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Topic 3

The Lorentz Group and its
Representations

3.1 The Lorentz group and its Lie algebra
The Lorentz group is one of the most important examples of a Lie group appearing in physics.
It arises in a very similar way to most of the groups we have discussed so far as a symmetry
group that respects some quadratic form, in this case the ‘invariant length’ of special relativity.
A detailed account of many elementary aspects of the Lorentz group can be found e.g. in
[Scheck, 2010]

The fundamental postulate of relativity is that the speed of light is the same in all inertial
frames. Let us take two points p and q in space-time through which a ray of light passes
and assume that they have coordinates tp,xp and tq,xq in one inertial frame, and coordinates
t1p,x

1
p and t1q,x1q in another. We hence need

c2
“ pxp ´ xqq

2
{ptp ´ tqq

2
“ px1p ´ x

1
qq

2
{pt1p ´ t

1
qq

2 (3.1)
In other words

´ c2
ptp ´ tqq

2
` pxp ´ xqq

2
“ 0 (3.2)

must be invariant under a change of frames. It is not hard to come up with coordinate transfor-
mation that satisfy this requirement, e.g a rotation P SOp3q acting purely on the coordinates
x works. If time is involved in our coordinate change, we need to take the relative minus sign
into account. An example would be acting the matrix

Λ01 “

¨

˚

˚

˝

coshpλq ´ sinhpλq 0 0
´ sinhpλq coshpλq 0 0

0 0 1 0
0 0 0 1

˛

‹

‹

‚

. (3.3)

2
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This keeps ´pctq2 ` x2
1 invariant as

´pctq2 ` x2
1 Ñ ´pct1q2 ` px11q

2

“ ´pcoshpλq ct´ sinhpλq x1q
2
` p´ sinhpλq ct` coshpλq x1q

2

“ ´pctq2pcosh2
pλq ´ sinh2

pλqq ` x2
1pcosh2

pλq ´ sinh2
pλqq

“ ´pctq2 ` x2
1

(3.4)

as cosh2
pλq ´ sinh2

pλq “ 1 for any λ (this is the hyperbolic analogue of cos2 φ` sin2 φ “ 1).

Note that the origin of the primed system at x11 “ 0 satis�es

´ sinhpλq ct` coshpλq x1 “ 0 (3.5)

so that it moves in the unprimed system with a velocity

v “ x1{t “ c
sinhpλq

coshpλq
“ c tanhpλq “ c

eλ ´ e´λ

eλ ` e´λ
ă c . (3.6)

For this reason λ is called rapidity in the literature. Note that for every λ, this speed is always
less that the speed of light. Instead of using such transformations to �gure out time dilation,
length contraction, etc ... we are going to examine the structure of

De�nition 3.1. The Lorentz group L is the group of linear maps on R4 (with coordinates
px0, x1, x2, x3q) that preserve the quadratic form

|x|2M ” ´px0
q
2
` px1

q
2
` px2

q
2
` px3

q
2 (3.7)

REMARK:R4 with this quadratic form is also often called R1,3 or ‘Minkowski space’. It is
then appropriate to call the Lorentz group Op1, 3q. We have already learned that the principle
of relativity is obeyed by (at least) two types of transformations: rotations in R3 which leave
time untouched, and boosts such as (3.3) which mediate between relatively moving systems.

Note that |x|2M is not an inner form as it is not positive de�nite.

For two coordinate systems with relative velocity v the coordinate change is

De�nition 3.2. A boost associated with two relatively moving inertial frames with rela-
tive speed v is a Lorentz transformation B with Bpvq00 “ coshλ, Bpvqi0 “ Bpvq0i “
´vi{c coshλ, and

Bpvqik “ δik `
pcoshλq2

1` coshλ

vivk

c2
. (3.8)

where tanhλ “ |v|{c.
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In order to facilitate the book-keeping of the minus sign in this de�nition1the following nota-
tion is in widespread use. De�ne px0, x1, x2, x3q “ pct, x, y, zq as the ‘four-vector’ of coordi-
nates combining spatial coordinates and time. De�ne

xµ ” ηµνx
ν (3.9)

where ηµν are the components of the diagonal matrix

η “

¨

˚

˚

˝

´1
1

1
1

˛

‹

‹

‚

(3.10)

and we are using the summation convention. The inverse of the matrix η is clearly η again,
we need to put the indices up as this satis�es

xµ “ ηµνxν (3.11)

where ηµν “ pdiagp´1, 1, 1, 1qqµν . Note that

ηµνη
νρ
“ δµ

ρ , (3.12)

δν
ρ is the usual Kronecker delta which is 1 if both indices are equal and zero otherwise. We

can hence write the length |x|M of a vector in Minkowski space as

|x|2M “ xµxνηµν “ xµx
µ
“ xµxνη

µν . (3.13)

Let Λ have components Λµ
ν and assume Λ linearly maps a 4-vector x to a 4-vector x1

xµ1 “ Λµ
σx

σ . (3.14)

Now if Λ is in the Lorentz group we need |x1|2M “ |x|2M , i.e.

|x1|2M “ Λµ
σx

σΛν
ρx

ρηµν “ xσxρΛµ
σηµνΛ

ν
ρ “ xµxνηµν . (3.15)

In other words
Λµ
σΛν

ρηµν “ ησρ (3.16)
or in matrix notation

ΛTηΛ “ η ñ ηΛTη “ Λ´1 (3.17)
Up to the insertion of ηs ΛT is hence the same as Λ´1. Note that we have the transformation
behaviour

xµ Ñ x1µ “ Λµ
νx

ν

xµ “ ηµρx
ρ
Ñ x1µ “ ηµρx

1ρ
“ ηµρΛ

ρ
νx

ν
“ ηµρΛ

ρ
νη

νσxσ “ xσpηΛTηqσµ “ xσpΛ
´1
q
σ
µ

(3.18)

1There is a deeper meaning which is that these are in the tangent (xµ) and cotangent spaces (xµ) of space-time.
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Thats how it had to be, as we constructed Lorentz transformations in such a way that xµxµ is
invariant!

Objects xµ transforming as above are called ‘Lorentz vectors’. Objects transforming like xµ
are called ‘Lorentz covectors’. We can think of the matrix η as a map which sends every
vector to a covector and vice-versa.

Whenever we contract upper and lower indices, we hence get something that is in-
variant under the Lorentz group. By extension, it is customary to put upper/lower indices
on objects that have the same transformation behaviour as xµ and xµ. The same rule for con-
structing invariants then exists there as well. The positioning of indices hence serves as a
book keeping device for the transformation behaviour and consequently for the constructing
of Lorentz scalars, i.e. invariant quantities.

Exercise 1. Consider a Lorentz vector with components xµ, which transforms under Lorentz
transformations as

xµ Ñ x1µ “ Λµ
νx

ν .

Note that throughout this problem we are using summation convention.

a) Let fµν ” xµxν . Find the transformation behavior of fµν , fµν “ xµxν and fµν “ xµxν
under Lorentz transformations.

b) For another Lorentz vector yµ, �nd the transformation behavior of fµνyµ under Lorentz
transformations.

c) Compute
ÿ

µ

B

Bxµ
xµ .

d) Work out the transformation behavior of

B

Bxµ

under Lorentz transformations. Use c) to argue for the same result.

Let us now examine the global structure of the Lorentz group L. Clearly, the determinant of
Λ is ˘1, so that we get two disconnected components L˘, just as for SOp3q. The component
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L` that is connected to the identity is called proper Lorentz group. Furthermore the p0, 0q
component of ηΛTηΛ “ 1 implies

1 “
`

Λ0
0

˘2
´
`

Λ0
1

˘2
´
`

Λ0
2

˘2
´
`

Λ0
3

˘2
, (3.19)

so that pΛ0
0q

2
ě 1 which has again two components:

LÒ where Λ0
0 ě 1 are called the orthochronous Lorentz transformations.

LÓ where Λ0
0 ď ´1 are called the non-orthochronous Lorentz transformations.

The orthochronous transformations keep the arrow of time pointing in the same direction.
Altogether we hence have four components. The maps ΛT “ diagp´1, 1, 1, 1q (time reversal)
and ΛP “ diagp1,´1,´1,´1q (parity) generate the whole group together with LÒ`: we can
use ΛT , ΛP and ΛTΛP to map any group element toLÒ`, which implies we can write any group
element in L as a product of Λ P LÒ` with Λa

TΛb
P for a, b P p0, 1q.

The component of L that is continously connected to the identity is the proper orthochronous
Lorentz group LÒ`. LÒ` admits the following decomposition

Theorem 3.1. ˚ Every proper orthochronous Lorentz transformation Λ P LÒ` has a unique de-
composition as

Λ “ Bpvq

ˆ

1
R

˙

(3.20)

where Bpvq is a boost with parameter

vi{c “ Λi
0{Λ

0
0 (3.21)

and R is an element of SOp3q given by

Rik
“ Λi

k ´
1

1` Λ0
0

Λi
0Λ0

k . (3.22)

Proof. : First of all, it follows from (3.19) that
ř

ipΛ
i
0{Λ

0
0q

2 ă 1 as

ÿ

i

pΛi
0{Λ

0
0q

2
“
pΛ0

0q
2 ´ 1

pΛ0
0q

2
ă 1 . (3.23)

A boost associated to the speed v{c hence makes sense. From de�nition 3.2 above it follows
that B0

0pvq “ coshλ “ Λ0
0 and B0

ipvq “ ´v
i{c coshλ “ Λ0

i. Hence

Bi
jpvq “ δij `

1

1` Λ0
0

Λ0
iΛ

0
j (3.24)
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using (3.8). We now show that

R :“ Bp´vqΛ “ B´1
pvqΛ (3.25)

is indeed a rotation and R “ 1‘R, which �nishes the proof. We work out

R0
0 “ pΛ

0
0q

2
´
ÿ

i

pΛi
0q

2
“ 1

R0
i “ Λ0

0Λ0
i ´

ÿ

j

Λj
0Λj

i “ 0

Ri
k “ Λi

k ´
1

1` Λ0
0

Λi
0Λ0

k

. (3.26)

Here we used ΛTηΛ “ η repeatedly. This is a rotation with the right block-diagonal structure
as claimed. ˝

To understand the global structure of LÒ` “ SOp1, 3q`, we can repeat the trick we used when
describing the relationship between SOp3q and SUp2q. For a 4-vector px0, x1, x2, x3qwe write
it as a matrix Mx with M :

x “Mx:

Mx :“

ˆ

x0 ` x3 x1 ´ ix2

x1 ` ix2 x0 ´ x3

˙

. (3.27)

We can now formulate a map SLp2,Cq Ñ L by sending g P SLp2,Cq

g Ñ F pgq F pgqMx :“ gMxg
: . (3.28)

Proposition 3.1. F pgq is a surjective group homomorphism from SLp2,Cq to LÒ`.

Proof. :

Exercise 2. .

a) Show that F is a surjective homomorphism from SLp2,Cq to LÒ`.

hint: Try to follow a similar logic as for the homomorphism from SUp2q to SOp3q studied
before. You can take for granted that SLp2,Cq is connected.

b) For a rotation in the x1, x2-plane, �nd the element g P SLp2,Cq that is mapped to it by F .
Repeat the same for a boost along the x1 direction.
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Finally, we can work out the Lie algebra of the Lorentz group. As we have seen, a
general Lorentz transformation is uniquely given in terms of an element of SOp3q (which is
real three-dimensional) and a boost (which is parametrized by a real three-dimensional vector
v). We hence conclude that the Lorentz group is a real six-dimensional manifold. This �ts with
the fact that a real 4 ˆ 4 matrix has 16 components and ΛTηΛ “ η imposes 10 independent
constraints. Using rotation and boost matrices like (3.3) with parameters gives us paths in the
group, and we �nd that the Lie algebra is generated by the six matrices

l01
“

¨

˚

˚

˝

0 ´1 0 0
´1 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

l02
“

¨

˚

˚

˝

0 0 ´1 0
0 0 0 0
´1 0 0 0
0 0 0 0

˛

‹

‹

‚

l03
“

¨

˚

˚

˝

0 0 0 ´1
0 0 0 0
0 0 0 0
´1 0 0 0

˛

‹

‹

‚

l12
“

¨

˚

˚

˝

0 0 0 0
0 0 1 0
0 ´1 0 0
0 0 0 0

˛

‹

‹

‚

l13
“

¨

˚

˚

˝

0 0 0 0
0 0 0 1
0 0 0 0
0 ´1 0 0

˛

‹

‹

‚

l23
“

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

(3.29)

These can be summarized by

plµνqαβ “ ηµαδνβ ´ η
ναδµβ . (3.30)

Note that µ and ν in the equation above label di�erent elements of the Lie algebra, and α, β
are the components of the corresponding matrix.

Exercise 3. Verify that the matrices above are elements in the Lie algebra of the Lorentz group.

After a slightly tedious computation one �nds that they obey the Lie algebra

rlµν , lρσs “ ´ηµρlνσ ´ ηνσlµρ ` ηµσlνρ ` ηνρlµσ (3.31)

3.2 Representations of the Lorentz group
Let us now investigate representations of the Lorentz group. We have already seen the de�ngin
representation:

xµ Ñ Λµ
νx

ν (3.32)
with

ΛTηΛ “ η (3.33)
so that

xµxµ “ xµηµνx
ν
“ ´px0

q
2
` px1

q
2
` px2

q
2
` px3

q
2 (3.34)

stays invariant. Now we will ask about other representations of this group. Note that SOp3q
is a subgroup of LÒ`, and that the fundamental representation of its spin group, SUp2q, had
physical signi�cance as a spinor.
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As SO`p1, 3q “ LÒ` has SLp2,Cq as a double covering group (Proposition 3.1), so it will not
be suprising if we make the

De�nition 3.3. The group Spinp1, 3q is equal to the group SLp2,Cq.

And it is again a fact of life that what matters to describing relativistic processes in the real
world, are representations of SLp2,Cq “ Spinp1, 3q instead of representations of L.

Spinors of the Lorentz Group

For SOp3q we found irreducible representations by using Lie algebra of SOp3q, which is the
same as the Lie algebra ofSUp2q. Not all representations of this algebra descended to represen-
tations of SOp3q, but the extra representations we found were exactly the ‘spin 1/2’ spinorial
representations of SUp2q of physical signi�cance. We can use a similar strategy here, which
leads us to what are called spinors of the Lorentz group. Our presentation of spinors mostly
follows [Peskin and Schroeder, 1995], see also [Woit, 2017]. Note that these books use some-
what di�erent convention however.

Recall the Lorentz algebra

rlµν , lρσs “ ´ηµρlνσ ´ ηνσlµρ ` ηµσlνρ ` ηνρlµσ . (3.35)

Proposition 3.2. Let γµ, µ “ 0, 1, 2, 3 be matrices that obey the algebra

tγµ, γνu :“ γµγν ` γνγµ “ 2ηµν1 . (3.36)

Then we can construct a representation of the Lorentz algebra, (3.35), using the matrices

Sµν :“ 1
4
rγµ, γνs . (3.37)

Proof. : we need to check that the Sµν satisfy the Lorentz algebra. First note that the relation
tγµ, γνu “ 2ηµν implies that

γµγν “ ´γνγµ for µ ‰ ν (3.38)

and
pγµq2 “ ηµµ1 (no summation) (3.39)

We can now work out the commutator of rSµν , Sρσs. First note that µ ‰ ν and ρ ‰ σ as the
S otherwise vanish (as do the corresponding `. Hence Sµν “ 1

2
γµγν and Sρσ “ 1

2
γργσ. Let us
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�rst assume that µ, ν, ρ, σ are all di�erent. We get

pµ, ν, ρ, σ all di�erentq :

rSµν , Sρσs “
1

4
pγµγνγργσ ´ γργσγµγνq

Ö

“
1

4
pγµγνγργσ ´ γµγργσγνq

Ö

“
1

4
pγµγνγργσ ´ γµγνγργσq “ 0

(3.40)

As the colours and arrows are supposed to show you, this looks more complicated than it is.
All we have done in the second equality is swapped the γµ with γρ and γσ, which produced
two minus sign, hence no sign at all. In the third equality we did the same with γν . This is the
same as what (3.35) tells us.

Now we assume that µ “ ρ (note that there is no summation over µ in the below expressions):

pµ “ ρq :

rSµν , Sρσs “
1

16
rrγµ, γνs, rγρ, γσss “

1

16
rrγµ, γνs, rγµ, γσss

“
1

16
r2γµγν , 2γµγσs “

1

4
pγµγνγµγσ ´ γµγσγµγνq

“
1

4

`

´pγµq2γνγσ ` pγµq2γσγν
˘

“ ´ηµµSνσ .

(3.41)

Here we only had to swap γµ with γν in the �rst term and with γσ in the second term, each
giving a minus sign. The �nal result is exactly what we �nd from (3.35) when µ “ ρ. The
remaining cases can be worked out analogously. ˝.

REMARK:Algebras of the type tγa, γbu “ 2ηab where ηab is a symmetric diagonal matrix with
entries ˘1 are called ‘Cli�ord algebras’. We have already seen an example when discussing
the Pauli matrices: the Pauli matrices obey a Cli�ord algebra generated by three elements with
ηab “ diagp1, 1, 1q.

When trying to �nd explicit examples of the four γµ for µ “ 0, 1, 2, 3 the above remark is
useful hint. It turns out we need at least 4ˆ 4 matrices, and one possible choice is

De�nition 3.4. The Dirac matrices are

γ0
“

ˆ

0 12ˆ2

´12ˆ2 0

˙

, γi “

ˆ

0 σi
σi 0

˙

i “ 1, 2, 3 (3.42)
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where 1 is the 2ˆ 2 identity matrix and σi are the Pauli matrices

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (3.43)

Note that the γµ are 4ˆ 4 matrices which we have written in a 2ˆ 2 block structure using the
2ˆ 2 Pauli matrices.

Proposition 3.3. The Dirac matrices obey tγµ, γνu “ 2ηµν14ˆ4

Proof. :

Exercise 4. .

a) Show that the Dirac matrices obey tγµ, γνu “ 2ηµν14ˆ4.

b) Show the ‘freshers dream’:
paµγ

µ
q
2
“ aµa

µ14ˆ4 (3.44)

REMARK:This is not the only realization one can write down (and not Dirac’s original ma-
trices). The above version is often called the ‘Weyl’ or ‘chiral’ representation.

Proposition 3.4. Using the Dirac matrices, the algebra generators Sµν are

S0i
“ 1

2

ˆ

σi 0
0 ´σi

˙

, Sjk “
i

2
εjkl

ˆ

σl 0
0 σl

˙

(3.45)

Proof. :

Exercise 5. Using the Dirac matrices, check that the algebra generators Sµν “ 1
4
rγµ, γνs can be

written as

S0i
“

1

2

ˆ

σi 0
0 ´σi

˙

, Sjk “
i

2
εjkl

ˆ

σl 0
0 σl

˙

. (3.46)

De�nition 3.5. A vector Ψ P C4 transforming under Spinp1, 3q as

Ψ Ñ Ψ1
“ eS

µνθµνΨ ” Λ 1
2
Ψ , θµν P R (3.47)

is called a Dirac spinor.
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REMARK:Note that a Dirac spinor transforms in a reducible representation, as the matrices
Sµν are block-diagonal. The irreducible representations we �nd by restricting to the blocks
are called

De�nition 3.6. Decomposing Ψ “ pψL, ψRq, the objects ψL and ψR are called left-handed,
and right-handed Weyl spinors, respectively.

