirac monopole with the Dirac string can be confusing. Luckily, one
can improve on Dirac’s intuition, reinterpreting it in more geometric terms, to actually de-
scribe a genuine pointlike magnetic charge. This was achieved by Wu and Yang [Wu and
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Figure 5.6: Magnetic flux produced by a magnetic monopole at the origin.

Yang, 1975, Wu and Yang, 1976b,[Wu and Yang, 1976al], and it’s their modern description of
the Dirac monopole that we will present here. The key point that will allow us to introduce a
magnetic monopole is to remove from space R* a point, the position of the monopole, which
we will set to be the origin O in what follows. Then, while V- B = 0 everywhere in R*\O, we
can still have a non-vanishing magnetic flux through any 2-sphere surrounding the location
of the monopole, which is measured by the magnetic charge

1

m=—| B-dco, (5.67)
27T S2

where d?c is the infinitesimal area element of the sphere, see figure

REMARK:
We could equivalently work on R? and use Gauss’ theorem to rewrite V - B = 0 on R*\O

together with as
V-B=2mmé3(x) in R®, (5.68)

but it is preferable to work in R*\O, which allows us to use gauge fields.

Using polar coordinates in R3, we have the identities

1
V-=-=, A-=—415%(x), (5.69)
r r r
where r = |z| and A = V? is the Laplacian. Then we can solve (5.68) by
m1 .

2 73

similarly to how we describe pointlike electric charges.

What about the vector potential or gauge field A? We cannot write a smooth A which is
defined everywhere in R?, such that B := V x A obeys (5.68), because then we would have
V- (V x A) = 0. Next, we can try to write a smooth A which is defined everywhere in R*\O,
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Figure 5.7: Spherical coordinates.

such that B := V x A obeys V - B = (. But this fails too. Indeed, consider for instance the
vector potential A™ given b

m oy m x
Al = ————= — A =4——"—— A =0. 5.71
e 2r(r+z) Y 2r(r+z)’ 7 6.7
The corresponding magnetic field is
Exercise 21. m
VxAt = —= (5.72)
273

as we hoped, but unfortunately this only holds where is defined, namely on R?® minus
the origin and the negative 2~ axis. We can try harder, but we will only be able to move the
semi-infinite open path where the gauge field is ill-defined (different choices are related by
singular gauge transformations).

The reason why it is not possible to find a globally defined gauge field on R3\O ~ R.( x 52
is that in this space there is a two-sphere surrounding the origin, and the two-sphere is a
differentiable manifold which requires at least two charts (or patches) with the topology of an

open disc. Working in polar coordinates (r, 0, ¢), see figure we can take the two patches
on S? to be?]

U ={(0,0)|0<0 <= +¢)
2 (5.73)

U;zua@|g—e<9<ﬂ

2The subscript + is simply a label, the reason for which will become clear later.

2IThese spherical coordinates are ill-defined near the poles, but this won’t be important for what follows. One
can find a set of well-defined coordinates in the two patches, for example the stereographic coordinates that you
encountered in the first term. What matters is that there is no single set of coordinates which cover the whole

S2.
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for a constant € € (0, 7). The two patches overlap in a region

™

U+mU_:{(«9,g0)]g—e<9<2

+ €} (5.74)
near the equator, which has the topology of an open interval (parametrized by ) times as circle
(parametrized by ¢). Then we can view A", defined in in terms of Cartesian coordinates,
as a gauge field defined in the northern patch U*. We now need to define a gauge field in the
southern patch U™, and to figure out how A" and A~ are related on the overlap U, n U_.
The key idea is that on the overlap U, n U_ the two gauge fields are allowed to differ by a
gauge transformation, since field configurations which are related by a gauge transformation
are physically equivalent. On the southern patch U_ we can take the gauge field to be A™,
defined by

m oy m T

AT =+ A-=""_ % A=, (5.75)

. 2r(r—2z)° v 2r(r—2z)’ z
which also has magnetic field

VxA = %% (5.76)

where it is defined.

Since the gauge fields A" and A~ lead to the same gauge invariant magnetic field B* :=
V x A" =V x A™ =: B™ in the overlap region U, n U_ where they are both defined, we
might expect them to be gauge equivalent. To see this explicitly, it is easier to switch to polar
coordinates. Using differential form notation we ﬁn

Exercise 22.

AT = Afdx + Ayidy + Afdz = AZdr + Ay do + Aidgp
m (5.77)

= E(il —cosf) dp .
Then we find that on the overlap of the two patches U, n U_ the two gauge fields differ by
AT — A7 =mdp = d(myp) = day = —ig ' dg, (5.78)

where the transition function, namely the parameter of the U (1) gauge transformation that
relates the gauge fields in the two patches, is

gi_(p) = =) — ¢me e (1) . (5.79)

2The vanishing of A" at the north pole and of A~ at the south pole is what ensures that they are well defined
there, even if the polar coordinates are ill defined. This can be checked explicitly by switching to stereographic
coordinates or to Cartesian coordinates.
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Since ¢ ~ ¢ + 27, g, () is single-valued (or periodic) if we do one lap around the ¢ circle
(e.g., the equator) if and only if the magnetic charge m is an integer:

gi-(p+2m) =gi-(p) < mel. (5.80)

We learn that the quantization of the magnetic charge follows from carefully considering
gauge fields defined locally on the two patches of S?, and gluing them consistently by U(1)
gauge transformations in the overlap of the two patches. The ¢/(1)-valued transition function
g+— on the overlap tells us how to relate gauge transformation parameters g, on U, and U_
along the overlap: g, = g, _g_, or equivalently o, = a_ + a,_. Mathematically, the ¢/(1)
gauge transformation parameters define sections of a so called principal U (1) bundle over S?;
the gauge fields A* are (local) connections for this principal U (1) bundles. If you want to learn
about the definition of these bundles, their sections and connections, and how they provide a
mathematical definition of gauge groups and gauge fields, see the bonus chapter 9.

REMARK:

In this formulation we can calculate the magnetic flux through the 2-sphere surrounding the
origin (the position of the magnetic monopole) as follows. Call Uy and Ug the northern and
southern hemisphere respectively, which are the limits as ¢ — 0 of U™, so that the overlap
reduces to the equator S;q. Then the contributions of the two hemispheres to the magnetic

flux add up:

1 1 1 1
—®5»(B)=—| B-d°c=—| B' dc+-—| B -do
2m 21 Jg2 27 Juy 27 Jug

1 1
=— | (VxA") - dPo+—| (VxA) do
27T Un m Ug
1 n 1 _
=— A" -dl—— p A -d
2m 2T
Séq Séq (5.81)
1 4 _ 1 n _
=— PAT-—A)-dl=—P(AT—-A")
2m 2m
Sl Sy
1 m 2m
= — ¢pda;_ = — dp=m.
2 o ZWL zom
Sy

To go from the second to the third line we used Stokes’ theorem. The relative minus sign
between the two terms is there because the two hemisphere have opposite orientations, so
that 0Uy = S}, but dUs = —5S;, (the equatorial circle with the opposite orientation), see
figure (5.8). This reproduces the desired result (5.67).

This is very nice! We can describe a static solution of Maxwell’s equations which is a
pointlike magnetic charge (magnetic monopole) by excising the location of the monopole
from space and exploiting the geometry and topology of gauge fields over R3\O (or equiv-
alently of S?). But unfortunately it is not hard to see that a Dirac monopole has infinite
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Figure 5.8: Oriented hemispheres and their oriented boundaries.

energy. This problem can be fixed if we embed the U (1) gauge group into a bigger nonabelian
gauge group, such as SU(2).

Exercise 23. The energy stored in electromagnetic fields is
%Jd?’x(EQ + B?).

Show that the energy of the magnetic monopole solution (5.70) is infinite. How about an electric
monopole?



Topic 6
Non-abelian gauge theories

In this chapter we will learn how to formulate gauge theories with a non-abelian (that is,
non-commutative) gauge group. Non-abelian gauge theories are named Yang-Mills theories,
after Chen-Ning Yang and Robert Mills, who developed the formalism in 1954 [Yang and Mills,
1954].