Exercise 6. .

a) For an element Λpθq “ el
12θ of the Lorentz group (l12 is one of the generators of the Lorentz

algebra introduced in the lectures) show that Λp0q “ Λp2πq “ 1. Now compare this behavior to
the corresponding element of the representation acting on a Dirac spinor: Λ1{2pθq “ eS

12θ.

b) Let γ5 :“ iγ0γ1γ2γ3. What is 1
2
pγ5 ˘ 1qΨ for Ψ a Dirac spinor written in terms of Weyl

spinors?

Having de�ned the ‘Dirac spinor’ representation of the (spin group of the) Lorentz group, we
may ask how we can construct Lorentz scalars out of it. Let us denote the complex conjugate
of Ψ by Ψ˚, an obvious guess might then be

Ψ˚
¨Ψ “ Ψ˚

IΨI (3.48)

where ΨI are the components of Ψ. It turns out it is not quite (but almost) this easy. The
problem here is that

Λ:1{2 ‰ Λ´1
1{2 (3.49)

De�nition 3.7. For a Dirac spinor Ψ with components ΨI and Ψ˚ its complex conjugate, we
let

Ψ̄ ” Ψ˚γ0 i.e. Ψ̄I ” Ψ˚
Iγ

0
IJ (3.50)

Note the slight break with the general convention that a bar signi�es complex conjugation,
but the above notation is almost universally used, so I will follow this as well.

Proposition 3.5. For a Dirac spinor Ψ with components ΨI

Ψ̄Ψ “ Ψ˚
Iγ

0
IJΨJ (3.51)

is a Lorentz scalar.
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Proof. : A direct computation (see problems class) shows that

Λ:1{2γ
0
“ γ0Λ´1

1{2 . (3.52)

Now we can work out

Ψ̄Ψ “ Ψ˚γ0Ψ

Ñ Ψ˚Λ:1{2γ
0Λ1{2Ψ “ Ψ˚γ0Λ´1

1{2Λ1{2Ψ “ Ψ̄Ψ .
(3.53)

˝

Theorem 3.2. For a Dirac spinor Ψ with components ΨI the expression

Ψ̄γµΨ “ Ψ˚
Iγ

0
IJγ

µ
JKΨK (3.54)

transforms as a Lorentz vector.

Note that this means we can e�ectively take the µ index we gave the Dirac matrices seriously,
which is the reason for this notation. Before showing this, we need an important lemma:

Lemma 3.1. The matrices Λ 1
2
“ eS

µνθµν satisfy

Λ´1
1
2

γµΛ 1
2
“ Λµ

νγ
ν
“
`

e l
ρσθρσ

˘µ

ν
γν . (3.55)

Proof. : First we show that
rγµ, Sρσs “ plρσqµνγ

ν . (3.56)

Don’t get confused by the rhs of this equation: ρ and σ label the matrices l, and we are talking
about the µ and ν components of that matrix. As observed earlier in the lectures, these can be
written as

plρσqµν “ ηρµδσν ´ η
σµδρν . (3.57)

Let’s �rst take µ ‰ ρ and µ ‰ σ. The rhs then vanishes and we can the work out the lhs as

2rγµ, γργσs “ 2pγµγργσ ´ γργσγµq “ 0 . (3.58)

Now we take µ “ ρ ‰ σ and compute

pµ “ ρq : rγµ, Sρσs “ 2rγµ, γµγσs “ ηµµγσ pno summationq (3.59)

which equals the rhs of what we want to show for µ “ ρ ‰ σ. Finally, we take µ “ σ ‰ ρ and
�nd

pµ “ σq : rγµ, Sρσs “ 2rγµ, γργµs “ ´ηµµγρ pno summationq (3.60)
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which equals the rhs of what we want to show for µ “ σ ‰ ρ.

The above is equivalent to the statement that, for very small θµν

p1´ Sρσθρσqγ
µ
p1` Sρσθρσq “

`

δµν ` p`
ρσθρσq

µ
ν

˘

γν (3.61)

Let’s look at this equation from the following perspective: consider the vector space of matri-
ces spanned by the γµ. We can write any element of such a vector space as A :“ aµγ

µ. The
right hand side can be understood as a linear map acting on A mapping it to

A1 “ aµ
`

δµν ` p`
ρσθρσq

µ
ν

˘

γν (3.62)

and (3.61) says that (for θρσ very small) we can also write this map as

A1 “ p1´ SρσθρσqAp1` S
ρσθρσq (3.63)

We can apply the same map n times to �nd

p1´ Sρσθρσq
nγµp1` S

ρσθρσq
n
“ pp1` `ρσθρσq

n
q
µ
ν γ

ν (3.64)

so also

lim
nÑ8

p1´ Sρσθρσ{nq
nγµp1` S

ρσθρσ{nq
n
“ lim

nÑ8
pp1` `ρσθρσ{nq

n
q
µ
ν γ

ν (3.65)

which shows what we wanted to show using the description of the matrix exponential estab-
lished before. ˝

Proof. (of the theorem): We can now work out

Ψ̄γµΨ Ñ Ψ˚γ0Λ´1
1{2γ

µΛ1{2Ψ “ Ψ˚γ0Λµ
νγ

νΨ “ Λµ
νΨ̄γ

νΨ (3.66)

where we have used the identity Λ´1
1{2γ

µΛ1{2 “ Λµ
νγ

ν shown in the lemma above. ˝

Corollary 3.1. For a Lorentz vector aµ, aµΨ̄γµΨ ” Ψ̄{aΨ transforms as a Lorentz scalar.

Proof. : We have already seen that aµbµ for aµ and bµ any Lorentz vectors gives us a scalar. In
the theorem above we saw that bµ “ Ψ̄γµΨ is a Lorentz vector, so the statement follows.

Exercise 7. How does
Bµν

” Ψ̄γµγνΨ (3.67)

transform under Lorentz transformations for Ψ a Dirac spinor?
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Exercise 8. For a Dirac spinor Ψ write
Ψ̄γµΨ (3.68)

in terms of Weyl spinors.

General Representation Theory ˚

Working with the Lie algebra sop1, 3q of LÒ` reveals the following. Taking this as a Lie algebra
over C instead of R we can de�ne

A1 “
1
2
p´`23

` i`01
q A2 “

1
2
p`13

` i`02
q A3 “

1
2
p´`12

` i`03
q

B1 “
1
2
p´`23

´ i`01
q B2 “

1
2
p`13

´ i`02
q B3 “

1
2
p´`12

´ i`03
q

(3.69)

these satisfy the algebra

rAi, Bjs “ 0 @i, j

rAi, Ajs “ εijkAk rBi, Bjs “ εijkBk

(3.70)

which is two copies of the Lie algebra slp2,Cq. Hence

Proposition 3.6. The complexi�cation of sop1, 3q is equal to slp2,Cq‘slp2,Cq: sop1, 3qbC “
slp2,Cq ‘ slp2,Cq.

Proof. : We can write sop1, 3q b C as (3.70). ˝

We have studied representations of SLp2,Cq in Michaelmas term, and found them to be com-
plex d ` 1 dimensional and labelled by an integer d. Furthermore, we have seen that e.g. the
complex conjugate representation 2̄ becomes the same as 2 after a change of basis in exercise
15. This is not true for SLp2,Cq: conjugation does not change the eigenvalues of a matrix and
g and ḡ have di�erent eigenvalues for g P SLp2,Cq. 2 We hence get di�erent representations
after taking complex conjugation. At the level of the algebras we can repeat the classi�cation
of irreucible representations of sop1, 3q by taking a detour via sop1, 3q bC (just as we did for
sup2q b C “ slp2,Cq), and it turns out that (we will not prove this here)

Theorem 3.3. The complex irreducible representations of SLp2,Cq are the tensor products rs1 b
r̄s2 labelled by pairs ps1, s2qwhere si take half-integer values. They act on a complex vector space
of dimension p2s1 ` 1qp2s2 ` 1q.

2For rdpgq, g P SUp2q, the eigenvalues are real or come in pairs of complex conjugates, so this does not
happen.
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For the �rst values of ps1, s2q these representations have the following names

• p0, 0q This does not transform at all, so this is a scalar.

• p1
2
, 0q This is a Weyl spinor. For the same reasons we discussed representations of SUp2q

vs. SOp3q, this is only a representation of Spinp1, 3q “ SLp2, Cq but not SOp1, 3q`.

• p0, 1
2
q This is another Weyl spinor.

• p1
2
, 1

2
q This has dimension four and is a vector. It is the representation we have used to

de�ne the Lorentz group. Its action is exactly the one written down in proposition 3.1
when we studied the map from SLp2,Cq to LÒ`.

• p1
2
, 0q ‘ p0, 1

2
q This reducible representation is a Dirac spinor.



Topic 4

Symmetries and Action Principles

In this section we will review some aspects of action principles for �eld theories and use these
to construct �eld theories with symmetries. Those of you that have take Mathematical Physics
II should be familiar with many of the things we are doing here, but I can also recommend
[Goldstein et al., 2001] for an introduction to actions for both systems with �nitely many
degrees of freedom and �eld theories. Some of the more advanced topics treated here are also
covered in [Peskin and Schroeder, 1995].

4.1 Actions and Symmetries for a�nite number of degrees
of freedom

Recall the action principle for systems with �nitely many degrees of freedom. Given the action

Srqi, 9qis “

ż

dt Lpqi, 9qiq (4.1)

the paths qptq described by this systems are those of stationary action. Let us consider paths
taking us from qpt0q to qpt1q. The stationary points are found by varying

qiptq Ñ qiptq ` δqiptq

9qiptq Ñ qiptq `
d

dt
δqiptq “ qiptq ` δ 9qiptq

(4.2)

where δqiptq is an arbitrary smooth function such that δqipt0q “ δqipt1q “ 0. We then set

δS “ Srqi ` δqi, 9qi ` δ 9qis ´ Srqi, 9qis “ 0 (4.3)

17
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to �nd
δS “

ż

dt
B

Bqi
Lpqi, 9qiqδqi `

B

B 9qi
Lpqi, 9qiqδ 9qi

“

ż

dt
B

Bqi
Lpqi, 9qiqδqi ´

d

dt

ˆ

B

B 9qi
Lpqi, 9qiq

˙

δqi

“

ż

dt

ˆ

B

Bqi
Lpqi, 9qiq ´

d

dt

B

B 9qi
Lpqi, 9qiq

˙

δqi .

, (4.4)

where we have used partial integration in the second equality. The boundary term has been
discarded because δqi vanishes there.

As δqiptq is an arbitrary smooth function we hence see that the paths described by the system
must obey the Euler-Lagrange equation

B

Bqi
Lpqi, 9qiq ´

d

dt

B

B 9qi
Lpqi, 9qiq “ 0 (4.5)

Exercise 9. For a relativistic point particle moving on path C through space-time, the only
Lorentz invariant property of C is its length. Taking the action of a relativistic particle to be
the length of C and parametrizing C as xµpsq we can write this as

Srxµ, 9xµs “ ´cm

ż

C

ds “ ´cm

ż

C

a

´ 9xµ 9xµds . (4.6)

for a constant m and c the speed of light and 9xµ “ B{Bs xµ. C is called the world-line of the
particle.

a) Show that this action is invariant under Lorentz transformations.

b) Find the equations of motions and show that they are solved by straight lines in space-time.

c) Set s “ t and expand the action for slow particles to recover the action of a non-relativistic
point particle.

Proposition 4.1. Adding a term d{dtF pq, 9qq to L does not change the equations of motion.

De�nition 4.1. An invertible transformation of the generalized coordinates

qi Ñ q1i “ fpqiq

9qi Ñ 9q1i “ fp 9qiq
(4.7)

is called a symmetry of L if

L1 :“ Lpq1i, 9q
1
iq “ Lpqi, 9qiq ` d{dtF pqi, 9qiq (4.8)
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De�nition 4.2. If the symmetries of L contain a Lie groupG, then elements of the Lie algebra
g of G are called in�nitesimal transformations.

REMARK:In the following, we will restrict ourselves to linear group actions. This means that
the qi transform in a representation r of G:

q Ñ q1 “ rpgqq

9q Ñ 9q1 “ rpgq 9q
(4.9)

and that the in�nitesimal transformations act as the associated Lie algebra representation ρ

q Ñ q1 “ p1` ρpγqq q

9q Ñ 9q1 “ p1` ρpγqq 9q
(4.10)

for every γ P g.

Theorem 4.1. (Noether’s Theorem) Let G be a Lie group of symmetries of L acting linearly on
the generalized coordinates in a representation r. Then

Qpγq “
BL

B 9qi
pρpγqqqi ´ F pq, 9q, γq (4.11)

is a conserved quantity for each γ P g. Here ρ is the Lie algebra representation associated with
the group representation r.

Proof. : (see MPII notes).

REMARK:As the Lie algebra g and its representation ρpγq are vector spaces we have for
a, b P R that

aρpγq ` bρpγ1q P ρpgq (4.12)

and (as F must be a linear function of ρpγq)

Qpaγq `Qpbγ1q “ Qpaγ ` bγ1q . (4.13)

It is of course not surprising that the lhs is again conserved as any function of conserved
quantities is again conserved.

Example 4.1. Consider a particle in n dimensions in a spherically symmetric potential. Then

S “

ż

dt
m

2
| 9q|2 ´ V p|q|2q (4.14)
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where |q|2 “
ř

i q
2
i . The Lagrangian is invariant under rotations in Opnq which act in the

de�ning representation on q. Hence

Qpγq “ m 9qγq (4.15)

is conserved for any element γ of the Lie algebra of Opnq, which equals the Lie algebra of
SOpnq E.g. recalling the form of the matrices in the Lie algebra of SOp3q we can write

γ “
ÿ

i

αi`i (4.16)

for αi P R and matrices `i with components p`iqjk “ εijk. This gives the conserved quantity

Q “ λiLi (4.17)

for any choice of λi P R and L “ x ˆ p. Hence each component of the angular momentum
L is conserved. Note that the appearance of the εijk in the vector cross product is now seen
to be due to the form of the matrices in the Lie algebra of SOp3q.
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4.2 Actions for Field Theories
Let us now consider �eld theories, i.e. instead of functions qptq we consider functions φpt,xq
that depend on x as well. Consequently, the equations of motions for φpt,xq will have to
involve derivatives w.r.t. the components of x as well.

An action for a �eld theory with a �eld φ is written in terms of a Lagrangian density L as

Srφ, Btφ, Biφs “

ż

d4x Lpφ, Btφ, Biφqq , (4.18)

where we use Bi as a shorthand for B{Bxi and Bt as a shorthand for B{Bt. We now vary
φÑ φ` δφ

BtφÑ Btφ` δBtφ “ Btφ` Btδφ

BiφÑ Biφ` δBiφ “ Biφ` Biδφ

(4.19)

Let us set the limits of the integral to be that of a box t “ ta . . . tb, xi “ ai . . . bi. The variational
principle now tells us that δS “ 0, where δS isSrφ, Btφ, Biφs´Srφ`δφ, Btφ`δBtφ, Biφ`δBiφs.
Expanding δS to linear order in the variation of φ gives us

0 “ δS “

ż

d4x

ˆ

B

Bφ
L
˙

δφ`

ˆ

B

BpBtφq
L
˙

δBtφ`

ˆ

B

BpBiφq
L
˙

δBiφ

“

ż

d4x

ˆ

B

Bφ
L
˙

δφ`

ˆ

B

BpBtφq
L
˙

Btδφ`

ˆ

B

BpBiφq
L
˙

Biδφ

(4.20)

Similar to the treatment of systems with �nitely many degrees of freedom, we now integrate
the terms that involve derivates of δφ by parts to get something proportional to δφ. This gives

0 “

ż

d4x

„ˆ

B

Bφ
L
˙

´ Bt

ˆ

B

BpBtφq
L
˙

´ Bi

ˆ

B

BpBiφq
L
˙

δφ`B (4.21)

where B are the boundary terms

B “

ż

d3x

„ˆ

B

BpBtφq
L
˙

δφ

t“tb

t“ta

`

ż

dtdx1dx2

„ˆ

B

BpB3φq
L
˙

δφ

x3“b3

x3“a3

`

ż

dtdx1dx3

„ˆ

B

BpB2φq
L
˙

δφ

x2“b2

x2“a2

`

ż

dtdx2dx3

„ˆ

B

BpB1φq
L
˙

δφ

x1“b1

x1“a1

(4.22)

We will now assume that the �eld φ vanishes when approaching in�nity. We can then send
the volume of the box to in�nity which also makes the boundary terms vanish. This also
immediately implies that any boundary term vanishes. Alternatively, we can keep φ at the
boundary of the box we have chosen �xed so that δφ vanishes there1.

1One may choose other boundary conditions as well.
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As δφ is arbitrary, we conclude that

Theorem 4.2. The Euler-Lagrange equations for a �eld theory are
ˆ

B

Bφ
L
˙

´ Bt

ˆ

B

BpBtφq
L
˙

´ Bi

ˆ

B

BpBiφq
L
˙

“ 0 (4.23)

REMARK:If the action S depends on several �elds and their derivatives, we get an Euler-
Lagrange equation as above for every single �eld. I.e. indexing the �elds by an index I

SrφI , BtφI , BiφIs “

ż

d4x LpφI , BtφI , BiφIqq , (4.24)

we have
ˆ

B

BφI
L
˙

´ Bt

ˆ

B

BpBtφIq
L
˙

´ Bi

ˆ

B

BpBiφIq
L
˙

“ 0 (4.25)

for every I .

Example 4.2. Let us consider the theory of a real scalar �eld φ with action

S “

ż

dtd3x ´ pBtφq
2
` pBiφq

2
`m2φ2 . (4.26)

Then the equation of motion for φ is
`

B
2
t ´∇2

`m2
˘

φ “ 0 (4.27)

Example 4.3. We can also use complex �elds to write actions. Let us consider the theory of a
complex scalar �eld φ with action

S “

ż

dtd3x ´ |Btφ|
2
` |Biφ|

2
`m2

|φ|2 . (4.28)

Then the equation of motion for φ is again
`

B
2
t ´∇2

`m2
˘

φ “ 0 . (4.29)

This can be seen in two di�erent ways:

1. We can just write S in terms of real and imaginary parts (which are two real �elds) and
derive their equations of motion, which can be combined to give the above.
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2. Treating the real and imaginary parts of φ as di�erent �elds is equivalent to (after a
complex rede�nition of �elds) treating φ and φ̄ as independent �elds. The equation of
motion of φ̄ is (4.29).