The formalism of Yang and Mills became prominent in the late 1960s, and has remained cen-
tral in modern physics ever since. Non-abelian gauge theories are the language of the Stan-
dard Model of Particle Physics, and have also established very fruitful interactions between
Physics and Maths, which have led to numerous developments in both subjects and quite a
few Nobel prizes and Fields medals.

We will focus on compact Lie groups. As common in the physics literature, we will choose to
write group elements g in terms of Lie algebra elements as

g = exp(ia‘ty) (6.1)

for real numbers «,, i.e. we will write a basis of the Lie algebra as it,. In such a basis the
structure constants are related to the generators ¢, by

[ta,to] = ifapte (a,b,c=1,...,dimg). (6.2)

As we have seen in Michaelmas term, we can always assume that r(g) is unitary for any
compact Lie group, the above normalization has the advantage that the t, are Hermitian, t] =
to.

For simplicity of notation, we will write the representation of the ¢, associated with a repre-

sentation r of the Lie group as tEf).

57
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6.1 Non-abelian gauge theories: fields

This section introduces the cast of characters which we will use in the next section to formulate
actions which are invariant under non-abelian gauge transformations. The cast of characters
will consist of:

+ Charged fields (scalars or spinors), collectively denoted as ¢, transforming in a repre-

sentation 1{T| of the gauge group G|
+ Their covariant derivatives D, ¢;
+ The gauge field A,, which is hidden inside the covariant derivative;
+ The field strength F),, of the gauge field,
and their gauge transformations.
References for this section are section 1.8.1 of [Argyres, 2001|] and section 2.1 of [Tong, 2018].

We will be more general later, but let us start slowly and assume that the gauge group G is
a classical group (e.g. SU(N)), whose elements are matrices, and that the charged field ¢
transforms in the fundamental representation fund (that is N for SU(N)). This means that
the gauge transformation of the charged field ¢ is

¢ gp =" (6.3)

where ¢ is a column vector (N-dimensional for G = SU(N), that is ¢ = (¢/)}_; € CV), the
Lie algebra generators ¢, are matrices (N x N hermitian traceless for G = SU(N)), and the
group element ¢ is also a matrix (N x N unitary and with unit determinant for G = SU(N)),
which acts on ¢ by matrix multiplication. Recall that both the field ¢ = ¢(z) and the group
element ¢ = ¢(z), and therefore the gauge parameter & = «(z), depend on the space-time
point x.

Given the charged field ¢, we define its (gauge) covariant derivative

D¢ = 0up — iA,0 (6.4)

where the gauge field A, is now a matrix, which will turn out to be an element of the Lie

UIf the representation r is irreducible we think of ¢ as a single field; if representation r is reducible, namely it
is the direct sum of multiple irreps of GG, then we think of ¢ as describing multiple charged fields.

’Note: from now on I will ignore the distinction between the Lie group G and the gauge group G, which
consists of coordinate-dependent elements of G. I will simply use G for the gauge group.
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algebra to ensure the consistency of its gauge transformation:
Ay = Ajta. (6.5)

We require that under the non-abelian gauge transformation (6.3) the covariant derivative
transforms in the same way as ¢:

D¢ — gD, . (6.6)
Viewing the covariant derivativ
D, =10, —1iA, (6.7)
as a matrix-valued differential operator, which in components reads
(Du)jk = 5;‘]{:@# - i(Au)jk )
we require the gauge transformation
D, — gD“g*1 : (6.8)

In terms of the gauge field, the gauge transformation of the covariant derivative is

X (6.9)

Op—iA, — 0y —iAl, = g(0, —iAu)g™!
=9(dug") + 9970, —igALg”

Note that the gauge group element g and the gauge field A,, are matrices now, so they do not
commute: their order matters!

Comparing the initial and final result, we obtain the following gauge transformation for the

gauge field A,
Ay — A= gAg "t +ig(0.g7h) (6.10)
= gAugil - i(aug)gil )

where I have used parenthesis to make it clear that all objects are (matrix-valued) functions
not differential operators. I have used the identity

0= (au]l) = ((?u(gg_l)) = (au9>g_l + g(@ug_l) (6.11)

*Here 1 is the identity matrix of the same size as A,,, e.g. the N x N identity matrix for G = SU(N). Itis
customary to omit the identity matrix from the notation and simply write, and I'll follow that convention and
only restore 1 when it helps to understand what is going on. If you are formally minded and want to be very
precise, you might write the covariant derivative as

Dy =0,®1—iA}(r) ®tq,

which acts on the tensor product C*(U)® V of the vector space C*(U) of smooth functions defined on a patch
U of space-time and of the finite-dimensional vector space V associated to the fundamental representation. We
won’t need to worry about such level of abstraction and formality.

“The derivative of a (matrix-valued) function is a (matrix-valued) function.



TOPIC 6. NON-ABELIAN GAUGE THEORIES 60

to go from the first line to the second line.
REMARKS:

1. The first term in the gauge transformation of the gauge field A, is the adjoint
action of the Lie group G on a Lie algebra element. This clarifies why A, belongs to
the Lie algebra g = Lie(G).

2. The second term in (6.10) is a correction term to the adjoint action, which involves a
derivative. This is also an element of the Lie algebra g, which can be seen as follows:
consider the path g(to + t)g~'(to), which passes through the identity for ¢ = 0. The

associated Lie algebra element is
0

ot

g(to + t)g " (to)

o (&% (tOH)) )| = (a% <to>> g7 (to) (6.12)

For any path g(t), we hence have that (0;g(t))g'(t) € g for all t. For g(x we get paths
by setting ¢ = x* for some 1 while keeping the other components of « fixed. Hence

(Oug()) g '(z) e g. (6.13)

Finally, in analogy with the G = U(1) case, we define the field strength
F :=i[D,, D,] . (6.14)

Asinthe U(1) case, in the above definition we view both sides as differential operators, except
that now they are matrix-valued. As we will see shortly, despite appearance F},, turns out to
be a multiplicative operator, which means that it is a (matrix-valued) function that simply
acts by (matrix) multiplication, no differentiations are involved.

By construction, under a gauge transformation (6.3) the field strength transforms as

F.— gF.g". (6.15)

Proof. We simply need to use the gauge transformation property and basic properties of
the commutator:

F,uz/ = i[D;uDu] = F,/W = i[gDug_lngug_l]
= Q[Dw Du]gil = gFuvgil .

Calculating the commutator in (6.14), we find the following expression for the field strength:
F.=0,A —0,A,—ilA,,A)]. (6.16)
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Proof. Restoring the identity matrix 1 for clarity (feel free to omit it if you are comfortable
without it),

—iF,, = [D,,D,] = [10, —iA,, 16, — iA,]
= [10,,10,] — i[10,, A,] — i[A,,10,] — [A,, A, ]
=0 —i(0,A4,) +i(0A,) — [A,, 4]
— —i (0,4, — 0,A, —i[A,, A)]) .

REMARK:

The finite gauge transformations of the covariant derivative D, and (6.15) of the field
strength F},, is by the adjoint action of the Lie group on the Lie algebra. This means that D,
and F},, transform in the adjoint representation adj of G.

Exercise 24. By considering infinitesimal gauge transformations (|a®| « 1)
g =€ = = 1 +ia+ 0(a?) (6.17)

and Taylor expanding finite gauge transformations to leading order in o € g = Lie(G), show
that the infinitesimal gauge variations of the fields are

5oc¢ = ZO@
daAy =ila, Ayl + Oua (6.18)
daF = ila, Fl,

where ¢ — ¢ + 0,0 + O(a?) and so on.

REMARKS:

1. The field strength F},, transforms in the adj rep of g under infinitesimal gauge transfor-
mations.

2. The gauge field A, doesn’t quite transform in adj, as the first term in its variation sug-
gests, because of the additional derivative term, which we have already encountered
when we studied g = u(1). People often say (and I might also say in the future) that 4,
transforms in the adjoint representation adj, but that’s an abuse of terminology.

3. On the other hand the covariant derivative [, does transform in the adj representation.

Everything that we have seen so far generalizes to an arbitrary Lie group G and a charged
field ¢ transforming in an r-dimensional representation r. Now ¢ is a column vector with
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components, and we simply need to replace the group element g in previous formulae by the
appropriate r x 7 representation matrix

r(g) = explia“t{’] . (6.19)

a

For instance

Dy = 0, — iAu¢ = (1,0, —iA%UD) ¢, (6.20)
and
F,,¢ =i[D,,D,]
= (0 A, — 0 A, —i[A,, A)])¢ (6.21)
= (0 AL — 0,AY + fr"ALANY

where it is understood that if ¢ transforms in the representation r, then

Ap = Athf%
F¢:=F.t"e

urta

(6.22)

etc. Similarly, I should warn you that it is customary to simply write g¢, to mean the abstract
action of g on ¢ in the appropriate representation, rather than the explicit multiplication (g)¢
by the representation matrix r(g). Of course one needs to specify the representation r before-
hand, or it wouldn’t be clear what g¢ means.

In components, ' o
(Aup)' = As(ti)e? (1,5 =1,...,7) (6.23)

etc.

Exercise 25. Show that, if G = U(1), all the equations written so far in this section reduce to
those introduced in chapter[5, both for the charge 1 representation, which is analogous to the
fundamental representation, and for the more general charge q representation.

Exercise 26. Consider a field ¢ in the adj representation, with components ¢®, where a =
1,...,dim g.

1. Show that
(Aud)* = ifoc AL’ (6.24)
and similarly for (F,,¢)".
[Hint: we worked out the matrices defining the adjoint representation in problem 29 of

Michaelmas term, but wrote group elements as e*"*« instead of the physics convention ¢**"ta
used here]
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2. Let ® := ¢*t,, and A, = AZta, Fu = Fgt, as usual. Show that
(Aud)“ta = [Ap, P (6.25)
and similarly for F,,,¢. Show that therefore

D,® = 0, —i[A,, ]

[Dy, D,]® = —i[F,, ®] . (6.26)

The lesson here is that the action of the adjoint representation on itself is by commutators
(or Lie brackets). We have already seen that the associated Lie algebra representation of
adjoint lets the Lie algebra act on itself via commutators in Michaelmas term.

6.2 Non-abelian gauge theories: action and EoM

Let us start by constructing a gauge invariant action for the (Lie algebra valued) non-
abelian gauge field A, = Ajt,. This is easy: since the field strength F),, = F} {, transforms

as
E. — gFg" (6.27)

under a gauge transformation, it follows immediately that ¢r(F),, F*) is gauge invariant and
can therefore be used as a term in the Lagrangian density.

Proof. Under a gauge transformation,

tr(F,F") = tr(gFnglgF“”gfl)
= tr(g_lgFWg_lgF“”) = tr(F,F") .

where we have used the cyclic property of the trace.

We are now ready to define the Yang-Mills action

Syar[A] = fd‘*x Lya |

) . (6.28)
ﬁY]\/[ = ——tT(F ,/F/W) s
205 a1 g
Working in a normalization where
1
tr tatb = 5 5aba (6.29)
we find
1 a a v
Ly = —FMVF e (6.30)

49}2fM
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gy is called the Yang-Mills coupling constan and controls the strength of the interac-
tions. (To see that, it helps to rescale A, — gy A,.)

It turns out that there is a second gauge invariant term that one can add to the action. It is the
theta term

S@[A] = Jd4l’ ,Cg y

; (6.31)
ﬁg = @tT<Fm,FMV) s
where 6 is called the theta angle, and
- 1
FH = Zevro (6.32)

2 e

is the dual field strength. In (6.32), ¢/ is the completely antisymmetric tensor in four
indices, with €123 = 1.

To summarize, the most general gauge invariant action (with two derivatives) which contains
a kinetic term for the non-abelian gauge field A, as well as interaction terms, is

Sgauge [A] = Sym [A] + Sp [A] )

tT(FlWF’W) ' (6.33)

1 0
ﬁgauge =Lyy+ Ly = —FtT’(F#VF‘MV) + 1672
Y M

Exercise 27. 1. Express the Lagrangian density Lgpge in

terms of A}, and the structure constants fq°, and identify quadratic terms involving deriva-
tives of the gauge field, and cubic and quartic terms in A, which represent interactions.

2. Show that the theta term (6.31) can be written as a surface (or ‘boundary’) term:

0
S@ = @Jvdéll’ (?“K“,

Ny (6.34)
)
K" = e"Ptr(A,0,A, — gAl,ApAU) )
3. Show that the equations of motion (EoM) obtained from the action Sgayge are
D, F" = 0,F" —i[A,, F"] =0. (6.35)

SIt’s constant in the sense that it does not depend on space-time. In quantum field theory, gy s develops a
dependence on the energy scale at which we are probing the system, so ‘constant’ is a misnomer. With that in
mind, even though it’s not relevant for this course, I'll typically call gy ps simply the ‘Yang-Mills coupling’.
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4. Show, without using the EoM, that the Bianchi identity
D" =0. (6.36)

holds.

If in addition to the gauge field A, there are also charged fields ¢ transforming in a represen-
tation r (reducible or irreducible), then we can write a gauge invariant action for them using
covariant derivatives. For instance for G = SU(N), we have

Smatter [(ba ¢T7 A] = Jd4$ ‘cmatter )
£matter = _(D,u¢)TDN¢ - V(¢7 ¢T> )

(6.37)

where we require the scalar potential V' to be gauge invariant, that is, V' — V under non-
abelian gauge transformations. This generalizes to other classical groups GG by using the ap-
propriate inner product in the kinetic term.

Exercise 28. Consider the action

S[¢7 QE, A] = SYM[A] + SG[A] + Smatter[¢7 ggv A] :

1. Show that the EoM are

oV
3ol (6.38)
DZ/F‘LW = g?/MJH

D,D"¢ =

for a current J,, = Jjjt, that you should find.

2. Show that under a gauge transformation the current J* transforms as
JH e gJtgT! (6.39)
and that J" is covariantly conserved, namely

D, J"=0. (6.40)

6.3 A brief look at the Standard Model”

The Standard Model of elementary particle physics, which has been surprisingly succesful in
decribing elementary particle interactions ever since its inception in the 60s [Weinberg, 1967]]
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is a gauge theory with gauge groupﬂ
Gsy = U(1) x SU(2) x SU(3)

. The reason field theories have some relevance in particle physics is that quanta of fields are
(quantum) particles. Roughly speaking, you can associate a type of particle with every field;
if you want to learn more you’ll have to take a course on quantum field theory, such as AQT.

As we have seen, a gauge theory implies the existence of gauge fields which generalize elec-
tric and magnetic fields, so we can think of them as mediating a force. You can think about
U(1) x SU(2) as being the gauge groups of electromagnetism and the weak force’ which
is responsible e.g. for 5 decay. However, it turns out that the U (1) factor is not identical to the
U (1) of electromagnetism, more about this later. The SU (3) factor gives rise to a force known
as the ’strong force’ which binds quarks together in Baryons such as protons and neutrons,
and also protons and neutron into atomic nuclei.

What makes this theory so beautiful is that all we need to do to define it is state the gauge
symmetry (we did that already) and which charged matter fields we have and in which rep-
resentations of G'gys they live. Writing down the most general Langrangian (to lowest order)
then gives the Standard Model Lagrangian up to fixing free parameters by experiment. For
the sake of simplicity we will discuss the ’classical’ version without neutrino masses which it
turns out has 19 free parameters.

The charged particles are qy;, ugr; dgi, {1;, er; for i = 1,2, 3 which are all (left/right-handed)
Weyl Fermions, the label 7 is called the ’generation’ and a single complex scalar /. These
transform in the following representations (please ignore the last row for now):

H 4L ‘uRi‘dRi‘ CLi ‘eRi‘H
U(1) 2 S 1-21 -1 |-2]1
SU(2) 2 - | - 2 — |2
su@) | 3 |3|3| - |- |- (6.41)
2
vwen | (3) ] 3|4 (%) ]-1]0
3

Here we have given the U(1) charge for each one of them and 2 and 3 indicate they transform
under the defining representation of SU(2) or SU(3). It is standard terminology to use 1
to indicate a singlet under e.g. SU(2), but I find this confusing when comparing with U(1)
charges and use a dash — to indicate they do not transform at all. Hence e.g. ¢;; has two
components, as appropriate for the defining rep. of SU(2) and ¢;; has 6 components as it
both transforms as a 2 under SU(2) and 3 under SU (3).