Example 4.4. Consider a complex scalar �eld ψ with action

S “

ż

dtd3x ´ |∇ψ|2 ` 1
2
i
`

ψ̄Btψ ´ ψBtψ̄
˘

(4.30)

While this is obviously real for the �rst term, taking the complex conjugate of the second term
shows that the whole action is real. The equations of motion for ψ̄ are

0 “´ Bi

ˆ

B

BpBiψ̄q
L
˙

´ Bt

ˆ

B

BpBtψ̄q
L
˙

`

ˆ

B

Bψ̄
L
˙

“ 0

“∇ ¨∇ψ ` 1
2
iBtψ `

1
2
iBtψ

“∆ψ ` iBtψ

(4.31)

This is nothing but the Schroedinger equation for a free particle with m “ 1{2 and ~ “ 1, but
now ψ is just a classical �eld. The Euler Lagrange equations for ψ give the complex conjugate
of the above equations.

We can repeat the same steps above to deal with actions written in a Lorentz covariant notation
(Bµ “ B{Bxµ)

Srφ, Bµφs “

ż

d4x Lpφ, Bµφqq , (4.32)

to arrive at

Theorem 4.3. The Euler-Lagrange equations specifying stationary points of the actionSrφ, Bµφs “
ş

d4x Lpφ, Bµφq of a �eld theory are

B

Bφ
Lpφ, Bµφq ´ Bµ

ˆ

B

BpBµφq
Lpφ, Bµφq

˙

“ 0 (4.33)

Exercise 10. Consider the following action of a real scalar �eld

S “

ż

d4x BµφB
µφ`m2φ2 . (4.34)

Show that the equations of motion are

p´BµB
µ
`m2

qφ “ 0 . (4.35)
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4.3 Noether’s theorem
Let us now consider symmetries of �eld theories. Our discussion will mirror what we did
in the section above, except that we will restrict ourselfs to linear maps acting on the �elds,
and we will assume for simplicity that L is invariant, i.e. the group action does not lead to a
boundary term.

De�nition 4.3. For a Lie group G and a representation r : GÑ GLpV q, a linear map

φI Ñ φ1I “ rrpgqφsI
BµφI Ñ Bµφ

1
I “ rrpgqBµφsI

(4.36)

is called a symmetry of L if

LpφI , BµφIqq “ Lpφ1I , Bµφ1Iqq (4.37)

REMARK:We could allow a total derivative here as well, but will content ourselves with this
stricter de�nition here.

REMARK:The in�nitesimal version of the map (4.36) is (here g “ eγ)

φI Ñ φI ` δγφI “ rp1` ρpγqqφsI (4.38)

i.e.
δγφI “ rρpγqφsI , (4.39)

where ρ is the Lie algebra representation associated with the group representation r.

Theorem 4.4. Let G be a Lie group of symmetries of L acting in a representation r on the �elds
φI . Then

jµ :“ rρpγqφsI
BL

B pBµφIq
(4.40)

(summation convention: there is a sum over I in the above) is a conserved current:

Bµj
µ
“ 0 . (4.41)

Proof. : For the associated in�nitesimal transformation we have (to linear order in δφI and
using summation convention)

0 “ δL “ BL
BφI

δγφI `
BL
BBµφI

BµδγφI “ Bµ

ˆ

BL
BBµφI

˙

δγφI `
BL
BBµφI

BµδγφI

“ Bµ

ˆ

BL
BBµφI

δγφI

˙ (4.42)
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where we have used the Euler-Lagrange equations of motion. Using (4.39) then shows the
statement.

REMARK:As a consequence, we can write
B

Bt

ż

V

d3xj0
`

ż

BV

dAiji “ 0 . (4.43)

for any volume V . If the charge inside the volume (the �rst term) changes, it must be due to a
current leaving the volume. Letting V increase arbitrarily and recalling our assumption that
�elds at in�nity vanish the right hand term is zero and we can write

B

Bt

ż

R3

d3xj0
“
B

Bt
Q “ 0 , (4.44)

i.e. the total charge is unchanged.

4.4 Lorentz symmetry and �eld theories
The symmetries we have considered above are not symmetries of space-time, but ’internal
symmetries’ acting on the �elds. In relativity, we demand invariance of physics under maps

xµ Ñ x1µ “ Λµ
νx

ν

xÑ x1 “ Λx
(4.45)

We can take the following perspective on Lorentz transformations: we map our coordinates
of space-time x to Λx. If a given solution has an isolated zero at some x0, φpx0q “ 0, this will
map φpxq to a new solution φ1pxq that has a zero at Λx0, i.e. the action of a group element Λ
of the Lorentz group on our scalar �eld φ is

Λ : φÑ φ1pxq “ φpΛ´1xq . (4.46)

Note that this plays nicely with the group composition

pΛ1 ˝ Λ2qφÑ Λ1φpΛ
´1
2 xq Ñ φpΛ´1

2 Λ´1
1 xq “ φppΛ1Λ2q

´1xq . (4.47)

De�nition 4.4. A �eld φ is a Lorentz scalar if its behavior under Lorentz transformations is

φpxq Ñ φpΛ´1xq . (4.48)

In a similar fashion

De�nition 4.5. A �eld (actually, four �elds) Aµ is a Lorentz vector if its behavior under
Lorentz transformations is

Aµpxq Ñ Λµ
νA

ν
pΛ´1xq . (4.49)
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De�nition 4.6. A �eld (actually, four �elds) Aµ is a Lorentz covector if its behavior under
Lorentz transformations is

Aµpxq Ñ
`

Λ´1
˘ν

µ
AνpΛ

´1xq . (4.50)

De�nition 4.7. A �eld (actually, four �elds) Ψ is a Dirac spinor if its behavior under Lorentz
transformations is

Ψpxq Ñ Λ1{2ΨpΛ´1xq . (4.51)

For a �eld theory, invariance under Lorentz transformation means is that if a scalar �eld φpxq
is a solution to our equations of motion, then so must be φpΛ´1xq. What this means is that we
do not want to transform the derivatives in our equations of motion, but only the arguments
of the �elds.

De�nition 4.8. A �eld theory is called Lorentz invariant if for every solution φpxq to the
equations of motion, there is another solution φpΛxq for all Λ P LÒ`.

REMARK:You might �nd it suprising that we only ask for LÒ` here. The reason is that parity
and time reversal are not symmetries of fundamental physics, but we still want to call such
theories Lorentz invariant as they are invariant under rotations and boosts.

Proposition 4.2. Transforming only the argument of the �eld, but not the derivative, Bνφpxq
is a Lorentz covector �eld.

Proof. : Let y “ Λ´1x. We have

BµφpΛ
´1xq “

B

Bxµ
φpΛ´1xq “

`

Λ´1
˘ν

µ
B

Byν
φpyq (4.52)

This also implies that Bνφpxq “ ηνµBµφpxq transforms as Lorentz vector (besides replacing x
by y).

As we �nd our �eld equations from a LagrangianL, φpxq being a solution implies thatφpΛ´1xq
is also a solution to the equations of motion if L behaves as a Lorentz scalar. Hence

De�nition 4.9. An action S “
ş

d4xL is called Lorentz invariant if the associated La-
grangian L is a Lorentz scalar for Λ P LÒ`:

Λ : Lpφpxq, Bµφpxqq Ñ Lpφ1pxq, Bµφ1pxqq “ LpφpΛ´1xq, BµφpΛ
´1xqq (4.53)
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REMARK:

As the Lagrangian is a scalar, all that is happening is that x is replaced by y. Furthermore,
d4x transforms with the Jacobian, which is just det Λ “ 1 for Λ P LÒ`. Hence S is invariant
if we integrate over all spacetime. This implies that for an extremum φpxq of S, φpyq is also
an extremum. As extrema are found as solutions to the equations of motion, it must hence be
that for any solution φpxq, φpyq “ φpΛ´1xq must also be a solution.

REMARK:Above we have been carefully keeping track of the change of coordinates from x
to y. As you can see, the template is to replace x to y and to simulataneously transform all
indices with appropriate matrices Λ. It is common to supress the change from x to y and
simply summarize the transformation of scalars, their derivative, vectors, and spinors as

φÑ φ

B
µφÑ Λµ

νB
νφ

Aµ Ñ Λµ
νA

ν

Ψ Ñ Λ1{2Ψ

(4.54)

Exercise 11. Consider the action

S “

ż

d4xΨ̄ pγµBµ `mqΨ . (4.55)

a) Show that it is Lorentz invariant.

b) Find the equations of motion.

c) Find the conserved charge associated to the Up1q symmetry Ψ Ñ eiθΨ.

d) Show that
pγµBµ ´mq pγ

ν
Bν `mq “ BµB

µ
´m2 (4.56)

Exercise 12. Consider a �eld Φ transforming in the adjoint representation of the Lie group
SUpnq. Show that

S “

ż

d4x tr pBµΦBµΦq

is invariant under the action of SUpnq and �nd the associated conserved current.



Topic 5

Abelian gauge theories

In the rest of this term we will learn how to formulate gauge theories, a special subset of �eld
theories which describe most forces in modern physics. For example, the Standard Model of
elementary particles is a gauge theory based on the group G “ SUp3q ˆ SUp2q ˆ Up1q,
and accounts for the strong, weak and electromagnetic interaction. In this chapter we will
start by looking at abelian gauge theories, the formulation of which is based on an abelian Lie
group, called the gauge group. The abelian restriction will allow us to acquaint us with the
key concepts in gauge theory without complicating the underlying mathematics too much.

5.1 Electromagnetism as a Up1q gauge theory
We will soon delve into the abstract idea that underlies abelian gauge theories, starting from
a �eld theory with a Up1q global symmetry and promoting the constant Up1q parameter to
a local function of spacetime. But before we do that, let us take a fresh look at Maxwell’s
theory of electromagnetism, and describe it as a relativistic �eld theory that can be based on
a gauge symmetry principle. Excellent references for some foundational material are [Landau
and Lifshitz, 2013], [Gri�ths, 2014] and [Jackson, 2021]. The coupling of electromagnetism to
�eld theories, which we will study later, is a standard topic in nearly all books on quantum
�eld theory, see e.g. [Peskin and Schroeder, 1995].

28
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5.1.1 Maxwell’s equations and relativity
The Maxwell equations describing which electric (E) and magnetic �elds (B) are induced by
the electric charge density ρ and current j are (in natural units)

∇ ¨E “ ρ , ∇ˆB ´
BE

Bt
“ j ,

∇ ¨B “ 0 , ∇ˆE `
BB

Bt
“ 0 .

(5.1)

We call the equations in the �rst line the inhomogeneous Maxwell equations, since they have
sources for the electric and magnetic �elds in the right-hand side, and the equations in the
second line the homogeneous Maxwell equations, since they don’t.

The behaviour of Maxwell equations under Lorentz transformations can be worked out as
follows. Starting from an inertial frame with a charge distribution ρ at rest, we can perform a
boost

Λ “

¨

˚

˚

˝

coshλ sinhλ 0 0
sinhλ coshλ 0 0

0 0 1 0
0 0 0 1

˛

‹

‹

‚

(5.2)

to another inertial frame moving at a relative speed tanhλ, in which there is now also a non-
zero current j. As resting charges only source electric �elds and steady currents source mag-
netic �elds, this implies that Lorentz transformations will also mix up electric and magnetic
�elds.

In order to understand how to write the Maxwell equations in a manifestly Lorentz invariant
way, and how the electric and magnetic �eld transform under Lorentz transformations, let
us �rst focus on the sources appearing in the right-hand side of the inhomogeneous Maxwell
equations. The charge density ρ and the current j can be repackaged into a Lorentz 4-vector
Jµ, such that J0 “ ρ and J i “ ji. The continuity equation (or local conservation law)

Bρ

Bt
`∇ ¨ j “ 0 (5.3)

can then be written as
BµJ

µ
“ 0 . (5.4)

Since Jµ is a Lorentz vector, a Lorentz transformation acts as

Jµpxq ÞÑ J 1µpxq “ Λµ
νJ

ν
pΛ´1xq , (5.5)

which indeed leaves the continuity equation invariant.1

1Recall that B0 “ B
Bt and Bi “ B

Bxi “ p∇qi, and that the Lorentz transformation xµ ÞÑ x1µ “ Λµνx
ν of the

spacetime coordinates implies the following Lorentz transformation of the derivatives:

Bµ ÞÑ B1µ “ Λµ
ρBρ “ pΛ

´1qρµBρ .



TOPIC 5. ABELIAN GAUGE THEORIES 30

REMARK:
In the following I may use the shorthand notation Jµ ÞÑ Λµ

νJ
ν for the transformation law

(5.5), with the understanding that if the object in question is a �eld then the argument must
transform appropriately.

The transformation property of Jµ and the assumption of Lorentz symmetry (or ‘Lorentz in-
variance’) requires that the inhomogeneous Maxwell equations in the �rst line of (5.1) be the
temporal and spatial components of a Lorentz 4-vector equation respectively. The similar-
ity between the two rows of (5.1) suggests that the same should be true of the homogeneous
Maxwell equations in the second line of (5.1).

Let’s now focus on the left-hand side of the inhomogeneous Maxwell equations, which is equal
to the current 4-vector Jµ. Spacetime derivatives appear linearly, so we need a Bν on the left-
hand side, with the ν index suitably contracted with a tensor linear in the electric and magnetic
�eld, in such a way that a µ index stays free (that is, uncontracted). The simplest option is
that the left-hand side is BµX for a scalar �eld X , but an equation of the form BµX “ Jµ

is immediately ruled out by counting degrees of freedom: it cannot account for the electric
and magnetic �elds E and B and hence reproduce the left-hand side of the inhomogeneous
Maxwell equation. In order to match the upper index of Jµ on the right-hand side, the deriva-
tive Bν must therefore act on a second rank Lorentz tensor F µν ,2 which is linear in the electric
and magnetic �eld, with the ν index contracted so that only the µ index remains free.

The electric and magnetic �eldE andB have 3`3 “ 6 components in total, whereas a second
rank tensor3 has 4 ¨ 4 “ 16 components, so there still appears to be a mismatch of degrees of
freedom. This is �xed by requiring that F µν be antisymmetric, that is F µν “ ´F νµ : then it
has 4¨3

2
“ 6 components.

To summarize, we are led to write the inhomogeneous Maxwell equations as

BνF
µν
“ Jµ (5.6)

for a second rank antisymmetric tensor F µν “ ´F νµ which is linear inE andB. Comparing
with the �rst line of (5.1) determines

rF µν
s “

¨

˚

˚

˝

0 E1 E2 E3

´E1 0 B3 ´B2

´E2 ´B3 0 B1

´E3 B2 ´B1 0

˛

‹

‹

‚

. (5.7)

2Recall that by de�nition a Lorentz tensor with two indices transforms as

Fµνpxq ÞÑ F 1µνpxq “ ΛµρΛ
ν
σF

ρσpΛ´1xq

under a Lorentz transformation.
3Vocabulary: a tensor with n indices is called an n-th rank tensor or equivalently a rank-n tensor.
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Lowering indices to Fµν “ ηµρηνσF
ρσ, we have

rFµνs “

¨

˚

˚

˝

0 ´E1 ´E2 ´E3

E1 0 B3 ´B2

E2 ´B3 0 B1

E3 B2 ´B1 0

˛

‹

‹

‚

. (5.8)

In other words for i “ 1, 2, 3 we have

Fi0 “ ´F0i “ Ei , Fij “ εijkBk . (5.9)

Fµν used to be called the Faraday tensor, and is now most commonly called the �eld strength
tensor, because its components encode the strength of the electric and magnetic �elds.

By a similar logic, it is not hard to see that the homogeneous Maxwell equations in the second
line of (5.1) can also be written covariantly – that is, in Lorentz tensor notation – as

εµνρσBνFρσ “ 0 , (5.10)

where εµνρσ is the completely antisymmetric tensor with four indices, normalized such that
ε0123 “ 1.

REMARKS:

1. In practice this means that one gets a relative minus sign when swapping any two in-
dices. E.g. ε3201 “ ´1 as one needs to swap indices an odd number of times to arrive
there from ε0123. One way to see that is

ε3201
“ ´ε3021

“ ε1023
“ ´ε0123 .

2. A fancier mathematical way of saying the same thing is: for any permutation σ of
0, 1, 2, 3 we set εσp0q,σp1q,σp2q,σp3q “ signpσq, where signpσq is the signature of σ. The
signature of a permutation σ is de�ned to be `1 (respectively ´1) if the permutation is
even (resp. odd), which means that pσp0q, σp1q, σp2q, σp3qq is obtained from p0, 1, 2, 3q
by an even (resp. odd) number of transpositions (or swaps).

3. Note that in a situation with four indices the ‘cyclical’ vs. ‘anti-cyclical’ method useful
for εijk does not work anymore.

4. If we lower all four indices using the Minkowski metric, one of them is temporal and
three of them are spatial, so we pick up a minus sign:

ε0123 “ η00η11η22η33ε
0123

“ ´1 . (5.11)
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Exercise 13. Show that using the �eld strength Fµν and the 4-current Jµ we can write the
Maxwell equations as

BνF
µν
“ Jµ , εµνρσBνFρσ “ 0 . (5.12)

The inhomogeneous Maxwell equations imply the local conservation equation for the electro-
magnetic current Jµ:

BµJ
µ
“ 0 . (5.13)

Proof. Using the inhomogeneous Maxwell equations we �nd

BµJ
µ
“ BµBνF

µν
“ 0 (5.14)

The �rst equality are just Maxwell’s equations and the second equality follows from the anti-
symmetry of the �eld strength F µν “ ´F νµ, along with the commutativity of partial deriva-
tives BνBµ “ BµBν .4 We have

BµBνF
µν
“ ´BµBνF

νµ
“ ´BνBµF

νµ
“ ´BµBνF

µν (5.15)

where we have relabelled pν, µq as pµ, νq in the last step. As we see, this expression is equal
to minus itself, so it must be zero.

5.1.2 Maxwell’s equations: variational principle
How can we write down a Lorentz invariant Lagrangian density that will give us (5.12) as its
Euler-Lagrange equations (or equations of motion, or EoM)? You can try playing around but
you will soon realise that using F µν as the dynamical �eld(s) will not allow you to recover
Maxwell’s equations.

Let us hence try something else. The second equation of (5.12) implies that we can write

Fµν “ BµAν ´ BνAµ (5.16)

in any star-shaped open subset in R4.5 We say that (5.16) holds locally. Conversely, (5.16)
implies

εµνρσBνFρσ “ εµνρσBνpBρAσ ´ BσAρq “ εµνρσBνBρAσ ´ ε
µνρσ

BνBσAρ “ 0´ 0 “ 0 (5.17)
4We assume that all �elds are smooth functions, hence they have continuous second partial derivatives and

Schwarz/Clairaut’s theorem applies. It turns out that this assumption is false for generic �eld con�gurations in
quantum �eld theory, but we are only doing classical �eld theory here, and we’ll leave that story for another day.

5This is known as the Poincaré lemma, which is a generalization of the fact that ∇ˆF “ 0 implies F “ ∇φ
locally (see AMV). An open set U is called star-shaped (or a star domain) if there exists a point p P U such that
for any q P U , the line segment from p to q is contained in U .
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by using that each of the two terms is symmetric with respect to swapping the order of the
derivatives but is contracted with an epsilon tensor, which is antisymmetric in all indices. The
second equation of (5.12) is hence automatic (it is called the Bianchi identity) and we need
only worry about the �rst one.

In the theory of electromagnetism,Aµ is called the electromagnetic 4-vector potential: its time
component A0 “ φ is the electric ‘scalar potential’, and its space components Ai “ Ai are the
components of the magnetic ‘vector potential’A. (In this pre-relativistic terminology, ‘scalar’
and ‘vector’ refer to spatial rotations, not to Lorentz transformations). Using (5.16) and (5.9),
we recover the relations between electromagnetic �elds and electromagnetic potentials from
the theory of electromagnetism:

E “ ´∇φ´ BA
Bt

, B “ ∇ˆA . (5.18)

Proof.

Exercise 14. Show the relationship above between electric and magnetic �elds and the potentials.

We now declare thatAµ is the dynamical �eld, which also enables us to include Jµ as a source
in the action.

Proposition 5.1. Maxwell’s equations follow from the action6

SrAµs “

ż

d4x

ˆ

´
1

4
F µνFµν ` AµJ

µ

˙

. (5.19)

Proof. We work out the Euler-Lagrange equations

BL
BAµ

´ Bν
BL

BpBνAµq
“ 0 (5.20)

for the Lagrangian density
L “ ´1

4
F µνFµν ` AµJ

µ . (5.21)

For the �rst term we have

BL
BAµ

“
B

BAµ
pAνJ

ν
q “

BAν
BAµ

Jν “ δµνJ
ν
“ Jµ . (5.22)

6The overall minus sign is there to ensure that the Hamiltonian of the electromagnetic �eld is positive de�nite.
More about this later.
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Remember: repeated indices are summed over and are dummy. You should never use the same
letter for di�erent indices, or you will get wrong results: this is the reason why I relabelled
the dummy index as ν here. For the second term we have

BL
BpBνAµq

“
BFαβ
BpBνAµq

B

BFαβ

ˆ

´
1

4
F ρσFρσ

˙

“ ´
1

4
¨ 2Fαβ B

BpBνAµq
pBαAβ ´ BβAαq

“ ´
1

2
Fαβ

pδναδ
µ
β ´ δ

ν
βδ

µ
αq

“ ´
1

2
pF νµ

´ F µν
q “ F µν .

(5.23)

In deriving (5.23) we used the chain rule in the �rst line. In the second line we used the
de�nition (5.16) of the �eld strength Fαβ in terms of derivatives of Aµ, and the identity

Exercise 15. Show
B

BXa1...an

pXb1...bnXb1...bnq “ 2Xa1a2...an , (5.24)

for any tensor X .

In the third line of (5.23) we just calculated derivatives, and in the �nal equality in the fourth
line we used the antisymmetry of the �eld strength.

The Euler-Lagrange equations then give

Jµ ´ BνF
µν
“ 0 , (5.25)

which reproduce the inhomogeneous Maxwell’s equations.

REMARK:
It is also possible to derive the action (5.19) (without the source term) by using the Lorentz force
to show that the energy stored in the electromagnetic �elds (which equals the Hamiltonian)
is 1

2

ş

d3x pE2
`B2

q, and then �nding the associated Lagrangian.

5.1.3 Gauge Symmetry
The technical trick we have used has an interesting consequence: the physical �elds that we
can measure are the electric and magnetic �eld E and B, i.e. the components of the �eld
strength tensor Fµν , not the dynamical �eld Aµ that we use to de�ne the action and obtain
equations of motion. In fact, Aµ is not uniquely de�ned: we are free to shift Aµpxq by a
derivative of an arbitrary smooth function αpxq

Aµpxq ÞÑ Aµpxq ` Bµαpxq (5.26)
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without altering the physical �elds which appear in the Maxwell equations and which can be
measured:

Fµν “ BµAν ´ BνAµ ÞÑ BµAν ´ BνAµ ` BµBνα ´ BνBµα “ Fµν . (5.27)

A symmetry for which the parameters of the transformation depend on space-time is called a
gauge symmetry.7 Equation (5.26) is called the gauge transformation of Aµ. The �eld Aµ
is then called the gauge �eld (or the gauge connection). Gauge �eld con�gurations which
di�er by a gauge transformations are considered physically equivalent, since they give rise to
the same physically observable electric and magnetic �elds.

You should contrast gauge symmetries with the symmetries you studied so far: their parame-
ters did not depend on space-time in any way. They are called global symmetries, and they
relate physically inequivalent (though isomorphic) con�gurations.

Performing a gauge transformation (5.26) has the following e�ect on the action (5.19):

SrAµs ÞÑ SrAµ ` Bµαs “

ż

d4x

ˆ

´
1

4
F µνFµν ` AµJ

µ
` pBµαqJ

µ

˙

“ SrAµs `

ż

d4x pBµαqJ
µ

(5.28)

At �rst sight the action does not seem to be invariant under a gauge transformation, since

δαSrAµs ” SrAµ ` Bµαs ´ SrAµs “

ż

d4x pBµαqJ
µ (5.29)

does not seem to vanish. But this is too fast: we can perform a partial integration of the extra
term and discard the boundary term8 to write the gauge variation of the action as

δαSrAµs “ ´

ż

d4x α pBµJ
µ
q “ 0 , (5.30)

which vanishes thanks to the conservation of the current Jµ that couples to the electromag-
netic gauge �eld Aµ.

REMARKS:

1. We can write
Aµ Ñ Aµ ` Bµα “ eiα pAµ ` iBµq e

´iα , (5.31)
7As I will stress later, this is a misnomer: a gauge ‘symmetry’ is not really a symmetry of a physical system.

Rather, it is a redundancy in our description of the system.
8We assume that the �elds obey boundary conditions such that this holds, e.g. that they vanish fast enough

at in�nity, or that they obey (along with the gauge parameter) periodic boundary conditions.
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so we can think about our gauge transformations as being related to the group G “

Up1q, but now its parameter α depends on where we are in space-time. G “ Up1q is
called the gauge group. The �eld Aµ transforms in the adjoint representation, except
for the derivative term. This rewriting may look silly since the adjoint representation of
G “ Up1q is trivial, but we will see later that this form generalizes to other gauge groups
in a natural way. We will also understand the rôle and meaning of the extra derivative
term.

2. You have encountered �eld theories with Up1q global symmetries and conserved cur-
rents before. Can we use the currents found there to couple them to electromagnetism?
If so, can we identify the Up1q global symmetry of these �eld theories with the Up1q
gauge symmetry found above?

The answer to the previous question is yes, and we will learn how to do this systematically
next. But �rst, let us brie�y remind ourselves of the concept of Up1q global symmetry and set
notation for what follows.

5.2 Up1q global symmetry
Consider (for simplicity) a complex scalar �eld φpxq.9

The action 10

S0rφ, φ̄s “

ż

d4x L0pφ, φ̄, Bµφ, Bµφ̄q ,

L0 “ ´|Bµφ|
2
´ V pφ, φ̄q “ ´|Bµφ|

2
´ Up|φ|2q

“ | 9φ|2 ´ |∇φ|2 ´ Up|φ|2q

(5.32)

is invariant under global G “ Up1q transformations

g : φpxq ÞÑ eiαφpxq

9Recall that mathematically, this is a map from Minkowski space-time R1,3 to C, which associates a complex
number to each point in space-time:

φ: R1,3 Ñ C
xµ ÞÑ φpxq

Greek indices µ, ν, . . . are space-time indices running from 0 to 3. (Roman indices i, j, . . . are spatial indices
running from 1 to 3. Index 0 is for time.) Unless we explicitly state otherwise, we will typically assume that all
�elds are smooth.

10Recall that |Bµφ|2 is a short-hand notation for Bµφ̄Bµφ, where Einstein summation convention (re-
peated indices are summed over) is understood. Recalling that we work with Minkowski metric rηµνs “
diagp´1,`1,`1,`1q, this means that |Bµφ|2 “ ´|B0φ|2 ` |Biφ|2 “ ´| 9φ|2 ` |∇φ|2.
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where α „ α ` 2π is a constant parameter, and g “ eiα P Up1q is a constant group element.
The requirement of Up1q invariance restricts the scalar potential V pφ, φ̄q to only depend on
the invariant |φ|2. Because the scalar �eld φ is multiplied by a single power of the Up1q group
element g “ eiα, we say that it has charge 1.

REMARKS:

1. The continuous Up1q symmetry ensures the existence of a conserved current

jµ “ ´ipφ̄Bµφ´ φBµφ̄q

Bµj
µ
“ 0

(5.33)

and of a conserved charge

Q “

ż

d3x j0

d

dt
Q “ 0

(5.34)

by Noether’s theorem.

2. A global symmetry relates physically distinct con�gurations.

Exercise 16. Consider a �eld theory with action (5.32) and scalar potential

V pφ, φ̄q “ λp|φ|2 ´ a2
q
2 ,

with parameters λ, a ą 0, see �gure 5.1. The energy (or “Hamiltonian”) is

E “

ż

d3x
`

|B0φ|
2
` |Biφ|

2
` V pφ, φ̄q

˘

“

ż

d3x
´

| 9φ|2 ` |∇φ|2 ` V pφ, φ̄q
¯

.

1. Show that the con�gurations of least energy (“vacua”, or “ground states”) parametrize a
circle in �eld space.

2. Show that di�erent vacua are related by global Up1q transformations.

5.3 Up1q gauge symmetry
To make the global symmetry local, or a gauge symmetry, we promote the constant param-
eter α to a function of spacetime αpxq. For subtle reasons that we might return to later, the
parameter αpxq of a gauge transformation should approach 0 (su�ciently fast) at in�nity.
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Figure 5.1: The scalar potential V pφ, φ̄q “ λp|φ|2 ´ a2q2.

If we try to write a kinetic term for φ, we immediately seem to run into trouble. Under a Up1q
gauge transformation

Bµφ ÞÑ Bµφ
1
” Bµpe

iαφq “ eiα pBµφ` ipBµαqφq (5.35)

since now α depends on spacetime. Therefore the naive kinetic term ´|Bµφ|
2 is not invariant

under a Up1q gauge transformation. We say that it is not gauge invariant.

This is a serious problem. But there is a way to �x it: we replace the derivative Bµφ by the so
called gauge covariant derivative

Dµφ :“ Bµφ´ iAµφ (5.36)

which includes a new �eld Aµ (the gauge �eld), whose purpose is to transform under gauge
transformations precisely in such a way to cancel the unwanted second term in (5.35). This
happens if under a Up1q gauge transformation

Aµ ÞÑ A1µ “ Aµ ` Bµα , (5.37)

because then

Dµφ “ pBµφ´ iAµφq ÞÑ D1µφ
1
” pBµφ

1
´ iA1µφ

1
q

“ eiα pBµφ` ipBµαqφ´ iAµφ´ ipBµαqφq

“ eiα pBµφ´ iAµφq “ eiαDµφ ,

(5.38)

using (5.35) and (5.37). Replacing derivatives Bµ by gauge covariant derivatives Dµ makes the
gauge kinetic term of φ invariant under Up1q gauge transformations.

Note that (5.37) mimics precisely the gauge transformation (5.26) of the 4-vector potential in
the theory of electromagnetism. Having introduced a new Up1q gauge �eld Aµ, we now need
to write a gauge invariant kinetic term for it. But we know how to do it: we just write the
Maxwell Lagrangian from the theory of electromagnetism.
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Putting everything together, we �nd that the action

Srφ, φ̄, Aµs “

ż

d4x Lpφ, φ̄, Aν , Bµφ, Bµφ̄, BµAνq ,

L “ L0pφ, φ̄,Dµφ,Dµφq ` LMaxwellpBµAνq

“ ´DµφD
µφ´ Up|φ|2q ´

1

4g2
FµνF

µν ,

(5.39)

where Aµ is a real gauge �eld (or mathematically, a “gauge connection”) and

Dµφ :“ pBµ ´ iAµqφ covariant derivative of φ
Fµν :“ BµAν ´ BνAµ �eld strength of Aµ ,

(5.40)

is invariant under G “ Up1q gauge transformations

φpxq ÞÑ eiαpxqφpxq

Aµpxq ÞÑ Aµpxq ` Bµαpxq .
(5.41)

REMARKS:

1. To linear order in the gauge �eld Aµ

L “ L0 ` j
µAµ ` . . . (5.42)

The scalar �eld is coupled (via covariant derivatives) to the gauge �eldAµ, and not to the
�eld strength Fµν . To leading order, the gauge �eldAµ couples directly to the conserved
current jµ of the theory withUp1q global symmetry, which is built out of the scalar �eld.
This type of coupling is called the minimal coupling.

A common alternative normalization to the one we use is obtained by rescaling the
gauge �eld by one power of the gauge coupling: Aµ Ñ gAµ. In that normalization the
Lagrangian density is

L “ ´
`

pB
µ
` igAµqφ̄

˘

pBµ ´ igAµqφ´ Up|φ|
2
q ´

1

4
FµνF

µν

“ L0 ` gj
µAµ ` . . .

where the ellipses denote terms quadratic in the gauge �eld. This alternative normal-
ization makes it clear that the gauge coupling g controls the strength of the coupling
between the conserved current jµ of the theory with Up1q global symmetry and the
gauge �eld Aµ. In the following we will typically stick to the convention in which the
gauge coupling g appears in front of the kinetic term for the gauge �eld, rather than
inside gauge covariant derivatives.
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2. The group of gauge transformations

G “ Up1q :“

#

g : R1,3 Ñ G “ Up1q

xµ ÞÑ gpxq “ eiαpxq

+

(5.43)

is in�nite-dimensional, since it associates independent transformations gpxq for the
�elds at di�erent points xµ, and there are in�nitely many points in space-time. We use
calligraphic letters to distinguish the gauge group from the associated �nite-dimensional
(for G “ Up1q, one-dimensional) Lie group. Later on, once we have familiarized our-
selves with this distinction, we will typically drop this notation and simply use G for
the gauge group, with a common abuse of notation.

3. A “gauge symmetry” relates physically equivalent con�gurations, which are to be
identi�ed. The term “ gauge symmetry” is therefore a misnomer: it isnot a symmetry,
but rather a redundancy in our description of the theory.

The identi�cation of �eld con�gurations which di�er by a gauge transformation11 leads
to non-trivial topological properties of gauge �elds, which in turn ensure the existence
of topological solitons and instantons, non-trivial gauge �eld con�gurations which are
stable for topological reasons. We will study these con�gurations in later chapters.

From now on we omit writing the dependence on the space-time coordinate x. It is
understood that all �elds and all gauge transformation parameters depend on x.

4. Under a Up1q gauge transformation (5.41),

Dµφ ÞÑ eiαDµφ ,

Fµν ÞÑ Fµν
(5.44)

We say that the covariant derivativeDµφ of φ is gauge covariant, because it transforms
in a representation of G for all x (the same representation of φ, namely the charge 1
representation here), and that the �eld strength Fµν is gauge invariant, because it does
not change under a gauge transformation (in fancy language, it transforms in the trivial,
or “singlet”, representation).

5. It is useful to think of the covariant derivativeDµ “ Bµ´iAµ as a di�erential operator,
which acts on everything to its right. The partial derivative Bµ acts by di�erentiating all
that appears to its right, while the gauge �eld Aµ, like all functions of x, acts by multi-
plying all that appears to its right. Requiring that under a Up1q gauge transformation

Dµ ” Bµ ´ iAµ ÞÑ D1µ ” Bµ ´ iA
1
µ “ eiαDµe

´iα , (5.45)
11See section 2.6 of [Manton and Sutcli�e, 2004] if you want to read more about this.
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so that
Dµφ ÞÑ eiαDµe

´iαeiαφ “ eiαDµφ (5.46)
as desired, implies the gauge transformation of the gauge �eld

Aµ ÞÑ A1µ “ Aµ ` Bµα (5.47)

and vice versa.

Proof. We have already proven the implication (5.45)ð (5.47) in (5.38). For the opposite
implication (5.45) ñ (5.47), we expand (5.45) and act with Bµ on everything to its right.
There are two options: either Bµ acts on e´iα, which produces the function pBµe´iαq “
´i e´iαpBµαq, or Bµ goes through e´iα, which produces the di�erential operator e´iαBµ.12

Then we �nd

Dµ ” Bµ ´ iAµ ÞÑ D1µ ” Bµ ´ iA
1
µ “ eiαpBµ ´ iAµqe

´iα

“ eiαe´iαp´iBµαq ` e
iαe´iαBµ ´ ie

iαe´iαAµ

“ Bµ ´ ipAµ ` Bµαq ,

which comparing the initial expression and the �nal result implies

Aµ ÞÑ A1µ “ Aµ ` Bµα .

Furthermore, de�ning the commutator rX, Y s :“ XY ´ Y X , we have

rDµ, Dνs “ ´iFµν , (5.48)

so the �eld strength controls the non-commutativity of covariant derivatives.

Proof. :

Exercise 17. Show that
rDµ, Dνs “ ´iFµν , (5.49)

6. The gauge �eld Aµ is only de�ned locally, namely in a patch, which we take to be
such that the Poincaré lemma applies. As we saw in the gauge theory formulation of
electromagnetism, the Bianchi identity εµνρσBνFρσ “ 0 implies Fµν “ BµAν´BνAµ only
if the Poincaré lemma applies.

12If you are confused by these statements and manipulations, act with the di�erential operator on any smooth
test function fpxq. If X and Y are two di�erential operators, then X “ Y i� Xf “ Y f for all smooth test
functions. Similarly X ÞÑ Y i� Xf ÞÑ Y f for all smooth test functions.
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What this means is the following. Consider two patches U p1q and U p2q with a non-trivial
overlap U p1qXU p2q ‰ H. Then the gauge �eldsAp1qµ andAp2qµ de�ned in the two patches
are related by a gauge transformation

Ap1qµ “ Ap2qµ ` Bµα
p12q

on the overlap U p1q X U p2q, so that the �eld strengths agree: F p1qµν “ F
p2q
µν .13 Mathe-

matically, the gauge transformation parameter αp12q that relates the gauge �elds in the
two patches is called a “transition function”. Charged �elds are also de�ned locally,
in patches. For consistency, they also transform by a gauge transformation when we
switch to another patch.