6 Actually, we are only sure about the gauge algebra, which leaves freedom for the gauge group to be U(1) x
SU(2) x SU(3)/Zy for any N € {1, 2, 3,6}, see [Tong, 2017] for some discussion.
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qLi» Wi dg; describe the six quarks, up, down for ¢ = 1, strange, charm for ¢ = 2 and bottom
and top for ¢ = 3, and ¢}, eg; the leptons: electron and electron-neutrino for ¢ = 1, muon and
muon-neutrino 7 = 2 as well as tau and tau-neutrino i = 3.

You’ll notice several things right away:

1. The SU(2) only talks to left-handed Weyl spinors but not right-handed Weyl spinors.
This is the origin of parity violation in nature, first demonstrated in  decay by Chien-
Shiung Wu in 1956.

2. Only quarks participate in the strong interactions.

3. The U(1) charges are not all integers, which seems to contradict our statements regard-
ing U(1) representations. However, this normalization has historical reasons and we
can appropriately rescale the generator of U(1) to make these all integers.

We can now write down kinetic terms for all of the gauge fields and charged particles in the
usual way. The covariant derivative of q;; is e.g.

1 . .
D,qr = (@u — Zg(Ah)# —iW, — zg#> qri (6.42)

where (A},), is the gauge field of U (1), W, of SU(2) (3 actually) and g, of SU(3) (8 actually).

For H we have the possibility of writing down a potential term in £:
V(H) = —m|H* + A\ H|* (6.43)

Note that H is actually two complex fields as it lives in the 2 of SU(2) and that |H |> = H;H;.
It turns out that the right physics emerges when m, A are both positive. In this case the vacua
of H are described by

|H|? = m/\ (6.44)

which is non-zero. The set of options to solve this equation is gauge-invariant, but any given
choice is not invariant under all elements in U(1);, x SU(2): this is called spontaneous sym-
mety breaking; H is the Higgs field. This type of symmetry breaking, where the action is
invariant under a symmetry, but the vacuum (or ground state) is not, is called spontaneous
symmetry breaking in physics.

If a continuous internal global symmetry is spontaneously broken, then there is a massless
scalar field (called Nambu-Goldstone bosons) for each spontaneously broken symmetry gen-
erator [Nambu, 1960, Goldstone, 1961] If the symmetry is gauged, as it is here, the would-
be Nambu-Goldstone bosons are not physical as they can be absorbed by a gauge transfor-
mation, but the gauge fields associated to the spontanously broken gauge symmetry gain a
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mass, which is otherwise forbidden by gauge invariance. This is called the (Anderson-Brout-
Englert-Guralnik-Hagen-) Higgs (-Kibble) mechanism [Anderson, 1963} Englert and Brout,
1964, Higgs, 1964,|Guralnik et al., 1964]

One way to see the mass of the gauge bosons is that after fixing a background value |H|? =
m/\ the kinetic term for H gives (schematically)

D, HD"H — W, W*m/\ (6.45)

which is not gauge invariant and in fact gives an (otherwise forbidden) mass to the particles
corresponding to three out of the four gauge fields W and (Ap),..

The surviving combination is
SU(2)

tev =t 4 3ty (6.46)
and generates the U(1) associated with electromagnetism. Here th(Q) is the 3rd generator
of SU(2). The charges our particles have under this U(1) are given in the last row of the
table above. Due to it causing symmetry breaking, three of the four real degrees of freedom
in H become longitudinal components of the three IV, the fourth is a field corresponding to
a massive real scalar particle, the Higgs, which was finally found at the LHC roughly 50 years
after its prediction in 2012.

The spontaneous symmetry breaking has another effect. Recall that a mass term m¥¥ for
a Dirac fermion reads m(V ¥y + c.c.) in terms of Weyl spinors. However such terms are
forbidden in the Standard Model as such a term would not be gauge invariant. However, we
can write things such as

LipHep + c.c. (6.47)

as the Higgs H is a 2 of SU(2). These are called Yukawa couplings and we can write them for
all quarks and leptons. After H gets its background value the above becomes something like

\Vm/\,ereg + c.c. (6.48)

which ends up giving the electron a mass, so that we might describe it in terms of a Dirac
spinor. In fact, the most general thing we can write in the quark sector is

qriHug; fuij + qriHdg; fai; (6.49)

which is all fine by gauge invariance. The fact that the matrices f,;; # fa;; leads to quark
mixing a.k.a. the CKM matrix. For three generations (and no less) this ends up causing CP
violation, which is one of the necessary conditions for matter-antimatter asymmetry in the
universe.



TOPIC 6. NON-ABELIAN GAUGE THEORIES 69

6.4 The’t Hooft-Polyakov monopole*

In 1974 Gerard 't Hooft and Aleksandr M. Polyakov discovered that nonabelian gauge the-
ories with scalar fields transforming in the adjoint representation admit smooth magnetic
monopoles as static finite energy solutions of their equations of motion [Hooft, 1974,Polyakov,
1974] .

The field theory of interest is the so-called Georgi-Glashow model (or SU(2) adjoint Higgs
model) [[Georgi and Glashow, 1972] a field theory in three space and one time dimension,
with G = SU(2) gauge group, a scalar field ¢ transforming in the (3-dimensional) adjoint
representation, which we represent as a 2 x 2 traceless hermitian matrix. The Lagrangian
density is

L =~ tr(E, F™) — (D, ®)(D' ) — V(@)
29y
) (6.50)
1
V((I)) = )\ <§tT((I)2) - 'UQ) )
where A\, v > 0 are constants and
Fo =0,A, — 0,A, — i[AN’ Al (6.51)

D,® = 0,® —i[A,, ®] .

We can calculate the Hamiltonian (or energy) density H as the Legendre transform of the
Lagrangian density £, and from it the total energy £ = {d®z H of the system, which is by
construction gauge invariant (as should be the case for all physically observable quantities).
We will be interested in static field configurations, so we can drop all time derivatives Jy. It
is then convenient to work in the temporal gauge Ay = 0, which we can always achieve by
a suitable gauge transformation, so that we can drop all time covariant derivatives Dj. In the
temporal gauge, the energy of static field configurations is

where B; = %Q’ijjk are the components of the nonabelian magnetic field B. i = 1,2, 3 runs
over spatial Euclidean indices (which we write up or down since the spatial metric is ¢;;), and
as usual repeated indices are summed over.

The energy is the integral of a sum of squares, and is minimized by setting
B=0, D® =0, tr(®%) = 20 . (6.53)

The first vector equation tells us that F;; = 0, so the vector potential A = (A;, Ay, As3) is ‘pure
gauge: A; = ih(d;h™1) = —i(0;h)h~! for a function h(x) which takes values in SU(2). The
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second vector equation tells us that the adjoint scalar field ® is covariantly constant. The final
scalar equation tells us that & minimizes the scalar potential. By a gauge transformation we
can set A = 0, then the second equation sets ¢ to be constant. Letting & = ¢“0,, where (0,)
are the Pauli matrices, we find that

r(®) =20 = (@) + (0 + (6) =7, (6:54)
so the vacuum manifold is a 2-sphere of radius v:

V= {® = ¢"0, € su(2) | tr(®?) = 2%}

6.55
={¢ = (¢", 0% ¢") e R’ | ¢* = 0%} = 5*. (6:55)
By a constant gauge transformation, we can take
v 0
o = (O —v) = V03 ¢ = (0,0,v). (6.56)

Any choice of vacuum breaks the gauge group G = SU(2) down to a subgroup H = U(1)
which leaves the vacuum invariant.

In order for the energy to be finite, we demand the boundary conditions
B -0, Do -0, tr(®?) — 20 as |x| — o, (6.57)

so the fields must tend to a vacuum at spatial infinity. Note: this can be a different vacuum for
each direction. As in the abelian Higgs model, we can use the gauge redundancy to work in a
radial gauge, where A, = 0. Then the limits of the fields as » — oo with (0, ¢) fixed exist. In
particular, the limit of the adjoint scalar field at spatial infinity defines a map

Dy Sfc - Yx=5?
0,0) — Dy(b,0):=lim &(r,0,¢), (6.58)
T—00

which is characterized by an integer, the topological degree of the map, which is a gener-
alization of the winding number for maps from S* to S'{]

1

V= ———
3

|, a0 % 0, o (659

where ¢, = ((¢)!, (0n)?, (0)?). Note: the prefactor of v=3 is there because the target
(image) of ¢, is a 2-sphere of radius v.

Exercise 29. Define

1
FIO = %tr(fwaw) (6.60)

"Mathematically, this is because I13(S?) = Z.
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to be the field strength of the unbroken H = U(1) subgroup of the gauge group G = SU(2).
Show that the magnetic charge

mvo .= L[ pror g (6.61)
2T SZ
of this unbroken U (1) is proportional to the topological degree v of P, and find the proportion-
ality factor.

As an example, the map
b,=v2- 0, (6.62)
where & = x/|x| = x/r and o = (01, 09, 03), has degree v = 1. This is the identity map from

S? to S?, up to an overall constant factor that takes care of the radius of the target sphere. We
note incidentally that we can write (6.62) as

O, = ve “Yose™ (6.63)
with p
o= 5(— sin g o1 + cos @ 0y) = Qe’w‘”m oy €97312 (6.64)

So @, reduces to the constant vacuum with ® = vo3 in (6.56), if we perform a gauge trans-
formation with parameter g = ¢'®. Note however that this gauge transformation is singular
at § = m, the south pole of the 2-sphere, where ¢ is ill-defined. (The gauge transformation is
regular at the north pole 6 = 0, thanks to the 6 prefactor in «. This statement can be checked
by switching to local coordinates which are well-defined at either pole.)

We are now ready to introduce the ’t Hooft-Polyakov ‘hedgehog’ ansatz, so called because
the vector field ¢ points in the radial direction and looks a bit like a hedgehog. We assume
that the adjoint scalar and the gauge field (written as a matrix-valued differential A = A, dx*)
take the form

x o

=

H(vr)
. (6.65)
A= aaeaij% [1— K(vr)] .

Note that the dependence on the angular polar coordinates in space R? is correlated with the
behaviour in the internal space in which the fields take values. We also assume the asymptotics

E=uvr > w: HE) —-¢—0, K(&) —0 (6.66)

at spatial infinity, to satisfy the boundary conditions (6.57) which are needed for the energy
to be finiteff| and

E=ur—0: HE=00), KE-1=0() (6.67)

81t can be shown that the solution approaches the limiting values exponentially fast, much faster than is
needed for the integral (6.52) to converge.
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to ensure regularity (smoothness) at the centre of the monopole, and finiteness of the energy
at short distances from the centre.

Note that the adjoint scalar field approaches at spatial infinity, which has topological
degree 1. The magnetic field also approaches an abelian magnetic monopole for the unbroken
gauge group H = U(1) at spatial infinity. Indeed, if one applies the above singular gauge
transformation, the gauge field A,l{(l) looks precisely like a Dirac monopole in the northern
patch (or for § # ). One can find an analogous singular gauge transformation to obtain the
Dirac monopole in the southern patch (or for 6 # 0).

One can substitute the 't Hooft-Polyakov ansatz in the equations of motion, to find a
system of two coupled ODE’s for the functions H(§) and K (). Together with the boundary
conditions (6.66)-(6.67), this defines a well-posed boundary value problem which can be solved
numerically. This shows the existence of a finite energy static solution which describes a
magnetically charged object of finite size.

We can use what is called a Bogomol'nyi-type argument to find a lower bound for the energy
in each topological sector, namely for field configurations with given topological degree for
the adjoint scalar, or equivalently magnetic charge for the unbroken U (1) gauge field. This is
called the Bogomol’'nyi-Prasad-Sommerfield (or BPS) bound [Bogomol'nyi, 1976, Prasad and
Sommerfield, 1975]]. The idea is to write

E = Jd% [Ltr(BQ) + tr((D®)?) + V(CD)]

2

9y m
3 1 _ 2 2
> |d’ztr || —BFD®) +—B-Do
gy m gy M
2 2
>+— | dztr(B-D®) = +—— | &z tr(D - (?B)) (6.68)
gym J 9y m
2 [ 5 2 9
=+t— |2V -tr(®B)=+— | tr(®,B) d°c
gym J gym Jsz,
W[ gro gy 8TV 00y
gym Js2 gy m

Going from the first to the second line, we dropped the contribution of the (non-negative)
potential energy and completed a square. We then dropped the square to get to the third line,
and then used the Bianchi identity D - B = 0. Going to the fourth line we took the gauge
covariant divergence outside the trace, and replaced it by a standard divergence since the
trace is gauge invariant. Then we used Gauss’ theorem (aka divergence theorem) to rewrite
the lower bound as a surface integral, which in the last line we related to the magnetic charge
of the unbroken H = U(1) subgroup of the gauge group, defined in (6.61). We have deduced
the BPS bound

8
E> i) (6.69)
gy M
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which is a lower bound for the energy in terms of the magnetic charge.

The bound is saturated, thatis &/ = %|mU(1)

, if and only if

A — 0 keeping v fixed , (6.70)
which is called the BPS limit, and the fields satisfy the 1st order Bogomol’nyi equation

B = sign(mVM) gy, D®. (6.71)

Solutions to the Bogomol’'nyi equations for monopoles come in infinite families, parametrized
by continuous parameters also known as moduli. For G = SU(2), the moduli space of n BPS
monopoles (solutions of the Bogomol’'nyi equations with total magnetic charge m?® = n >
0) has 4n real dimensions.



Topic 7

Bundles, connections, curvature and
sections”

This is a bonus chapter that sketches some of the differential geometry that underlies
gauge theories. We won’t have time in the lectures for this advanced material, which
is best learned in a different module. I include it here for completeness for students
who would like to learn more. This material will not be examined.

So far we have learned how to formulate gauge theories in terms of gauge invariant actions
for the gauge field and (potentially) charged fields. Our goal in this chapter will be understand
how to describe gauge transformations, gauge fields, their field strengths, and charged fields
geometrically. We will learn about fibre bundles, which are a consistent way of adding extra
structure on top of a differentiable manifold.

I should warn you that the general formal definition is quite abstract, but I will try to build
towards it slowly by successive generalizations. At the beginning I will give you a flavour of
the abstract “intrinsic” approach, which defines concepts without making reference to a co-
ordinate system. This can be hard to grasp, and this is not a course on differential geometry,
so we will spend most of our time working in the “extrinsic” approach, which uses local co-
ordinates. The extrinsic approach has the disadvantage that one needs to make sure that no
definitions depend on the choice of coordinates used, but the advantage of being more explicit
and accessible to beginners. This will be more than sufficient for our purposes.

This chapter is largely based on lectures 2 and 5 in Ooguri’s lecture course on Mathematics
for Theoretical Physicists [Ooguri, 2010]. Other references which cover the same material in
more detail are [Eguchi et al., 1980, Nakahara, 2003, Naber and Naber, 1997]].

74
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Figure 7.1: The basic data of a differentiable manifold.

7.1 The tangent bundle

Recall the definition of a differentiable manifold M (of dimension n) from the first term, see
ﬁgure It consists of a countable atlas {(U;, ¢; )} of coordinate charts (or patches) (U, ¢;),
where U, is an open subset of M, ; : U; — R" is an invertible map from U; to an open subset
of R”, and M = | J,.; U;. Given a point p € M, its image under ¢;(p) = (xb), ..., 2{;) under
; gives the coordinates of point p in the patch U;. We refer to these as local coordinates. If
two patches U; and U; overlap on U; n U; # (7, then we can use two sets of coordinates. For
any pair of overlapping patches, We require the transition functions

giow 't 0i(UinUj) = @;(Us nU;)

which are invertible, to be smooth. This makes M a differentiable manifold.

Next we give the intrinsic definition of a differentiable (real) function. A function

f;M—»I@
p — f(p)

is differentiable (/smooth) if for all charts (U;, ¢;), its extrinsic expression in local coordi-
nates

(7.1)

fay:=Ffopt: @il(Uz’) - R
x(i) = (ZE(Z-), e ,$?i)) —> f(i)(x(i))
is a differentiable/smooth function of n real variables. The requirement that the transition

functions ¢; o ¢; ! of a differentiable manifold are smooth ensures that if f is smooth in one

set of local coordinates, it is smooth in all sets of local coordinates. We denote the set of smooth
function on M by C*(M).