This local de�nition ofAµ is responsible for most of the topological and geometric prop-
erties of gauge theories. To give you an appetizer, consider a space-time of the form
R ˆ pR3zpq, where the �rst factor of R is parametrized by time, and the second factor
is space, which is �at Euclidean space R3 except that we excise the point p (we could
equally excise a 3-ball).It turns out that this space-time is not contractible to a point, but
only to a 2-sphere surrounding the point p. (Perhaps you can �gure it in your mind. If
not, just trust me for now.) Last term, when you learned about stereographic projections,
you saw that a 2-sphere can be covered by two patches, see �gure 5.2. For instance, we
can take patch U p1q to cover everything north of the southern tropic, and patch U p2q to
cover everything south of the northern tropic. The two patches overlap in the region be-
tween the two tropics near the equator, so we need to specify how the gauge �eld in the
northern patch and the gauge �eld in the southern patch are related in this region where
both are de�ned. As we will see, this freedom allows us to de�ne a magnetic monopole,
namely a pointlike magnetic charge, sitting at point p. This is very surprising, because
Maxwell’s equations allow electric charge densities but not magnetic charge densities
in the right-hand sides. As we will see later, we can by-pass this limitation by exploiting
the topology of the gauge �eld.

7. The appearance of the covariant derivative can also be understood by studying the
Lorentz force and writing down the associated Lagrangian. Crucially, for such models
there is a di�erence between the kinematic momentum (the conserved charge following
from translation invariance) and the canonical momentum associated with the coordi-
nates in the Hamiltonian formalism. See [Sakurai, 1994] for a detailed explanation in
the context of quantum mechanics.

Exercise 18. So far I have assumed for simplicity that the complex scalar �eld φ has charge 1.
Go through this chapter and work out how all formulae change if φ has charge q P Z rather than
charge 1.

13Naively you might want to impose the simpler identi�cationAp1qµ “ A
p2q
µ , but taking into account that gauge

�elds are only de�ned modulo gauge transformations, one is led to the more general (and mathematically correct)
identi�cation in the main text. It took physicists several decades to appreciate this point.
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Figure 5.2: Two patches which cover a 2-sphere S2, and their overlap.

5.4 Gauge redundancy and gauge �xing
A good reference for this topic is section 6 of David Tong’s QFT lecture notes [Tong, 2006].

Let us start from the equations of motion (EoM) of the theory of scalar electrodynamics,
which is described by the action (5.39). We recall here the Lagrangian density

L “ ´|Dµφ|
2
´ V pφ̄, φq ´

1

4g2
F 2
µν ,

where F 2
µν ” FµνF

µν etc, and the scalar potential takes the form V pφ̄, φq “ Up|φ|2q to ensure
gauge invariance.

Exercise 19. Show that the Euler-Lagrange equations of the above Lagrangian are

1q DµD
µφ “

BV

Bφ̄
” U 1p|φ|2qφ

2q BνF
µν
“ g2Jµ

(5.50)

where
Jµ “ ´ipφ̄Dµφ´ φDµφ̄q “ jµ ´ 2Aµ|φ|

2 (5.51)

is a conserved current. The EoM for φ̄ is the complex conjugate of the EoM for φ, so I will not write
it explicitly. Note that upon gauging the global U(1) symmetry, the conserved current jµ (5.33) of
the scalar �eld theory with global Up1q symmetry gets a correction term, due to the presence of
the gauge �eld Aµ in the covariant derivatives.

Let us now consider the transformation properties of the EoM (5.2) under a Up1q gauge trans-
formation (5.41). The equations transform as

1q ÞÑ eiα1q pgauge covariantq
2q ÞÑ 2q pgauge invariantq

(5.52)
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Therefore, if a �eld con�guration pφ,Aµq solves the EoM (5.50), then any gauge transformed
�eld con�guration pφ1 “ eiαφ,A1µ “ Aµ ` Bµαq also solves the EoM (5.50): the EoM only
determine pφ,Aµq up to a gauge transformation.

Given some initial data pφp0q, Ap0qµ q specifying the �eld con�guration at an initial time t0, we
cannot uniquely determine the �eld con�guration pφ,Aµq at a later time t ą t0. Indeed pφ1 “
eiαφ,A1µ “ Aµ ` Bµαq is as good a solution of the EoM as pφ,Aµq, and obeys the same initial
condition provided that the gauge parameter α obeys the conditions αpt0, ~xq “ 0 (mod 2π)
and Bµαpt0, ~xq “ 0 at the initial time t0.

We appear to be in trouble: we would like the EoM to de�ne a well-posed initial value prob-
lem and determine uniquely physically observable �elds at later times. This is not the case if
we regard �eld con�gurations which di�er by a gauge transformation as physically inequiv-
alent. If instead we declare �eld con�gurations which di�er by a gauge transformation to be
physically equivalent, then the issue disappears and the initial value problem is well-posed.
We will therefore identify �eld con�gurations related by a gauge transformation,

pφ,Aµq „ pφ1 “ eiαφ,A1µ “ Aµ ` Bµαq . (5.53)

Physically observable quantities must then be gauge invariant, such as for example the
�eld strength Fµν , the magnitude of the scalar �eld |φ|2, or the conserved current Jµ. This
explains remark 3 in the previous section.

The picture to keep in mind for gauge theories is that �eld space F “ tφpxq, Aµpxqu is foli-
ated14 by gauge orbits traced by the action of the gauge group

G ¨ pφpxq, Aµpxqq “ tpeiαpxqφpxq, Aµpxq ` Bµαpxq | αpxq „ αpxq ` 2πu .

In down to earth terms, a gauge orbit simply consists of all the �eld con�gurations which are
related by a gauge transformation.

Then the identi�cation (5.53) of �eld con�gurations related by gauge transformations states
the correspondence15

Physical con�guration ÐÑ Gauge orbit .
14Foliation is a mathematical term, from ‘folia’, Latin for ‘leaf’. You can look up the technical de�nition if you

are interested. For our purposes, you can take it to mean that �eld space is a union of disjoint orbits of the gauge
group.

15If you are formally minded, you would say that the physical con�guration space C is the quotient of the �eld
space F by the gauge group G,

C “ F{G ,

namely the set of equivalence classes of �eld con�gurations under the equivalence relation (5.53).
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Figure 5.3: The space of all �eld con�gurations decomposes into the disjoint union of gauge
orbits, each represents a single physical con�guration. A complete gauge �xing selects a single
representative for each orbit.

Rather than working with the redundant description of �eld space F subject to the gauge
symmetry G, it is often useful to “�x a gauge” (or pick a gauge, that is, picking a single
representative for each gauge orbit). Any representative does the job – after all any two
representatives of a given gauge orbit are physically equivalent – but we need to ensure that
the gauge �xing cuts each orbit once and only once, as in �gure 5.3. If that is not the case,
and there is some leftover gauge symmetry that is not �xed, we refer to the gauge �xing as
partial or incomplete, and further conditions must be speci�ed in order to have a complete
gauge �xing. The topic of gauge �xing is rather technical, and plays an important role in the
quantization of gauge theories. Here we will content ourselves with giving a few standard
examples of (partial) gauge �xing, which may be useful later on.

EXAMPLES:

1. Lorenz gauge:
This gauge is de�ned by imposing the constraint

BµA
µ
“ 0 (5.54)

on the gauge �eld 4-vector Aµ. This can always be achieved. Indeed, if we are given a
representative Aµ which does not obey the Lorenz gauge condition (5.54), then we can
�nd another representative A1µ “ Aµ ` Bµα in the same gauge orbit which obeys the
Lorenz gauge constraint

0 “ BµA
1µ
“ BµA

µ
` BµB

µα (5.55)
by picking α to be a solution of the inhomogeneous equation

BµB
µα “ ´BµA

µ , (5.56)

which exists.16

16Here the right-hand side ´BµAµ is given and acts as a source in a relativistic Poisson equation for α. Solu-
tions can be found by the method of Green’s functions.



TOPIC 5. ABELIAN GAUGE THEORIES 46

Let us discuss pros and cons of the Lorenz gauge. The main advantage of the Lorenz
gauge is that the constraint (5.54) is Lorentz invariant.17 The main disadvantage of the
Lorenz gauge is that it only �xes the gauge partially. Indeed, if we are in Lorenz gauge
we are free to perform gauge transformations with parameters α such that BµBµα “ 0
and we will remain in the Lorenz gauge. (This corresponds to adding a solution of the
homogeneous equation in (5.56).)

2. Coulomb gauge (or radiation gauge):
This gauge is de�ned by imposing the constraint

∇ ¨ ~A “ 0 (5.57)

on the vector potential ~A, which is the spatial part of the 4-vector Aµ. This can always
be achieved, by a similar reasoning to above.

Compared to the Lorenz gauge, the Coulomb gauge has the clear drawback of not being
Lorentz covariant. So this gauge �xing spoils the manifest relativistic symmetry of the
formalism, which is not ideal. (The physics of the system remains Lorentz invariant,
because gauge transformations are unphysical, they are just a redundancy in our de-
scription.) Another drawback, in common with the Lorenz gauge, is that the Coulomb
gauge constraint (5.57) only �xes the gauge partially. The argument is the same as for
the Lorenz gauge, except that we are using spatial indices only instead of full space-time
indices.

On the other hand, a pro of the Coulomb gauge is that the temporal componentA0 of the
gauge potential (aka the ‘electric scalar potential’ in electromagnetism) is determined by
the charge density ρ “ J0 as in electrostatics:

A0pt, ~xq9

ż

d3x1
ρpt, ~x1q

|~x´ ~x1|
. (5.58)

So if the charge density ρ “ 0, for instance for ‘pure electromagnetism’, in which there
is no charged matter φ, we have

A0 “ 0

in Coulomb gauge. On the other hand, if there are charged �elds and hence ρ ‰ 0, then
A0 ‰ 0.

Exercise 20. Determine the proportionality factor in (5.58). [Hint: use ∇2 1
4π|~x|

“

δp3qp~xq.]

17The Lorenz gauge is due to the Danish physicist Ludvig Lorenz, not to be confused with the more famous
Dutch physicist Hendrik Lorentz, who is responsible for the Lorentz transformations which leave the laws of
special relativity invariant, as well as for introducing the Lorentz force which acts on relativistic particles moving
in a magnetic �eld. Click on the names of the physicists to see who is who.

https://en.wikipedia.org/wiki/Ludvig_Lorenz
https://en.wikipedia.org/wiki/Hendrik_Lorentz
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5.5 Up1qWilson line and Wilson loop
Let us conclude this chapter with an appetizer of geometric aspects that we will hopefully
return to later. A good reference for this section is section 15.1 of the book by Peskin and
Schroeder [Peskin and Schroeder, 1995].

We start by recalling that if φ is a charged scalar (of charge 1 for de�niteness), then its partial
derivative is not gauge covariant, that is, it does not transform under a well-de�ned repre-
sentation of the Up1q gauge group. You have seen this explicitly in the �rst term, when you
worked out how Bµφ transforms under a Up1q gauge transformation (5.41). One can �x this
problem by introducing the gauge covariant derivative Dµφ “ pBµ ´ iAµqφ, which transform
covariantly as a �eld of charge 1 under the gauge transformation (5.41). Hopefully this is all
clear by now at a technical level. But why is this, conceptually?

To analyze all the partial derivatives in one fell swoop, let us consider the total di�erential
of φpxq,

dφpxq “ lim
εÑ0

φpx` εdxq ´ φpxq

ε
“ Bµφpxqdx

µ , (5.59)

where I have introduced an in�nitesimal book-keeping parameter ε in front of the line incre-
ment dxµ, so that I could write the total di�erential as a limit. The �nal expression, which
writes the total di�erential of φpxq as the 4-vector Bµφpxq contracted with the di�erential in-
crement dxµ, follows from Taylor expanding the numerator inside the limit and by taking the
limit (see Calculus and AMV).

The reason why the total di�erential (5.59) of φ (and hence its partial derivatives) does not
transform covariantly under gauge transformations is that the two terms that we are sub-
tracting inside the limit have di�erent gauge transformation properties

φpx` εdxq ÞÑ eiαpx`εdxqφpx` εdxq

φpxq ÞÑ eiαpxqφpxq ,

because αpx` εdxq ‰ αpxq.

This problem can be �xed by introducing the ‘Wilson line’, or the mathematical notion of
‘parallel transport’.

Let C be an open curve (or a path) from point x1 to point x2, see �gure 5.4. Mathematically,
this is a smooth map from an interval to space-time R1,3

C : I “ rτ1, τ2s ÞÑ R1,3

τ ÞÑ xµpτq

with xpτ1q “ x1 and xpτ2q “ x2 at the endpoints.
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Figure 5.4: An open curve from point x1 to point x2.

Figure 5.5: A closed curve (or ‘loop) with base-point x1 “ x2.

The Wilson line (of charge 1) along the path C is de�ned to be

WCpx2, x1q :“ exp

„

i

ż x2

x1, C

Aµpxqdx
µ



” exp

„

i

ż τ2

τ1

Aµpxpτqq 9x
µ
pτqdτ



, (5.60)

where the �rst integral is the line integral from x1 to x2 along C , and the second integral is its
expression in the parametrization xµpτq. If C is a closed path (or a ‘loop’), namely if x1 “ x2

as in �gure 5.5, then

WC :“ exp

»

–i

¿

C

Aµpxqdx
µ

fi

fl (5.61)

is called the Wilson loop (of charge 1) along the curve C . By standard results from multi-
variate calculus, the line integral

ű

C
Aµpxqdx

µ only depends on the curve C and not on the
base-point x1 “ x2.
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Under a Up1q gauge transformation (5.41), we claim that the Wilson line (5.60) transforms as18

WCpx2, x1q ÞÑ eiαpx2qWCpx2, x1qe
´iαpx1q . (5.62)

Proof.

WCpx2, x1q “ ei
şx2
x1, C

Aµdxµ ÞÑ ei
şx2
x1, C

pAµ`Bµαqdxµ

“ei
şx2
x1, C

Aµdxµei
şx2
x1, C

Bµαdxµ

“WCpx2, x1qe
ipαpx2q´αpx1qq

“eiαpx2qWCpx2, x1qe
´iαpx1q .

To go from the second to the third line, we have used the fact that Bµαdxµ “ dαpxq is an exact
di�erential, so its integral along a curveC only receives contribution from the boundary terms.

A corollary of the gauge transformation (5.62) is that the U(1) Wilson loop (5.61) is gauge in-
variant. To see that, simply set x1 “ x2, or use the fact that the integral of an exact di�erential
along a closed curve vanishes.

REMARKS:

1. In QM, the Wilson line WCpx2, x1q is the phase picked up by the wave-function of a
charged point particle slowly (more precisely, ‘adiabatically’) moving from x1 to x2 along
a path C in the presence of a gauge �eld.

2. The Wilson loop (5.61) is gauge invariant and therefore physically observable. It is the
phase picked up by the wave-function of a charged point particle slowly moving along a
loop C . This phase controls the Aharonov-Bohm e�ect in QM, a subtle and unexpected
form of quantum interference which arises because the wave-function couples directly
to the gauge potential Aµ rather than to the physical electric and magnetic �elds ~E, ~B.

If the loop C is the boundary of a surface Σ, then by a higher-dimensional version of Stokes’
18For the gauge group G “ Up1q, which we are considering here, the Wilson line and the gauge transforma-

tions eiαpxiq commute, so we could have written the gauge transformation of the Wilson line simply as

WCpx2, x1q ÞÑ eipαpx2q´αpx1qqWCpx2, x1q .

I wrote the result like (5.62) for comparison to the case of a non-abelian gauge group, which we will study later.
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theorem (see Di�erential Geometry III) one has
¿

C

Aµpxqdx
µ
“

1

2

ż

Σ

Fµνpxqdx
µ
^ dxν

”
1

2

ż

x´1pΣq

Fµνpxpσqq

ˆ

Bxµpσq

Bσ1

Bxνpσq

Bσ2
´
Bxνpσq

Bσ1

Bxµpσq

Bσ2

˙

dσ1dσ2

(5.63)

where xµpσq ” xµpσ1, σ2q is a parametrization of the surface Σ.19 The previous formula is a
higher-dimensional analogue of Stokes’ theorem

¿

C

~A ¨ d~l “

ż

Σ

p∇ˆ ~Aq ¨ n̂ d2σ “

ż

Σ

~B ¨ n̂ d2σ , (5.64)

which is used in electromagnetism to relate the circulation of the vector potential ~A along C
to the magnetic �ux through a surface with boundary C . The formula (5.63) tells us that the
�eld strength Fµν encodes the value of in�nitesimal Wilson loops.

If the loop C is not contractible to a point, it may happen that Aµ ‰ 0 and therefore
¿

C

Aµdx
µ
‰ 0

even if the �eld strength Fµν “ 0 vanishes everywhere in the region probed by a quantum-
mechanical particle (or by a charged scalar �eld). Examples of spaces which allow these phe-
nomenon are R2zp, for loops which encircle the removed point p, or the torus T n, for loops
that wind non-trivially around a circle direction in the torus.

Time permitting, we will return to the Aharonov-Bohm e�ect later. For an accessible summary,
see section 10.5.3 of [Nakahara, 2003], up to equation (10.100) or the excellent book [Sakurai,
1994].

5.6 The Dirac monopole (à la Wu and Yang)
For this topic, see sections 1.9, 9.4.1 and 10.5.2 of [Nakahara, 2003].

In this section we will investigate the question: can we have a magnetic �eld local-
ized near a point in space R3? The resulting putative con�guration is called a magnetic
monopole, to contrast it with the magnetic dipoles which are physically realized and observed
in real world magnets and have two poles.

19F “ 1
2Fµνdx

µ^dxν is called a di�erential 2-form. It can be shown that the surface integral of a di�erential 2-
form is independent under reparametrizations of the surface that preserve its orientation, much like line integrals
of a di�erential 1-form A “ Aµdx

µ.
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We can already ask the question of the mathematical existence of magnetic monopoles in
pure electromagnetism. The immediate answer that comes to mind is that no, magnetic
monopoles are forbidden by Maxwell’s equations

BνF
µν
“ Jµ

BνF̃
µν
“ 0

(5.65)

where F̃ µν :“ 1
2
εµνρσFρσ is the dual �eld strength which is obtained from the original �eld

strength by the replacement pE,Bq Ñ pB,´Eq. The vacuum Maxwell equations which
are obtained by setting to zero the sources for the electric and magnetic �elds in the right-
hand side, are invariant under the electric-magnetic duality that sends pE,Bq ÞÑ pB,´Eq or
equivalently Fµν ÞÑ F̃µν . But the sources break this symmetry: in the �rst equation of (5.65)
we have the electric current 4-vector Jµ, but there is no analogous magnetic current 4-vector
J̃µ in the second equation. It is precisely the absence of a magnetic current 4-vector in the
Maxwell equations that allows us to write the �eld strength in terms of a gauge �eld. For static
�eld con�gurations, we have

B “ ∇ˆA ùñ ∇ ¨B “ 0 , (5.66)

with no magnetic charge density ρ̃ in the right-hand side to source the magnetic �eldB.

The previous argument seems to suggest that if we accept Maxwell’s equations as the cor-
rect mathematical description of the phenomena of electromagnetism, then pointlike electric
charges are allowed, but pointlike magnetic charges are not. But Dirac [Dirac, 1931] found a
loophole in this reasoning and was able to describe a magnetic monopole, which is dubbed
the Dirac monopole since. Or almost... Dirac’s argument involves a so-called Dirac string,
which has a localized magnetic �ux inside it, much like an in�nitesimally thin solenoid. The
Dirac string ends at a point, from which a radial magnetic �eld emanates, analogously to
the electric �eld that emanates from an electrically charged point particle. That’s the Dirac
monopole. The location of the Dirac string turns out to be be unphysical, as it can be moved
around by performing a gauge transformation, but the endpoint of the string, which is the
center of the monopole, is physical. Then by a quantum-mechanical consideration (requiring
that the wave-function of a charged particle is single-valued when the particle loops around
the Dirac string, which is equivalent to requiring that the Wilson line around the Dirac string
is equal to 1) it follows that the magnetic charge is quantized. Note that in Dirac’s point of
view there is no pointlike magnetic charge really, just the endpoint of a movable Dirac string
coming in from in�nity. The magnetic �ux through a 2-sphere that surrounds the endpoint of
the Dirac string is zero, because the magnetic �ux that enters the sphere from the Dirac string
is equal and opposite to the �ux that exits the sphere having emanated from the endpoint of
the Dirac string (or the Dirac monopole).

The explanation of the Dirac monopole with the Dirac string can be confusing. Luckily, one
can improve on Dirac’s intuition, reinterpreting it in more geometric terms, to actually de-
scribe a genuine pointlike magnetic charge. This was achieved by Wu and Yang [Wu and
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Figure 5.6: Magnetic �ux produced by a magnetic monopole at the origin.

Yang, 1975, Wu and Yang, 1976b, Wu and Yang, 1976a], and it’s their modern description of
the Dirac monopole that we will present here. The key point that will allow us to introduce a
magnetic monopole is to remove from space R3 a point, the position of the monopole, which
we will set to be the originO in what follows. Then, while ∇ ¨B “ 0 everywhere in R3zO, we
can still have a non-vanishing magnetic �ux through any 2-sphere surrounding the location
of the monopole, which is measured by the magnetic charge

m “
1

2π

ż

S2

B ¨ d2σ , (5.67)

where d2σ is the in�nitesimal area element of the sphere, see �gure 5.6.

REMARK:
We could equivalently work on R3 and use Gauss’ theorem to rewrite ∇ ¨ B “ 0 on R3zO
together with (5.67) as

∇ ¨B “ 2πm δp3qpxq in R3 , (5.68)

but it is preferable to work in R3zO, which allows us to use gauge �elds.

Using polar coordinates in R3, we have the identities

∇1

r
“ ´

x

r3
, ∆

1

r
“ ´4πδp3qpxq , (5.69)

where r “ |x| and ∆ ” ∇2 is the Laplacian. Then we can solve (5.68) by

B “
m

2

x

r3
“
m

2

1

r2
x̂ , (5.70)

similarly to how we describe pointlike electric charges.

What about the vector potential or gauge �eld A? We cannot write a smooth A which is
de�ned everywhere in R3, such that B :“ ∇ ˆA obeys (5.68), because then we would have
∇ ¨ p∇ˆAq “ 0. Next, we can try to write a smoothAwhich is de�ned everywhere in R3zO,
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Figure 5.7: Spherical coordinates.

such that B :“ ∇ ˆA obeys ∇ ¨B “ 0. But this fails too. Indeed, consider for instance the
vector potentialA` given by20

A`x “ ´
m

2

y

rpr ` zq
, A`y “ `

m

2

x

rpr ` zq
, A`z “ 0 . (5.71)

The corresponding magnetic �eld is

Exercise 21.
∇ˆA` “ m

2

x

r3
(5.72)

as we hoped, but unfortunately this only holds where (5.71) is de�ned, namely on R3 minus
the origin and the negative z axis. We can try harder, but we will only be able to move the
semi-in�nite open path where the gauge �eld is ill-de�ned (di�erent choices are related by
singular gauge transformations).

The reason why it is not possible to �nd a globally de�ned gauge �eld on R3zO – Rą0 ˆ S2

is that in this space there is a two-sphere surrounding the origin, and the two-sphere is a
di�erentiable manifold which requires at least two charts (or patches) with the topology of an
open disc. Working in polar coordinates pr, θ, ϕq, see �gure 5.7, we can take the two patches
on S2 to be21

U` “ tpθ, ϕq | 0 ď θ ă
π

2
` εu

U´ “ tpθ, ϕq |
π

2
´ ε ă θ ď πu

(5.73)

20The subscript ` is simply a label, the reason for which will become clear later.
21These spherical coordinates are ill-de�ned near the poles, but this won’t be important for what follows. One

can �nd a set of well-de�ned coordinates in the two patches, for example the stereographic coordinates that you
encountered in the �rst term. What matters is that there is no single set of coordinates which cover the whole
S2.
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for a constant ε P p0, πq. The two patches overlap in a region

U` X U´ “ tpθ, ϕq |
π

2
´ ε ă θ ă

π

2
` εu (5.74)

near the equator, which has the topology of an open interval (parametrized by θ) times as circle
(parametrized byϕ). Then we can viewA`, de�ned in (5.71) in terms of Cartesian coordinates,
as a gauge �eld de�ned in the northern patch U`. We now need to de�ne a gauge �eld in the
southern patch U´, and to �gure out how A` and A´ are related on the overlap U` X U´.
The key idea is that on the overlap U` X U´ the two gauge �elds are allowed to di�er by a
gauge transformation, since �eld con�gurations which are related by a gauge transformation
are physically equivalent. On the southern patch U´ we can take the gauge �eld to be A´,
de�ned by

A´x “ `
m

2

y

rpr ´ zq
, A´y “ ´

m

2

x

rpr ´ zq
, A´z “ 0 , (5.75)

which also has magnetic �eld
∇ˆA´ “ m

2

x

r3
(5.76)

where it is de�ned.

Since the gauge �elds A` and A´ lead to the same gauge invariant magnetic �eld B` :“
∇ ˆA` “ ∇ ˆA´ “: B´ in the overlap region U` X U´ where they are both de�ned, we
might expect them to be gauge equivalent. To see this explicitly, it is easier to switch to polar
coordinates. Using di�erential form notation we �nd22

Exercise 22.

A˘ “ A˘x dx` A
˘
y dy ` A

˘
z dz “ A˘r dr ` A

˘
θ dθ ` A

˘
ϕdϕ

“
m

2
p˘1´ cos θq dϕ .

(5.77)

Then we �nd that on the overlap of the two patches U` X U´ the two gauge �elds di�er by

A` ´ A´ “ m dϕ “ dpmϕq ” dα`´ ” ´ig
´1
`´dg`´ (5.78)

where the transition function, namely the parameter of the Up1q gauge transformation that
relates the gauge �elds in the two patches, is

g`´pϕq “ eiα`´pϕq “ eimϕ P Up1q . (5.79)
22The vanishing ofA` at the north pole and ofA´ at the south pole is what ensures that they are well de�ned

there, even if the polar coordinates are ill de�ned. This can be checked explicitly by switching to stereographic
coordinates or to Cartesian coordinates.
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Since ϕ „ ϕ` 2π, g`´pϕq is single-valued (or periodic) if we do one lap around the ϕ circle
(e.g. , the equator) if and only if the magnetic chargem is an integer:

g`´pϕ` 2πq “ g`´pϕq ðñ m P Z . (5.80)

We learn that the quantization of the magnetic charge follows from carefully considering
gauge �elds de�ned locally on the two patches of S2, and gluing them consistently by Up1q
gauge transformations in the overlap of the two patches. The Up1q-valued transition function
g`´ on the overlap tells us how to relate gauge transformation parameters g˘ on U` and U´
along the overlap: g` “ g`´g´, or equivalently α` “ α´ ` α`´. Mathematically, the Up1q
gauge transformation parameters de�ne sections of a so called principal Up1q bundle over S2;
the gauge �eldsA˘ are (local) connections for this principalUp1q bundles. If you want to learn
about the de�nition of these bundles, their sections and connections, and how they provide a
mathematical de�nition of gauge groups and gauge �elds, see the bonus chapter 9.

REMARK:
In this formulation we can calculate the magnetic �ux through the 2-sphere surrounding the
origin (the position of the magnetic monopole) as follows. Call UN and US the northern and
southern hemisphere respectively, which are the limits as ε Ñ 0 of U˘, so that the overlap
reduces to the equator S1

eq. Then the contributions of the two hemispheres to the magnetic
�ux add up:

1

2π
ΦS2pBq “

1

2π

ż

S2

B ¨ d2σ “
1

2π

ż

UN

B`
¨ d2σ `

1

2π

ż

US

B´
¨ d2σ

“
1

2π

ż

UN

p∇ˆA`q ¨ d2σ `
1

2π

ż

US

p∇ˆA´q ¨ d2σ

“
1

2π

¿

S1
eq

A` ¨ dl ´
1

2π

¿

S1
eq

A´ ¨ dl

“
1

2π

¿

S1
eq

pA` ´A´q ¨ dl “
1

2π

¿

S1
eq

pA` ´ A´q

“
1

2π

¿

S1
eq

dα`´ “
m

2π

ż 2π

0

dϕ “ m .

(5.81)

To go from the second to the third line we used Stokes’ theorem. The relative minus sign
between the two terms is there because the two hemisphere have opposite orientations, so
that BUN “ S1

eq but BUS “ ´S1
eq (the equatorial circle with the opposite orientation), see

�gure (5.8). This reproduces the desired result (5.67).

This is very nice! We can describe a static solution of Maxwell’s equations which is a
pointlike magnetic charge (magnetic monopole) by excising the location of the monopole
from space and exploiting the geometry and topology of gauge �elds over R3zO (or equiv-
alently of S2). But unfortunately it is not hard to see that a Dirac monopole has in�nite
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Figure 5.8: Oriented hemispheres and their oriented boundaries.

energy. This problem can be �xed if we embed theUp1q gauge group into a bigger nonabelian
gauge group, such as SUp2q.

Exercise 23. The energy stored in electromagnetic �elds is

1
2

ż

d3xpE2
`B2

q .

Show that the energy of the magnetic monopole solution (5.70) is in�nite. How about an electric
monopole?



Topic 6

Non-abelian gauge theories

In this chapter we will learn how to formulate gauge theories with a non-abelian (that is,
non-commutative) gauge group. Non-abelian gauge theories are namedYang-Mills theories,
after Chen-Ning Yang and Robert Mills, who developed the formalism in 1954 [Yang and Mills,
1954].

The formalism of Yang and Mills became prominent in the late 1960s, and has remained cen-
tral in modern physics ever since. Non-abelian gauge theories are the language of the Stan-
dardModel of Particle Physics, and have also established very fruitful interactions between
Physics and Maths, which have led to numerous developments in both subjects and quite a
few Nobel prizes and Fields medals.

We will focus on compact Lie groups. As common in the physics literature, we will choose to
write group elements g in terms of Lie algebra elements as

g “ exppiαataq (6.1)

for real numbers αa, i.e. we will write a basis of the Lie algebra as ita. In such a basis the
structure constants are related to the generators ta by

rta, tbs “ ifab
ctc pa, b, c “ 1, . . . , dim gq . (6.2)

As we have seen in Michaelmas term, we can always assume that rpgq is unitary for any
compact Lie group, the above normalization has the advantage that the ta are Hermitian, t:a “
ta.

For simplicity of notation, we will write the representation of the ta associated with a repre-
sentation r of the Lie group as tprqa .

57
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6.1 Non-abelian gauge theories: �elds
This section introduces the cast of characters which we will use in the next section to formulate
actions which are invariant under non-abelian gauge transformations. The cast of characters
will consist of:

• Charged �elds (scalars or spinors), collectively denoted as φ, transforming in a repre-
sentation r1 of the gauge group G;2

• Their covariant derivatives Dµφ;

• The gauge �eld Aµ, which is hidden inside the covariant derivative;

• The �eld strength Fµν of the gauge �eld,

and their gauge transformations.

References for this section are section 1.8.1 of [Argyres, 2001] and section 2.1 of [Tong, 2018].

We will be more general later, but let us start slowly and assume that the gauge group G is
a classical group (e.g. SUpNq), whose elements are matrices, and that the charged �eld φ
transforms in the fundamental representation fund (that is N for SUpNq). This means that
the gauge transformation of the charged �eld φ is

φ ÞÑ gφ “ eiα
ataφ (6.3)

where φ is a column vector (N -dimensional for G “ SUpNq, that is φ “ pφjqNj“1 P CN ), the
Lie algebra generators ta are matrices (N ˆ N hermitian traceless for G “ SUpNq), and the
group element g is also a matrix (N ˆN unitary and with unit determinant for G “ SUpNq),
which acts on φ by matrix multiplication. Recall that both the �eld φ “ φpxq and the group
element g “ gpxq, and therefore the gauge parameter α “ αpxq, depend on the space-time
point x.

Given the charged �eld φ, we de�ne its (gauge) covariant derivative

Dµφ :“ Bµφ´ iAµφ (6.4)

where the gauge �eld Aµ is now a matrix, which will turn out to be an element of the Lie
1If the representation r is irreducible we think of φ as a single �eld; if representation r is reducible, namely it

is the direct sum of multiple irreps of G, then we think of φ as describing multiple charged �elds.
2Note: from now on I will ignore the distinction between the Lie group G and the gauge group G, which

consists of coordinate-dependent elements of G. I will simply use G for the gauge group.
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algebra to ensure the consistency of its gauge transformation:

Aµ “ Aaµta . (6.5)

We require that under the non-abelian gauge transformation (6.3) the covariant derivative
transforms in the same way as φ:

Dµφ ÞÑ gDµφ . (6.6)
Viewing the covariant derivative3

Dµ :“ 1Bµ ´ iAµ (6.7)

as a matrix-valued di�erential operator, which in components reads

pDµq
j
k “ δjkBµ ´ ipAµq

j
k ,

we require the gauge transformation

Dµ ÞÑ gDµg
´1 . (6.8)

In terms of the gauge �eld, the gauge transformation of the covariant derivative is

Bµ ´ iAµ ÞÑ Bµ ´ iA
1
µ “ gpBµ ´ iAµqg

´1

“ gpBµg
´1
q ` gg´1

Bµ ´ igAµg
´1 .

(6.9)

Note that the gauge group element g and the gauge �eld Aµ are matrices now, so they do not
commute: their order matters!

Comparing the initial and �nal result, we obtain the following gauge transformation for the
gauge �eld Aµ:

Aµ ÞÑ A1µ “ gAµg
´1
` igpBµg

´1
q

“ gAµg
´1
´ ipBµgqg

´1 ,
(6.10)

where I have used parenthesis to make it clear that all objects are (matrix-valued) functions,4
not di�erential operators. I have used the identity

0 “ pBµ1q “ pBµpgg
´1
qq “ pBµgqg

´1
` gpBµg

´1
q (6.11)

3Here 1 is the identity matrix of the same size as Aµ, e.g. the N ˆN identity matrix for G “ SUpNq. It is
customary to omit the identity matrix from the notation and simply write, and I’ll follow that convention and
only restore 1 when it helps to understand what is going on. If you are formally minded and want to be very
precise, you might write the covariant derivative as

Dµ “ Bµ b 1´ iAaµpxq b ta ,

which acts on the tensor productC8pUqbV of the vector space C8pUq of smooth functions de�ned on a patch
U of space-time and of the �nite-dimensional vector space V associated to the fundamental representation. We
won’t need to worry about such level of abstraction and formality.

4The derivative of a (matrix-valued) function is a (matrix-valued) function.
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to go from the �rst line to the second line.

REMARKS:

1. The �rst term in the gauge transformation (6.10) of the gauge �eld Aµ is the adjoint
action of the Lie group G on a Lie algebra element. This clari�es why Aµ belongs to
the Lie algebra g “ LiepGq.

2. The second term in (6.10) is a correction term to the adjoint action, which involves a
derivative. This is also an element of the Lie algebra g, which can be seen as follows:
consider the path gpt0 ` tqg´1pt0q, which passes through the identity for t “ 0. The
associated Lie algebra element is

B

Bt
gpt0 ` tqg

´1
pt0q

ˇ

ˇ

ˇ

ˇ

t“0

“

ˆ

B

Bt0
gpt0 ` tq

˙

g´1
pt0q

ˇ

ˇ

ˇ

ˇ

t“0

“

ˆ

B

Bt0
gpt0q

˙

g´1
pt0q (6.12)

For any path gptq, we hence have that pBtgptqqg´1ptq P g for all t. For gpx we get paths
by setting t “ xµ for some µ while keeping the other components of x �xed. Hence

pBµgpxqq g
´1
pxq P g . (6.13)

Finally, in analogy with the G “ Up1q case, we de�ne the �eld strength

Fµν :“ irDµ, Dνs . (6.14)

As in the Up1q case, in the above de�nition we view both sides as di�erential operators, except
that now they are matrix-valued. As we will see shortly, despite appearance Fµν turns out to
be a multiplicative operator, which means that it is a (matrix-valued) function that simply
acts by (matrix) multiplication, no di�erentiations are involved.

By construction, under a gauge transformation (6.3) the �eld strength transforms as

Fµν ÞÑ gFµνg
´1 . (6.15)

Proof. We simply need to use the gauge transformation property (6.8) and basic properties of
the commutator:

Fµν “ irDµ, Dνs ÞÑ F 1µν “ irgDµg
´1, gDνg

´1
s

“ grDµ, Dνsg
´1
“ gFµνg

´1 .

Calculating the commutator in (6.14), we �nd the following expression for the �eld strength:

Fµν “ BµAν ´ BνAµ ´ irAµ, Aνs . (6.16)
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Proof. Restoring the identity matrix 1 for clarity (feel free to omit it if you are comfortable
without it),

´iFµν “ rDµ, Dνs “ r1Bµ ´ iAµ,1Bν ´ iAνs

“ r1Bµ,1Bνs ´ ir1Bµ, Aνs ´ irAµ,1Bνs ´ rAµ, Aνs

“ 0´ ipBµAνq ` ipBνAµq ´ rAµ, Aνs

“ ´i pBµAν ´ BνAµ ´ irAµ, Aνsq .

REMARK:
The �nite gauge transformations (6.8) of the covariant derivative Dµ and (6.15) of the �eld
strength Fµν is by the adjoint action of the Lie group on the Lie algebra. This means that Dµ

and Fµν transform in the adjoint representation adj of G.

Exercise 24. By considering in�nitesimal gauge transformations (|αa| ! 1)

g “ eiα
ata ” eiα “ 1` iα `Opα2

q (6.17)

and Taylor expanding �nite gauge transformations to leading order in α P g “ LiepGq, show
that the in�nitesimal gauge variations of the �elds are

δαφ “ iαφ

δαAµ “ irα,Aµs ` Bµα

δαFµν “ irα, Fµνs ,

(6.18)

where φ ÞÑ φ` δαφ`Opα
2q and so on.

REMARKS:

1. The �eld strength Fµν transforms in the adj rep of g under in�nitesimal gauge transfor-
mations.

2. The gauge �eld Aµ doesn’t quite transform in adj, as the �rst term in its variation sug-
gests, because of the additional derivative term, which we have already encountered
when we studied g “ up1q. People often say (and I might also say in the future) that Aµ
transforms in the adjoint representation adj, but that’s an abuse of terminology.