(7.2)
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In the following, to avoid cluttering the notation, we will drop the subscripts which label the
different patches, unless they are strictly necessary. Note that we have used hats to distinguish
the intrinsically defined value f (p) of the function at a point in the manifold from its extrinsic
description f(z) = (f o ¢1)(z) in terms of local coordinates © = ¢(p) in a coordinate chart

(U, ).

Last term you defined tangent vectors to a curve C' at a point p in the manifold M. You saw
that the set of tangent vectors to all curves passing through the point p is an n-dimensional real
vector space, which is the tangent space 7,,M of the manifold M at point p. Next, we would
like to extend this construction from a single point p to the whole manifold M. Informally, we
would like to define

TM = U T,M | (7.3)

peM

a “bundle” of the tangent spaces at all the points in the manifold. This is called the tangent
bundle 7'M of M. The question is: how do we define this object properly? To gain intuition,
it is useful to to take an equivalent but complementary view of tangent vectors. (We will see
how this is related to the definitions that you saw last term below.)

We define a tangent vector field v on M as a map
5 5 (7.4)
which obeys the following two properties:
1. linearity: Vay, as € R, V1, fo € CP(M),

o(arfr + a2f2) = alﬁ(fl) + azﬁ(fz) (7.5)

2. Leibniz rule: Vf, geC®(M),
0(f9) = o(f)g + fi() - (7.6)
Tangent vector fields form a vector space, more about this later.
* EXERCISE:
Let 0, w be tangent vector fields.

1. Show that w o v is not a tangent vector field.
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Figure 7.2: The data needed to define a tangent vector to a curve, applied to a function.

2. Show that [, 0] = w o © — w0 o ¥ is a tangent vector field.

Given a tangent vector field © on M and a point p € M, we can (re-)define a tangent vector
0, € T,M at a point p by evaluating everything at point p
U, C*(M) — R

~

G G

(7.7)

See figure [7.2for a depiction of the relevant data.

You may ask: how is this definition of tangent vectors related to the definition in terms of
tangents to a curve, that you encountered in the first term? Given a smooth curve through p,
which is defined by a map from an interval / to the manifold M,

¢ IR — R

T — o(T) (7.8)
with ¢(0) = p, we can define a tangent vector ¥, to the curve C' = ¢(I) by
L7 d :
Up(f) = % (C(T)) 0’ (79)

which is defined intrinsically for all smooth functions fecC *(M). See figure To under-
stand what is going on, let’s express this in local coordinates z* in a chart (U, ¢), where the
curve is parametrized by

(poc)(r) =a(r) = ((7),...,2"(7)), (7.10)

'A tangent vector 0, at a point p is also linear and obeys a form of the Leibniz rule:

L dp(arfi + asfa) = ardy(f1) + astp(fo)
2. @p(fg) = @p(f)f](p) + f(p)f)p(@) )
as an immediate consequence of and for tangent vector fields. One can also define tangent vectors at

a point more abstractly using the axioms in this footnote without making reference to tangent vector fields, and
the introduce tangent vector fields from this.
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and the function f(p) is represented as f(z) = (f o ¢~ 1)(2):

d —
7=0 B dr 7=0

p(f) = —=(foo)r)
0f(x)

d SN\
= — =at
de(fL"(T))‘T:o (1) Oxh = (0)=p(p)

9 (fopopoo)n)

(7.11)

where we used basic properties of the composition of functions, as well as the chain rule in
the last equality (dots denote derivatives with respect to 7). We recognize the result as the
directional derivative of the function f along the tangent to the curve at the point p, which
has coordinates x = z(0).

REMARKS:

1. When you described the tangent vector to a curve at a point p using local coordinates
in the first term, ##(0) were the components of the tangent vector.

2. To construct a basis of the tangent space 7,), you used curves C, which fixed all
coordinates z* # a and varied only z(7) = x%(0) + 7. The components of the tangent
vector e, to such a curve are then #(0) = 0¥, and we have

. P I
ealf) = 521 @) = o0) = 7T (7 @)] =), (712

or for short
eq = (0a)yp (7.13)

where (0,), is 52 when we work in local coordinates z = ¢(p).

In summary, we can write any tangent vector 0, € 1),M intrinsically as
by = 0"(0a)p , (7.14)

or extrinsically (in local coordinates) as

0

=v'=— 7.15
v aza ) ( )

v

where the components v = v® are n real numbers.

Now let’s consider a collection of tangent spaces over every point on M: the tangent bundle

™ = | | T,M . (7.16)

peM

Using the isomorphism 7, M = R" for all p € M, we can view the tangent bundle locally as as
U; x R". we can see that T'M is naturally a manifold of dimension 2n. For each coordinate
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Figure 7.3: The tangent bundle and a tangent vector field.

chart (U, ¢;) on M, we define coordinates (z*,v") on |y, T, M, where (2*) are coordinates
on U;, and we parametrize a tangent vector as
0

=Y . 7.17
V= pw ( )

We call M the base of the tangent bundle, and R" =~ 7},M the fibre of the tangent bundleﬂ

A (smooth) tangent vector field is then (in local coordinates)

v = v“(m)% : (7.18)

with components v*(x) which vary smoothly as p varies over M.
* EXERCISE:

Check that the local description (7.18) of a tangent vector field maps smooth functions to
smooth functions, is linear, and obeys the Leibniz rule.

We say that a (smooth) tangent vector field is a (smooth) section of the tangent bundle
T'M, and write v € ['(T'M ). The reason for this terminology is as follows (see figure

+ Locally, T'M is a product space U; x R", where the fibre is R" =~ T}, M for every p.

« The vector field v draws a graph (z#,v"(x)) in ¢;(U;) x R", with cuts the fibres of the
tangent bundle 7'M along the direction of the base M. Hence the term “section”.

%For the attentive reader: in order to equip 7'M with the structure of a differentiable manifold, we need to
specify smooth transition functions for all its 2n coordinates, not just for the base coordinates. We will do that

shortly, in equation (7.20).
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What we have seen so far is a local description of the tangent bundle 7'M in a coordinate
patch. When we change patch from U to U (on their overlap U n U) in the base M, the
coordinates on M change af

- gt =7H(x) . (7.19)

In addition, we need to specify how the fibre coordinates change. We require the tangent space
coordinates to change like

OFH
o gt = T , (7.20)
oz
so that 5 5
- — g
v=to s = v (7.21)
is independent of the choice of coordinates.
Proof. Using the chain rule,
0 or’ 0 0 or’ 0 0
— - 2 = M =" . 7.22
dut — Owh 07 O oo oo~ o (7.22)

Now recall that every vector space V' has a dual vector space '+, which is the space of linear
functionals on V. Given a basis e, of V, we can choose a basis e** of the dual space V* by
requiring that e**(e;) = J¢. Then given v = v%, € V and w = w,e**, we have w(v) = w,v"
We can apply these ideas to the tangent space 7),M, and define its dual vector space, the
cotangent space 7M. An element w of the cotangent space is a linear functional on the
tangent space,

w: T,M — R

2
v o~ w) (7.23)
such that for all coefficients a;, a; € R and for all tangent vectors vy, vy € T, M,
w(a1vy + agve) = ayw(vy) + asw(vs) . (7.24)

The dual basis to the basis of partial derivatives { a%} for the tangent space 7),M is the basis
of differentials {dz"} for the cotangent space 77 M, where we require

da" (aav> — " (7.25)
xr

3(In terms of the invertible maps ¢ : U — R™and ¢ : U — R", the change of coordinates is given by the

transition function @ o ¢~ 1:

z=¢(p)—>i=0¢p) = (o ().
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So we can write any cotangent vector w € T M as
w = w,dz" . (7.26)

Under a change of coordinates (7.19) on M, we will require that the cotangent space coordi-
nates transform as

. ox”
Wy — Wy = @wy , (7.27)
so that
w = w,da! = ©,dz" (7.28)

is independent of the choice of coordinates.
* EXERCISE:

1. Use the definition df (z) = %(f)dx“ of the differential of a function to show that
under a coordinate change (7.19)

oM
dot — dit = S5 gz (7.29)
ox”
and therefore
w=w,ds! — o =w,di" = w,dr’ =w. (7.30)

2. Letv = v# aa € T,M and w = w,dx* € T;M. Show that

TH

w(v) = wyo* (7.31)
and that it is independent of the choice of coordinates:

wuvt = w0t . (7.32)

With all these data we can construct the cotangent bundle

"M = | J Ty M (7.33)

peM

as a collection of cotangent spaces over every point on M. For each coordinate chart (U;, ;)
on M, we require the cotangent bundle to locally look like 7*U; = UPGUZ_ oM = U; x R,
with coordinates (z#, w, ) for the base and the fibre respectively. Under a change of coordinates
(7.19) in the base M, the fibre coordinates change as in , so that w = w,dz" is coordinate
independent.