3. On the other hand the covariant derivativeDµ does transform in the adj representation.

Everything that we have seen so far generalizes to an arbitrary Lie group G and a charged
�eld φ transforming in an r-dimensional representation r. Now φ is a column vector with r
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components, and we simply need to replace the group element g in previous formulae by the
appropriate r ˆ r representation matrix

rpgq “ exp
“

iαatprqa
‰

. (6.19)

For instance
Dµφ “ Bµφ´ iAµφ :“

`

1rBµ ´ iA
a
µt
prq
a

˘

φ , (6.20)

and

Fµνφ “ irDµ, Dνs

“ pBµAν ´ BνAµ ´ irAµ, Aνsqφ

“ pBµA
a
ν ´ BνA

a
µ ` fbc

aAbµA
c
νqt

prq
a φ ,

(6.21)

where it is understood that if φ transforms in the representation r, then

Aµφ :“ Aaµt
prq
a φ

Fµνφ :“ F a
µνt

prq
a φ

(6.22)

etc. Similarly, I should warn you that it is customary to simply write gφ, to mean the abstract
action of g on φ in the appropriate representation, rather than the explicit multiplication rpgqφ
by the representation matrix rpgq. Of course one needs to specify the representation r before-
hand, or it wouldn’t be clear what gφ means.

In components,
pAµφq

i
“ Aaµpt

prq
a q

i
jφ

j
pi, j “ 1, . . . , rq (6.23)

etc.

Exercise 25. Show that, if G “ Up1q, all the equations written so far in this section reduce to
those introduced in chapter 5, both for the charge 1 representation, which is analogous to the
fundamental representation, and for the more general charge q representation.

Exercise 26. Consider a �eld φ in the adj representation, with components φa, where a “

1, . . . , dim g.

1. Show that
pAµφq

a
“ ifbc

aAbµφ
c (6.24)

and similarly for pFµνφqa.
[Hint: we worked out the matrices de�ning the adjoint representation in problem 29 of
Michaelmas term, but wrote group elements as eαa t̂a instead of the physics convention eiαata
used here]
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2. Let Φ :“ φata, and Aµ “ Aaµta, Fµν “ F a
µνta as usual. Show that

pAµφq
ata “ rAµ,Φs (6.25)

and similarly for Fµνφ. Show that therefore

DµΦ “ BµΦ´ irAµ,Φs

rDµ, DνsΦ “ ´irFµν ,Φs .
(6.26)

The lesson here is that the action of the adjoint representation on itself is by commutators
(or Lie brackets). We have already seen that the associated Lie algebra representation of
adjoint lets the Lie algebra act on itself via commutators in Michaelmas term.

6.2 Non-abelian gauge theories: action and EoM
Let us start by constructing a gauge invariant action for the (Lie algebra valued) non-
abelian gauge �eldAµ “ Aaµta. This is easy: since the �eld strength Fµν “ F a

µνta transforms
as

Fµν ÞÑ gFµνg
´1 (6.27)

under a gauge transformation, it follows immediately that trpFµνF µνq is gauge invariant and
can therefore be used as a term in the Lagrangian density.

Proof. Under a gauge transformation,

trpFµνF
µν
q “ trpgFµνg

´1gF µνg´1
q

“ trpg´1gFµνg
´1gF µν

q “ trpFµνF
µν
q .

where we have used the cyclic property of the trace.

We are now ready to de�ne the Yang-Mills action

SYM rAs “

ż

d4x LYM ,

LYM “ ´
1

2g2
YM

trpFµνF
µν
q ,
. (6.28)

Working in a normalization where

tr tatb “
1

2
δab, (6.29)

we �nd

LYM “ ´
1

4g2
YM

F a
µνF

a µν . (6.30)
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gYM is called the Yang-Mills coupling constant5 and controls the strength of the interac-
tions. (To see that, it helps to rescale Aµ Ñ gYMAµ.)

It turns out that there is a second gauge invariant term that one can add to the action. It is the
theta term

SθrAs “

ż

d4x Lθ ,

Lθ “
θ

16π2
trpFµνF̃

µν
q ,

(6.31)

where θ is called the theta angle, and

F̃ µν :“
1

2
εµνρσFρσ (6.32)

is the dual �eld strength. In (6.32), εµνρσ is the completely antisymmetric tensor in four
indices, with ε0123 “ 1.

To summarize, the most general gauge invariant action (with two derivatives) which contains
a kinetic term for the non-abelian gauge �eld Aµ, as well as interaction terms, is

SgaugerAs “ SYM rAs ` SθrAs ,

Lgauge “ LYM ` Lθ “ ´
1

2g2
YM

trpFµνF
µν
q `

θ

16π2
trpFµνF̃

µν
q .

(6.33)

Exercise 27. 1. Express the Lagrangian density Lgauge in

terms ofAaµ and the structure constants fab
c, and identify quadratic terms involving deriva-

tives of the gauge �eld, and cubic and quartic terms in Aµ, which represent interactions.

2. Show that the theta term (6.31) can be written as a surface (or ‘boundary’) term:

Sθ “
θ

8π2

ż

d4x BµK
µ ,

Kµ
“ εµνρσtrpAνBρAσ ´

2i

3
AνAρAσq .

(6.34)

3. Show that the equations of motion (EoM) obtained from the action Sgauge are

DµF
µν
” BµF

µν
´ irAµ, F

µν
s “ 0 . (6.35)

5It’s constant in the sense that it does not depend on space-time. In quantum �eld theory, gYM develops a
dependence on the energy scale at which we are probing the system, so ‘constant’ is a misnomer. With that in
mind, even though it’s not relevant for this course, I’ll typically call gYM simply the ‘Yang-Mills coupling’.
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4. Show, without using the EoM, that the Bianchi identity

DµF̃
µν
“ 0 . (6.36)

holds.

If in addition to the gauge �eldAµ there are also charged �elds φ transforming in a represen-
tation r (reducible or irreducible), then we can write a gauge invariant action for them using
covariant derivatives. For instance for G “ SUpNq, we have

Smatterrφ, φ
:, As “

ż

d4x Lmatter ,

Lmatter “ ´pDµφq
:Dµφ´ V pφ, φ:q ,

(6.37)

where we require the scalar potential V to be gauge invariant, that is, V ÞÑ V under non-
abelian gauge transformations. This generalizes to other classical groups G by using the ap-
propriate inner product in the kinetic term.

Exercise 28. Consider the action

Srφ, φ̄, As “ SYM rAs ` SθrAs ` Smatterrφ, φ̄, As .

1. Show that the EoM are

DµD
µφ “

BV

Bφ:

DνF
µν
“ g2

YMJ
µ

(6.38)

for a current Jµ “ Jaµta that you should �nd.

2. Show that under a gauge transformation the current Jµ transforms as

Jµ ÞÑ gJµg´1 , (6.39)

and that Jµ is covariantly conserved, namely

DµJ
µ
“ 0 . (6.40)

6.3 A brief look at the Standard Model*
The Standard Model of elementary particle physics, which has been surprisingly succesful in
decribing elementary particle interactions ever since its inception in the 60s [Weinberg, 1967]
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is a gauge theory with gauge group6

GSM “ Up1q ˆ SUp2q ˆ SUp3q

. The reason �eld theories have some relevance in particle physics is that quanta of �elds are
(quantum) particles. Roughly speaking, you can associate a type of particle with every �eld;
if you want to learn more you’ll have to take a course on quantum �eld theory, such as AQT.

As we have seen, a gauge theory implies the existence of gauge �elds which generalize elec-
tric and magnetic �elds, so we can think of them as mediating a force. You can think about
Up1q ˆ SUp2q as being the gauge groups of electromagnetism and the ’weak force’ which
is responsible e.g. for β decay. However, it turns out that the Up1q factor is not identical to the
Up1q of electromagnetism, more about this later. The SUp3q factor gives rise to a force known
as the ’strong force’ which binds quarks together in Baryons such as protons and neutrons,
and also protons and neutron into atomic nuclei.

What makes this theory so beautiful is that all we need to do to de�ne it is state the gauge
symmetry (we did that already) and which charged matter �elds we have and in which rep-
resentations of GSM they live. Writing down the most general Langrangian (to lowest order)
then gives the Standard Model Lagrangian up to �xing free parameters by experiment. For
the sake of simplicity we will discuss the ’classical’ version without neutrino masses which it
turns out has 19 free parameters.

The charged particles are qLi, uRi dRi, `Li, eRi for i “ 1, 2, 3 which are all (left/right-handed)
Weyl Fermions, the label i is called the ’generation’ and a single complex scalar H . These
transform in the following representations (please ignore the last row for now):

qLi uRi dRi `Li eRi H

Up1qh
1
3

4
3

´2
3

´1 ´2 1
SUp2q 2 ´ ´ 2 ´ 2
SUp3q 3 3 3 ´ ´ ´

Up1qEM

ˆ

2
3

´1
3

˙

2
3

´1
3

ˆ

0
´1

˙

´1 0

. (6.41)

Here we have given the Up1q charge for each one of them and 2 and 3 indicate they transform
under the de�ning representation of SUp2q or SUp3q. It is standard terminology to use 1
to indicate a singlet under e.g. SUp2q, but I �nd this confusing when comparing with Up1q
charges and use a dash ´ to indicate they do not transform at all. Hence e.g. `Li has two
components, as appropriate for the de�ning rep. of SUp2q and qLi has 6 components as it
both transforms as a 2 under SUp2q and 3 under SUp3q.

6Actually, we are only sure about the gauge algebra, which leaves freedom for the gauge group to be Up1q ˆ
SUp2q ˆ SUp3q{ZN for any N P t1, 2, 3, 6u, see [Tong, 2017] for some discussion.
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qLi, uRi dRi describe the six quarks, up, down for i “ 1, strange, charm for i “ 2 and bottom
and top for i “ 3, and `Li, eRi the leptons: electron and electron-neutrino for i “ 1, muon and
muon-neutrino i “ 2 as well as tau and tau-neutrino i “ 3.

You’ll notice several things right away:

1. The SUp2q only talks to left-handed Weyl spinors but not right-handed Weyl spinors.
This is the origin of parity violation in nature, �rst demonstrated in β decay by Chien-
Shiung Wu in 1956.

2. Only quarks participate in the strong interactions.

3. The Up1q charges are not all integers, which seems to contradict our statements regard-
ing Up1q representations. However, this normalization has historical reasons and we
can appropriately rescale the generator of Up1q to make these all integers.

We can now write down kinetic terms for all of the gauge �elds and charged particles in the
usual way. The covariant derivative of qLi is e.g.

DµqLi “

ˆ

Bµ ´ i
1

3
pAhqµ ´ iWµ ´ igµ

˙

qLi (6.42)

where pAhqµ is the gauge �eld of Up1q, Wµ of SUp2q (3 actually) and gµ of SUp3q (8 actually).

For H we have the possibility of writing down a potential term in L:

V pHq “ ´m|H|2 ` λ|H|4 (6.43)

Note that H is actually two complex �elds as it lives in the 2 of SUp2q and that |H|2 “ H̄iHi.
It turns out that the right physics emerges when m,λ are both positive. In this case the vacua
of H are described by

|H|2 “ m{λ (6.44)
which is non-zero. The set of options to solve this equation is gauge-invariant, but any given
choice is not invariant under all elements in Up1qh ˆ SUp2q: this is called spontaneous sym-
mety breaking; H is the Higgs �eld. This type of symmetry breaking, where the action is
invariant under a symmetry, but the vacuum (or ground state) is not, is called spontaneous
symmetry breaking in physics.

If a continuous internal global symmetry is spontaneously broken, then there is a massless
scalar �eld (called Nambu-Goldstone bosons) for each spontaneously broken symmetry gen-
erator [Nambu, 1960, Goldstone, 1961] If the symmetry is gauged, as it is here, the would-
be Nambu-Goldstone bosons are not physical as they can be absorbed by a gauge transfor-
mation, but the gauge �elds associated to the spontanously broken gauge symmetry gain a
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mass, which is otherwise forbidden by gauge invariance. This is called the (Anderson-Brout-
Englert-Guralnik-Hagen-) Higgs (-Kibble) mechanism [Anderson, 1963, Englert and Brout,
1964, Higgs, 1964, Guralnik et al., 1964]

One way to see the mass of the gauge bosons is that after �xing a background value |H|2 “
m{λ the kinetic term for H gives (schematically)

DµHD
µH Ñ WµW

µm{λ (6.45)

which is not gauge invariant and in fact gives an (otherwise forbidden) mass to the particles
corresponding to three out of the four gauge �elds W a

µ and pAhqµ.

The surviving combination is
tEM “ t

SUp2q
3 ` 1

2
th (6.46)

and generates the Up1q associated with electromagnetism. Here tSUp2q3 is the 3rd generator
of SUp2q. The charges our particles have under this Up1q are given in the last row of the
table above. Due to it causing symmetry breaking, three of the four real degrees of freedom
in H become longitudinal components of the three Wµ, the fourth is a �eld corresponding to
a massive real scalar particle, the Higgs, which was �nally found at the LHC roughly 50 years
after its prediction in 2012.

The spontaneous symmetry breaking has another e�ect. Recall that a mass term mΨ̄Ψ for
a Dirac fermion reads mpΨ̄LΨR ` c.c.q in terms of Weyl spinors. However such terms are
forbidden in the Standard Model as such a term would not be gauge invariant. However, we
can write things such as

L̄LHeR ` c.c. (6.47)

as the Higgs H is a 2 of SUp2q. These are called Yukawa couplings and we can write them for
all quarks and leptons. After H gets its background value the above becomes something like

a

m{λ , ēLeR ` c.c. (6.48)

which ends up giving the electron a mass, so that we might describe it in terms of a Dirac
spinor. In fact, the most general thing we can write in the quark sector is

qLiH̃uRjfu ij ` qLiHdRjfd ij (6.49)

which is all �ne by gauge invariance. The fact that the matrices fu ij ‰ fd ij leads to quark
mixing a.k.a. the CKM matrix. For three generations (and no less) this ends up causing CP
violation, which is one of the necessary conditions for matter-antimatter asymmetry in the
universe.
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6.4 The ’t Hooft-Polyakov monopole*
In 1974 Gerard ’t Hooft and Aleksandr M. Polyakov discovered that nonabelian gauge the-
ories with scalar �elds transforming in the adjoint representation admit smooth magnetic
monopoles as static �nite energy solutions of their equations of motion [Hooft, 1974,Polyakov,
1974] .

The �eld theory of interest is the so-called Georgi-Glashow model (or SUp2q adjoint Higgs
model) [Georgi and Glashow, 1972] a �eld theory in three space and one time dimension,
with G “ SUp2q gauge group, a scalar �eld Φ transforming in the (3-dimensional) adjoint
representation, which we represent as a 2 ˆ 2 traceless hermitian matrix. The Lagrangian
density is

L “ ´ 1

2g2
YM

trpFµνF
µν
q ´ trppDµΦqpDµΦqq ´ V pΦq ,

V pΦq “ λ

ˆ

1

2
trpΦ2

q ´ v2

˙2

,

(6.50)

where λ, v ą 0 are constants and

Fµν “ BµAν ´ BνAµ ´ irAµ, Aνs

DµΦ “ BµΦ´ irAµ,Φs .
(6.51)

We can calculate the Hamiltonian (or energy) density H as the Legendre transform of the
Lagrangian density L, and from it the total energy E “

ş

d3x H of the system, which is by
construction gauge invariant (as should be the case for all physically observable quantities).
We will be interested in static �eld con�gurations, so we can drop all time derivatives B0. It
is then convenient to work in the temporal gauge A0 “ 0, which we can always achieve by
a suitable gauge transformation, so that we can drop all time covariant derivatives D0. In the
temporal gauge, the energy of static �eld con�gurations is

E “

ż

d3x

„

1

g2
YM

trpBiBiq ` trppDiΦqpDiΦqq ` V pΦq



, (6.52)

where Bi “
1
2
εijkFjk are the components of the nonabelian magnetic �eldB. i “ 1, 2, 3 runs

over spatial Euclidean indices (which we write up or down since the spatial metric is δij), and
as usual repeated indices are summed over.

The energy is the integral of a sum of squares, and is minimized by setting

B “ 0 , DΦ “ 0 , trpΦ2
q “ 2v2 . (6.53)

The �rst vector equation tells us thatFij “ 0, so the vector potentialA “ pA1, A2, A3q is ‘pure
gauge’: Aj “ ihpBjh

´1q “ ´ipBjhqh
´1 for a function hpxq which takes values in SUp2q. The
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second vector equation tells us that the adjoint scalar �eld Φ is covariantly constant. The �nal
scalar equation tells us that Φ minimizes the scalar potential. By a gauge transformation we
can setA “ 0, then the second equation sets Φ to be constant. Letting Φ “ φaσa, where pσaq
are the Pauli matrices, we �nd that

trpΦ2
q “ 2v2

ô pφ1
q
2
` pφ2

q
2
` pφ3

q
2
“ v2 , (6.54)

so the vacuum manifold is a 2-sphere of radius v:

V “ tΦ “ φaσa P sup2q | trpΦ
2
q “ 2v2

u

“ tφ “ pφ1, φ2, φ3
q P R3

| φ2
“ v2

u – S2 .
(6.55)

By a constant gauge transformation, we can take

Φ “

ˆ

v 0
0 ´v

˙

“ vσ3 φ “ p0, 0, vq . (6.56)

Any choice of vacuum breaks the gauge group G “ SUp2q down to a subgroup H “ Up1q
which leaves the vacuum invariant.

In order for the energy (6.52) to be �nite, we demand the boundary conditions

B Ñ 0 , DΦ Ñ 0 , trpΦ2
q Ñ 2v2 as |x| Ñ 8 , (6.57)

so the �elds must tend to a vacuum at spatial in�nity. Note: this can be a di�erent vacuum for
each direction. As in the abelian Higgs model, we can use the gauge redundancy to work in a
radial gauge, where Ar “ 0. Then the limits of the �elds as r Ñ 8 with pθ, ϕq �xed exist. In
particular, the limit of the adjoint scalar �eld at spatial in�nity de�nes a map

Φ8: S2
8 Ñ V – S2

pθ, ϕq ÞÑ Φ8pθ, ϕq :“ lim
rÑ8

Φpr, θ, ϕq , (6.58)

which is characterized by an integer, the topological degree of the map, which is a gener-
alization of the winding number for maps from S1 to S1:7

ν “
1

8πv3

ż

S2
8

εijkφ8 ¨ pBjφ8 ˆ Bkφ8q d
2σi , (6.59)

where φ8 “ ppφ8q
1, pφ8q

2, pφ8q
3q. Note: the prefactor of v´3 is there because the target

(image) of φ8 is a 2-sphere of radius v.