A (smooth) cotangent vector field is, in local coordinates,

w = wy(x)dz" (7.34)
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Figure 7.4: The cotangent bundle and a cotangent vector field.

where w), (x) are smooth functions. It is a (smooth) section of the cotangent bundle 7% M, and

we write w € I'(T*M). See figure
REMARKS:

1. InLagrangian mechanics, the generalised coordinates ¢’ and the generalised velocities
v/ are coordinates on the tangent bundle 7'M of the configuration space M. The gen-
eralised coordinates ¢’ are coordinates on the base M, and the generalised velocities vl
are coordinates on the fibre 7),M/. Under time evolution, the trajectory of the generalized
coordinates traces a curve (¢'(t)) in the configuration space M, while the generalised
velocities (v7(t)) = (¢’(t)) are the components of the tangent vector v = v7(t) % to the
trajectory.

2. In Hamiltonian mechanics, the generalised coordinates ¢ and the generalised mo-
menta p; are coordinates on the cotangent bundle 7')/ of the configuration space M,
where we identify p; = % = %. Now 6 = p;(t)dq’ is a cotangent vector. The relation
between Lagrangian and Hamiltonian can be written as

oL
H=L-i5 =

L —0(v).

7.2 Fibre bundles

We can generalise the previous construction by replacing the tangent space 7, M or cotangent
space 1,7 M by a more general fibre.

The simplest generalization is the notion of vector bundle £, which consists of a base M =
UZ. U; (of dimension dim M = n) and of a fibre F’ which is a fixed vector space V' (of dimension
dim V' = m) over every point in M. Locally, the vector bundle E looks like U; x V, with
coordinates (x, v).
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Figure 7.5: Schematic depiction of a vector bundle.

Mathematically, a differentiable manifold F is called a (smooth) vector bundle if:

1. There exists a projection map
T E—->M (7.35)

such that
VpeM 7 '(p)

e

v, (7.36)

where V is a vector space.

2. There exist atlases of I£ and of M such that for all charts of M there exists a smooth
map

o: T (U)->UxV, (7.37)

which is called a local trivialisation of the vector bundle E over M.

Part 1 is a way of saying that the base M is part of the total space E, and that for each point
in M we have a vector space V. Part 2 means that we can use local coordinates (x, v) for E,
where x is a local coordinate for a point p in the base M, and v is a local coordinate of the
fibre, the vector space 7 !(p) associated to the point p. The structure of a vector bundle is
summarized in Figure

(To be precise, the vector bundle is the collection (E, M, 7, V) of the total space F, the base
M which is obtained by the projection map 7, and the fibre V, which is the preimage of a
point in the base under the projection map.)

To fully specify the vector bundle when we work in local coordinates, we need to state what
happens to the fibre coordinates when we change coordinates in the base, from a neighbour-
hood U with coordinates x to a naighbourhood U with coordinates . The change of coordi-
nates in the base and the fibre is

at v T =T (x)

v 0 =tx), (7.38)
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Figure 7.6: Triple overlap and coordinates in local trivialisations of a vector bundle.

where the transition function for the fibre is an z-dependent invertible linear transforma-
tion{]
t(z) e GL(V) = GL(m,R) (7.39)

There is a consistency condition associated to triple overlaps U; n U; n Uy, which ensures
the uniqueness of the vector bundle. See Figure Let (x;, v;) be local coordinates in U; x V,
and likewise for j and k, and t;_;(z;) be the transition function for the fibre when we switch
to the i-th trivialization to the j-th trivialization, and similarly for other transition functions
Then there are two ways of going from the i-th trivialization to the k-th trivialization: we can
either go from 7 to k directly, or go from 7 to j and then from j to k. The results of the two
processes are

Ok = thei(Ti)v; (7.40)

Uk = ke j(@5)v; = toj (@)t i (i) i -
Demanding the compatibility of the two expressions for every vector v; leads to the cocycle
condition

thei(1) = trey (25(22) )i () - (7.41)
It can be proven that there are no further compatibility conditions associated to quadruple or
higher overlaps.

* EXERCISE:

Show that the transition functions for the tangent bundle 7'M and the cotangent bundle
T* M obey (7.39) and the cocycle condition (7.41).

4This is for a real vector bundle, in which the fibre V' is a real vector space. If V' is a vector space over a field
F, replace R by F.

Here i, j, k are labels, not vector indices. In the notation used at the beginning of this chapter, I would have
written (x(;), v(;)) etc. I am omitting brackets here to avoid cluttering the notation.
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REMARKS:

1. Unlike for 7'M and T* M, the transition functions for the fibre of a general vector bundle
are independent of the transition functions for the base.

2. We could take ## = x*, namely not change coordinates in the base, but still change
coordinates in the fibre. Equations (7.39) and (7.41) must still hold.

Vocabulary: A (usually complex) vector bundle with one-dimensional fibre is called a line

bundle.

We can generalize the previous structure further if we allow the fibre F' to be a more general
object than a vector space. We will restrict ourselves to considering fibres F' which are dif-
ferentiable manifolds themselves, even though this assumption can be relaxed further. Vector
bundles are included as a special case, since a vector space is a differentiable manifold.

A differentiable manifold F is called a (smooth) fibre bundle if:

1. There exists a projection map
T E—->M (7.42)

such that
YpeM 7 '(p)

lle

F. (7.43)

2. There exist atlases of &£ and of M such that for all charts of M there exists a smooth
map
w: 7T (U)—>UxF, (7.44)

which is called a local trivialisation of the fibre bundle E over M.

The interpretation is the same as for vector bundles, with the exception that the fibre need not
be a vector space. In a local trivialisation, we can choose local coordinates (z,y), where x is
a local coordinate on the base M and y is a local coordinate on the fibre . When we change
coordinates in the base, the fibre coordinates must change appropriately, and the transition
functions for the fibre must obey a cocycle condition.

The transition functions for the fibre are elements of a group, which is called the structure

group of the fibre bundle E[f]

EXAMPLE: Principal G-bundle P

®The transition functions for the base M are also elements of a group, the diffeomorphism group of M.
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A principal bundl is a fibre bundle where the fibre is a Lie group, F' = G, for example
G =U(1),G = SU(2) or G = SO(3). Let (z,h) be coordinates in (the image of) a local
trivialization U x G, and (7, ;L) be coordinates in U x (G, where h, h are elements of the
group GG. We require the transition function #(z) for the fibre to be a group element itself,
t(z) = g(x) € G for all z, which acts by group multiplication on the fibre coordinate:

(x*,h) — (2"(x),h = g(x)h). (7.45)

So for a principal G-bundle the fibre is the Lie group G, and the structure group is also G.
REMARKS:

1. This is called a ‘principal’ bundle because of its importance: it controls the structure of
infinitely many vector bundles. Indeed, for each representation r of G we have a vector
space V(%) of dimension 7 and an action of the Lie group G’ on V) by a representation
matrix 7(g). We can then define an associated vector bundle E with

fibre F=v®
transitions functions t(x) = r(g(z)) (7.46)
so that under a change of coordinates
(2, 0) = (2(2),0 = r(g(z))v) (7.47)

The ‘associated vector bundle’ is associated to the principal bundle P and the represen-
tation r.

2. We can start to observe a correspondence between Maths and Physics emerge:

Maths ‘ Physics

Principal G-bundle Gauge symmetry ¢
(Section of) Associated vector bundle Charged field

We will complete this correspondence in the next section.

7.3 Connection, holonomy and curvature

Let v(x) be a smooth section of a vector bundle over M, written in local coordinates. See
figure Can we define partial derivatives of v, or directional derivatives of v along a curve
C'in M, which in local coordinates is parametrised by z# = x*(7)?

"This is often misspelt as principle bundle. We shouldn’t change our principles as we change coordinates in
the base, therefore principle bundles are not a good idea.



TOPIC 7. BUNDLES, CONNECTIONS, CURVATURE AND SECTIONS™ 87

Figure 7.7: Schematic depiction of a vector field.

Figure 7.8: Schematic depiction of the notion of parallel transport.

We immediately run into a problem: we cannot subtract vectors defined at infinitesimally close
points, as we would do to define a derivative, because these two vectors belong to two different
vector spaces. In order to define a notion of directional derivative, we need a way of comparing
vectors defined at different points along the curve. Let py = ¢(0) and p = ¢(7) be two points
along the curve C, with coordinates = z(0) and x(7) respectively. Associated to those two
points we have two distinct (though isomorphic) vector spaces, Vo = 7 (py) = 7 (¢(0)) and
V. =771 (p) = 77 (c(7)). We can compare elements of 1 and elements of V; by introducing
a notion of parallel transport of vectors along the curve C, which is realised by an invertible
linear map
Qr): Vo —» VW,
Vg > Q (T)UO

which obeys 2(0) = 1. See figure Picking a basis of the vector space V/, {)(7) is a matrix
in GL(V).

(7.48)

More generally, we can compare vectors in the fibres above any two points ¢(7) and ¢(7')
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along the curve C' by using the map

QYN ) Ve V. (7.49)

By comparing the values of the vector field at infinitesimally close points, with coordinates
a# = 2#(7) and 2*(7 + ed7), we can define the covariant derivative V v by

Vv =V, vdz" :=lim v(@(r + edr)) — Qr + edr)Q7 (7)o (2(7))

e—0 €

(7.50)

where dx# = ##(7)dr in the parametrization of the curve. The parameter € is a book-keeping
device which I have introduced to keep track of infinitesimals and to define the limit.

REMARK:

The definition of the covariant derivative of the vector field v depends on the local form
of parallel transport € in an infinitesimal neighbourhood of 7. Letting

Q1 + edr) = Q1) — eA(2(7))7) + O(?) , (7.51)
the equation becomes
Vo(x) = dv(x) + A(z)v(x) , (7.52)

where A(z), which is called the connection of the vector bundle, is a matrix-valued cotangent
vector field (or equivalently, a matrix-valued differential form):

A(z) = A, (z)dat | (7.53)

with A, u a matrix in gl(V') for each ; and zff

In components, the covariant derivative reads
V() = 0,0% () + Au(z)*s0° (2) . (7.54)

The connection A encodes the infinitesimal version of parallel transport.

Now consider a change of coordinates in the fibre only:
(x,v) — (z,0 =t(x)v). (7.55)
Being a map from Vj, to V;, the parallel transport map €2(7) transforms like

Qr) = tx(r)r)t(x(0) "

8Formally, A,, takes value in the Lie algebra of the structure group of the vector bundle.
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Figure 7.9: Parallel transport and The holonomy €2~ along the loop C'.

under changes of coordinates in the fibres. Using the definition (7.50), it follows that Vv
transforms like v:

V,o(z) — t(x)V,o(z), (7.56)

or in terms of differential operators
V, = t(x)V,t(x)". (7.57)
This requires the connection to transform as follows:

A, — A, =to, 7 AL (7.58)

REMARKS:

1. This construction works for any vector bundle £. In fact, it works for any fibre bundle,
with minor adjustments which I leave as an exercise for the interested reader.

2. When F is a vector bundle associated to a principal G-bundle GG and a representation r,
the connection is A, = —iA,(f), with A,(f) the gauge field, acting in the representation
r. For a principal G-bundle, 4, = —iA,, where A, is the Lie algebra valued gauge
field which transforms into gA, g~ + igd,g'. (The conversion factors of i are conven-
tional: they are there because physicists have good reasons to like unitary and hermitian
operators.)

3. When E is the tangent bundle, A,, is the affine connection which appears in differential
geometry and general relativity, also known as Levi-Civita connection.

Now let’s return to the finite version of parallel transport. Consider a closed curve (or loop)
C' in the base manifold M, starting and ending at the same point p,, which is called the base
point of the loop. See figure We can parallel transport a vector vy € 7~ 1(py) along the
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Figure 7.10: Concatenation of two paths C and Cj.

loop C. When we reach the end of the loop we obtain a new vector Qcvy € 7 1(pg), which is
‘rotated’ by a transformation])
Qe e GL(V) (7.59)

compared to the original vector vy. This is called the holonomy (of the connection .A,) along
the loop C.

Holonomies along loops starting and ending at the same base point p, form a group, called
the holonomy group, which is a subgroup of GL(V'). This is a consequence of the definition
of parallel transport and of the fact that closed paths themselves form a group, where the
composition law is the concatenation of paths. A bit more explicitly:

« If we concatenate two loops C'; and (5 to form a new loop C5 o (' obtained by going
along C first and then along C5 (see figure[7.10), we get

Qeyocy, = 20,00, (7.60)

which is the composition law (or multiplication) in the holonomy group.

+ The homotopy along the trivial loop, which doesn’t move from the base point py, is
the identity element in the holonomy group.

« Given a loop C, we can define the loop —C which traces the same curve with opposite
orientation. Then
Q=05 (7.61)

is the inverse element of (- in the holonomy group.

REMARK:

Recall that 71 (pg) = V.
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Figure 7.11: Curvature, from the holonomy along the perimeter of an infinitesimal parallelo-
gram.

The holonomy group is generically non-abelian:
QCHQCE 7 QCEQCH' (7-62)

If we parallel transport first along C and then along C5, we’ll usually get a different result
than if we parallel transported first along C, and then along C,[1]

* EXERCISE:

Let M be connected, that is, any two points py, gy € M can be connected by a curve in M.
Show that the holonomy groups based at py and at ¢, are isomorphic.

[Hint: think about the following picture:
Fo 1o

The curvature F,, is the holonomy along an infinitesimal loop. More precisely, consider an
infinitesimal loop dC' which is the perimeter of a parallelogram with vertices

et a4 e(vr +wh), ot + ew? (7.63)
as in figure Then
Qac = 1 + EF,, ()" w” + O(€%) (7.64)

where

Fu = 0, A, — A, + [ALL A (7.65)

9There are exceptions, for instance if the structure group of the fibre bundle is abelian, or if the connection
vanishes. Hence the qualifier ‘generically’.
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Figure 7.12: Contractible and non-contractible loops on a 2-torus.
Proof. Exercise.

Under a change of coordinates in the fibre (7.55), the curvature transforms as follows:

-F,Lw — tf,uzztil . (7.66)

REMARKS:

1. For aprincipal G-bundle, 7, = —iF),,, where F),, is the field strength of A,,. (Similarly,
Fu = —1F, ,Sl;) for an associated vector bundle.

2. Let us assume that the curvature vanishes. This does not mean that the connection
vanishes. This has the surprising consequence that the holonomy can be non-trivial
(that is, 2= # 1) if the loop C' is not contractible to a point. For instance, on a 2-torus
T*? (the surface of a doughnut), see figure the holonomy along the loop ', which
is not contractible, can be non-trivial, whereas the holonomy along the loop C, which
is continuously contractible to a point, can be shown to be trivial.

Vocabulary:
if the curvature vanishes, 7, = 0, we say that A, is a flat connection, or equivalently
that the bundle £ is flat. The holonomy of a flat connection is called monodromy.

There is a lot more that can be said, but this will be left to future courses. I'll conclude this
chapter by summarizing the correspondence between the geometry of fibre bundles and the
formulation of gauge theories in physics:
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Geometry Physics
Principal G-bundle P Gauge symmetry ¢
Connection A, of P Gauge field (or vector potential) A,
Curvature F,, of P Field strength F},,
(Section of) Associated vector bundle Charged field

Covariant derivative V,
Parallel transport
Trace of the holonomy

Gauge covariant derivative D,
Wilson line
Wilson loop
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