Exercise 29. De�ne

FUp1q
µν :“

1

2v
trpΦ8Fµνq (6.60)

7Mathematically, this is because Π2pS
2q “ Z.
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to be the �eld strength of the unbroken H “ Up1q subgroup of the gauge group G “ SUp2q.
Show that the magnetic charge

mUp1q :“
1

2π

ż

S2
8

BUp1q
¨ d2~σ (6.61)

of this unbroken Up1q is proportional to the topological degree ν of Φ8, and �nd the proportion-
ality factor.

As an example, the map
Φ8 “ v x̂ ¨ σ , (6.62)

where x̂ “ x{|x| “ x{r and σ “ pσ1, σ2, σ3q, has degree ν “ 1. This is the identity map from
S2 to S2, up to an overall constant factor that takes care of the radius of the target sphere. We
note incidentally that we can write (6.62) as

Φ8 “ ve´iασ3e
iα (6.63)

with
α “

θ

2
p´ sinϕ σ1 ` cosϕ σ2q “

θ

2
e´iϕσ3{2 σ2 e

iϕσ3{2 . (6.64)

So Φ8 reduces to the constant vacuum with Φ “ vσ3 in (6.56), if we perform a gauge trans-
formation with parameter g “ eiα. Note however that this gauge transformation is singular
at θ “ π, the south pole of the 2-sphere, where ϕ is ill-de�ned. (The gauge transformation is
regular at the north pole θ “ 0, thanks to the θ prefactor in α. This statement can be checked
by switching to local coordinates which are well-de�ned at either pole.)

We are now ready to introduce the ’t Hooft-Polyakov ‘hedgehog’ ansatz, so called because
the vector �eld φ points in the radial direction and looks a bit like a hedgehog. We assume
that the adjoint scalar and the gauge �eld (written as a matrix-valued di�erentialA “ Aµdx

µ)
take the form

Φ “
x ¨ σ

r2
Hpvrq

A “ σaεaij
xidxj
r2

r1´Kpvrqs .
(6.65)

Note that the dependence on the angular polar coordinates in space R3 is correlated with the
behaviour in the internal space in which the �elds take values. We also assume the asymptotics

ξ ” vr Ñ 8 : Hpξq ´ ξ Ñ 0 , Kpξq Ñ 0 (6.66)

at spatial in�nity, to satisfy the boundary conditions (6.57) which are needed for the energy
to be �nite,8 and

ξ ” vr Ñ 0 : Hpξq “ Opξq , Kpξq ´ 1 “ Opξq (6.67)
8It can be shown that the solution approaches the limiting values exponentially fast, much faster than is

needed for the integral (6.52) to converge.
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to ensure regularity (smoothness) at the centre of the monopole, and �niteness of the energy
at short distances from the centre.

Note that the adjoint scalar �eld approaches (6.62) at spatial in�nity, which has topological
degree 1. The magnetic �eld also approaches an abelian magnetic monopole for the unbroken
gauge group H “ Up1q at spatial in�nity. Indeed, if one applies the above singular gauge
transformation, the gauge �eld AUp1qµ looks precisely like a Dirac monopole in the northern
patch (or for θ ‰ π). One can �nd an analogous singular gauge transformation to obtain the
Dirac monopole in the southern patch (or for θ ‰ 0).

One can substitute the ’t Hooft-Polyakov ansatz (6.65) in the equations of motion, to �nd a
system of two coupled ODE’s for the functions Hpξq and Kpξq. Together with the boundary
conditions (6.66)-(6.67), this de�nes a well-posed boundary value problem which can be solved
numerically. This shows the existence of a �nite energy static solution which describes a
magnetically charged object of �nite size.

We can use what is called a Bogomol’nyi-type argument to �nd a lower bound for the energy
in each topological sector, namely for �eld con�gurations with given topological degree for
the adjoint scalar, or equivalently magnetic charge for the unbroken Up1q gauge �eld. This is
called the Bogomol’nyi-Prasad-Sommer�eld (or BPS) bound [Bogomol’nyi, 1976, Prasad and
Sommer�eld, 1975]. The idea is to write

E “

ż

d3x

„

1

g2
YM

trpB2
q ` trppDΦq2q ` V pΦq



ě

ż

d3x tr

˜

ˆ

1

gYM
B ¯DΦ

˙2

˘
2

gYM
B ¨DΦ

¸

ě ˘
2

gYM

ż

d3x trpB ¨DΦq “ ˘
2

gYM

ż

d3x trpD ¨ pΦBqq

“ ˘
2

gYM

ż

d3x ∇ ¨ trpΦBq “ ˘ 2

gYM

ż

S2
8

trpΦ8Bq ¨ d
2σ

“ ˘
4v

gYM

ż

S2
8

BUp1q
¨ d2σ “ ˘

8πv

gYM
mUp1q .

(6.68)

Going from the �rst to the second line, we dropped the contribution of the (non-negative)
potential energy and completed a square. We then dropped the square to get to the third line,
and then used the Bianchi identity D ¨ B “ 0. Going to the fourth line we took the gauge
covariant divergence outside the trace, and replaced it by a standard divergence since the
trace is gauge invariant. Then we used Gauss’ theorem (aka divergence theorem) to rewrite
the lower bound as a surface integral, which in the last line we related to the magnetic charge
of the unbroken H “ Up1q subgroup of the gauge group, de�ned in (6.61). We have deduced
the BPS bound

E ě
8πv

gYM
|mUp1q

| , (6.69)
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which is a lower bound for the energy in terms of the magnetic charge.

The bound is saturated, that is E “ 8πv
gYM

|mUp1q|, if and only if

λÑ 0 keeping v �xed , (6.70)

which is called the BPS limit, and the �elds satisfy the 1st order Bogomol’nyi equation

B “ signpmUp1q
qgYMDΦ. (6.71)

Solutions to the Bogomol’nyi equations for monopoles come in in�nite families, parametrized
by continuous parameters also known as moduli. For G “ SUp2q, the moduli space of n BPS
monopoles (solutions of the Bogomol’nyi equations with total magnetic charge mUp1q “ n ą
0) has 4n real dimensions.



Topic 7

Bundles, connections, curvature and
sections*

This is a bonus chapter that sketches some of the di�erential geometry that underlies
gauge theories. We won’t have time in the lectures for this advanced material, which
is best learned in a di�erent module. I include it here for completeness for students
who would like to learn more. This material will not be examined.

So far we have learned how to formulate gauge theories in terms of gauge invariant actions
for the gauge �eld and (potentially) charged �elds. Our goal in this chapter will be understand
how to describe gauge transformations, gauge �elds, their �eld strengths, and charged �elds
geometrically. We will learn about �bre bundles, which are a consistent way of adding extra
structure on top of a di�erentiable manifold.

I should warn you that the general formal de�nition is quite abstract, but I will try to build
towards it slowly by successive generalizations. At the beginning I will give you a �avour of
the abstract “intrinsic” approach, which de�nes concepts without making reference to a co-
ordinate system. This can be hard to grasp, and this is not a course on di�erential geometry,
so we will spend most of our time working in the “extrinsic” approach, which uses local co-
ordinates. The extrinsic approach has the disadvantage that one needs to make sure that no
de�nitions depend on the choice of coordinates used, but the advantage of being more explicit
and accessible to beginners. This will be more than su�cient for our purposes.

This chapter is largely based on lectures 2 and 5 in Ooguri’s lecture course on Mathematics
for Theoretical Physicists [Ooguri, 2010]. Other references which cover the same material in
more detail are [Eguchi et al., 1980, Nakahara, 2003, Naber and Naber, 1997].

74
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Figure 7.1: The basic data of a di�erentiable manifold.

7.1 The tangent bundle
Recall the de�nition of a di�erentiable manifold M (of dimension n) from the �rst term, see
�gure 7.1. It consists of a countable atlas tpUi, ϕiqiPIu of coordinate charts (or patches) pUi, ϕiq,
where Ui is an open subset of M , ϕi : Ui Ñ Rn is an invertible map from Ui to an open subset
of Rn, and M “

Ť

iPI Ui. Given a point p P M , its image under ϕippq “ px1
piq, . . . , x

n
piqq under

ϕi gives the coordinates of point p in the patch Ui. We refer to these as local coordinates. If
two patches Ui and Uj overlap on Ui X Uj ‰ H, then we can use two sets of coordinates. For
any pair of overlapping patches, We require the transition functions

ϕj ˝ ϕ
´1
i : ϕipUi X Ujq Ñ ϕjpUi X Ujq ,

which are invertible, to be smooth. This makes M a di�erentiable manifold.

Next we give the intrinsic de�nition of a di�erentiable (real) function. A function

f̂ : M Ñ R
p ÞÑ f̂ppq

(7.1)

is di�erentiable (/smooth) if for all charts pUi, ϕiq, its extrinsic expression in local coordi-
nates

fpiq :“ f̂ ˝ ϕ´1
i : ϕipUiq Ñ R

xpiq “ px
1
piq, . . . , x

n
piqq ÞÑ fpiqpxpiqq

(7.2)

is a di�erentiable/smooth function of n real variables. The requirement that the transition
functions ϕj ˝ ϕ´1

i of a di�erentiable manifold are smooth ensures that if f is smooth in one
set of local coordinates, it is smooth in all sets of local coordinates. We denote the set of smooth
function on M by C8pMq.
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In the following, to avoid cluttering the notation, we will drop the subscripts which label the
di�erent patches, unless they are strictly necessary. Note that we have used hats to distinguish
the intrinsically de�ned value f̂ppq of the function at a point in the manifold from its extrinsic
description fpxq “ pf̂ ˝ ϕ´1qpxq in terms of local coordinates x “ ϕppq in a coordinate chart
pU,ϕq.

Last term you de�ned tangent vectors to a curve C at a point p in the manifold M . You saw
that the set of tangent vectors to all curves passing through the point p is an n-dimensional real
vector space, which is the tangent space TpM of the manifold M at point p. Next, we would
like to extend this construction from a single point p to the whole manifoldM . Informally, we
would like to de�ne

TM “
ď

pPM

TpM , (7.3)

a “bundle” of the tangent spaces at all the points in the manifold. This is called the tangent
bundle TM of M . The question is: how do we de�ne this object properly? To gain intuition,
it is useful to to take an equivalent but complementary view of tangent vectors. (We will see
how this is related to the de�nitions that you saw last term below.)

We de�ne a tangent vector �eld v on M as a map

v̂: C8pMq Ñ C8pMq

f̂ ÞÑ v̂pf̂q
(7.4)

which obeys the following two properties:

1. linearity: @a1, a2 P R, @f̂1, f̂2 P C
8pMq,

v̂pa1f̂1 ` a2f̂2q “ a1v̂pf̂1q ` a2v̂pf̂2q (7.5)

2. Leibniz rule: @f̂ , ĝ P C8pMq,

v̂pf̂ ĝq “ v̂pf̂qĝ ` f̂ v̂pĝq . (7.6)

Tangent vector �elds form a vector space, more about this later.

˚ EXERCISE:

Let v̂, ŵ be tangent vector �elds.

1. Show that ŵ ˝ v̂ is not a tangent vector �eld.
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Figure 7.2: The data needed to de�ne a tangent vector to a curve, applied to a function.

2. Show that rŵ, v̂s “ ŵ ˝ v̂ ´ ŵ ˝ v̂ is a tangent vector �eld.

Given a tangent vector �eld v̂ on M and a point p P M , we can (re-)de�ne a tangent vector
v̂p P TpM at a point p by evaluating everything at point p:1

v̂p: C8pMq Ñ R
f̂ ÞÑ v̂ppf̂q :“

´

v̂pf̂q
¯

ppq
(7.7)

See �gure 7.2 for a depiction of the relevant data.

You may ask: how is this de�nition of tangent vectors related to the de�nition in terms of
tangents to a curve, that you encountered in the �rst term? Given a smooth curve through p,
which is de�ned by a map from an interval I to the manifold M ,

c: I Ď R Ñ R
τ ÞÑ cpτq

(7.8)

with cp0q “ p, we can de�ne a tangent vector v̂p to the curve C “ cpIq by

v̂ppf̂q “
d

dτ
f̂pcpτqq

ˇ

ˇ

ˇ

τ“0
, (7.9)

which is de�ned intrinsically for all smooth functions f̂ P C8pMq. See �gure 7.2 To under-
stand what is going on, let’s express this in local coordinates xµ in a chart pU,ϕq, where the
curve is parametrized by

pϕ ˝ cqpτq ” xpτq “ px1
pτq, . . . , xnpτqq , (7.10)

1A tangent vector v̂p at a point p is also linear and obeys a form of the Leibniz rule:

1. v̂ppa1f̂1 ` a2f̂2q “ a1v̂ppf̂1q ` a2v̂ppf̂2q

2. v̂ppf̂ ĝq “ v̂ppf̂qĝppq ` f̂ppqv̂ppĝq ,

as an immediate consequence of (7.5) and (7.6) for tangent vector �elds. One can also de�ne tangent vectors at
a point more abstractly using the axioms in this footnote without making reference to tangent vector �elds, and
the introduce tangent vector �elds from this.
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and the function f̂ppq is represented as fpxq “ pf̂ ˝ ϕ´1qpxq:

v̂ppf̂q “
d

dτ
pf̂ ˝ cqpτqq

ˇ

ˇ

ˇ

τ“0
“

d

dτ
pf̂ ˝ ϕ´1

˝ ϕ ˝ cqpτqq
ˇ

ˇ

ˇ

τ“0

“
d

dτ
fpxpτqq

ˇ

ˇ

τ“0
“ 9xµpτq

Bfpxq

Bxµ

ˇ

ˇ

ˇ

x“xp0q“ϕppq
,

(7.11)

where we used basic properties of the composition of functions, as well as the chain rule in
the last equality (dots denote derivatives with respect to τ ). We recognize the result as the
directional derivative of the function f along the tangent to the curve at the point p, which
has coordinates x “ xp0q.

REMARKS:

1. When you described the tangent vector to a curve at a point p using local coordinates
in the �rst term, 9xµp0q were the components of the tangent vector.

2. To construct a basis of the tangent space TpM , you used curves Ca which �xed all
coordinates xµ ‰ a and varied only xapτq “ xap0q ` τ . The components of the tangent
vector ea to such a curve are then 9xµp0q “ δµa , and we have

eapf̂q “
B

Bxa
fpxq

ˇ

ˇ

ˇ

ˇ

x

“ ϕppq “
B

Bxa
f̂pϕ´1

pxqq

ˇ

ˇ

ˇ

ˇ

x

“ ϕppq , (7.12)

or for short
ea “ pBaqp , (7.13)

where pBaqp is B

Bxa
when we work in local coordinates x “ ϕppq.

In summary, we can write any tangent vector v̂p P TpM intrinsically as

v̂p “ v̂apBaqp , (7.14)

or extrinsically (in local coordinates) as

v “ va
B

Bxa
, (7.15)

where the components v̂a “ va are n real numbers.

Now let’s consider a collection of tangent spaces over every point onM : the tangent bundle

TM “
ď

pPM

TpM . (7.16)

Using the isomorphism TpM – Rn for all p PM , we can view the tangent bundle locally as as
Ui ˆ Rn. we can see that TM is naturally a manifold of dimension 2n. For each coordinate
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Figure 7.3: The tangent bundle and a tangent vector �eld.

chart pUi, ϕiq onM , we de�ne coordinates pxµ, vνq on
Ť

pPUi
TpM , where pxµq are coordinates

on Ui, and we parametrize a tangent vector as

v “ vν
B

Bxν
. (7.17)

We call M the base of the tangent bundle, and Rn – TpM the �bre of the tangent bundle.2

A (smooth) tangent vector �eld is then (in local coordinates)

v “ vµpxq
B

Bxµ
, (7.18)

with components vµpxq which vary smoothly as p varies over M .

˚ EXERCISE:

Check that the local description (7.18) of a tangent vector �eld maps smooth functions to
smooth functions, is linear, and obeys the Leibniz rule.

We say that a (smooth) tangent vector �eld (7.18) is a (smooth) section of the tangent bundle
TM , and write v P ΓpTMq. The reason for this terminology is as follows (see �gure 7.3:

• Locally, TM is a product space Ui ˆ Rn, where the �bre is Rn – TpM for every p.

• The vector �eld v draws a graph pxµ, vνpxqq in ϕipUiq ˆ Rn, with cuts the �bres of the
tangent bundle TM along the direction of the base M . Hence the term “section”.

2For the attentive reader: in order to equip TM with the structure of a di�erentiable manifold, we need to
specify smooth transition functions for all its 2n coordinates, not just for the base coordinates. We will do that
shortly, in equation (7.20).
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What we have seen so far is a local description of the tangent bundle TM in a coordinate
patch. When we change patch from U to Ũ (on their overlap U X Ũ ) in the base M , the
coordinates on M change as3

xµ ÞÑ x̃µ “ x̃µpxq . (7.19)

In addition, we need to specify how the �bre coordinates change. We require the tangent space
coordinates to change like

vµ ÞÑ ṽµ “
Bx̃µ

Bxν
vν , (7.20)

so that
v “ vµ

B

Bxµ
“ ṽµ

B

Bx̃µ
(7.21)

is independent of the choice of coordinates.

Proof. Using the chain rule,

B

Bxµ
“
Bx̃ν

Bxµ
B

Bx̃ν
ÝÑ vµ

B

Bxµ
“ vµ

Bx̃ν

Bxµ
B

Bx̃ν
“ ṽν

B

Bx̃ν
. (7.22)

Now recall that every vector space V has a dual vector space V ˚, which is the space of linear
functionals on V . Given a basis ea of V , we can choose a basis e˚a of the dual space V ˚ by
requiring that e˚apebq “ δab . Then given v “ vaea P V and w “ wae

˚a, we have wpvq “ wav
a.

We can apply these ideas to the tangent space TpM , and de�ne its dual vector space, the
cotangent space T ˚pM . An element ω of the cotangent space is a linear functional on the
tangent space,

ω: TpM Ñ R
v ÞÑ ωpvq

(7.23)

such that for all coe�cients a1, a2 P R and for all tangent vectors v1, v2 P TpM ,

ωpa1v1 ` a2v2q “ a1ωpv1q ` a2ωpv2q . (7.24)

The dual basis to the basis of partial derivatives
 

B

Bxµ

(

for the tangent space TpM is the basis
of di�erentials tdxµu for the cotangent space T ˚pM , where we require

dxµ
ˆ

B

Bxν

˙

“ δµν . (7.25)

3(In terms of the invertible maps ϕ : U Ñ Rn and ϕ̃ : Ũ Ñ Rn, the change of coordinates is given by the
transition function ϕ̃ ˝ ϕ´1:

x “ ϕppq ÞÑ x̃ “ ϕ̃ppq “ pϕ̃ ˝ ϕ´1qpxq .
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So we can write any cotangent vector ω P T ˚pM as

ω “ ωµdx
µ . (7.26)

Under a change of coordinates (7.19) on M , we will require that the cotangent space coordi-
nates transform as

ωµ ÞÑ ω̃µ “
Bxν

Bx̃µ
ων , (7.27)

so that
ω “ ωµdx

µ
“ ω̃µdx̃

µ (7.28)
is independent of the choice of coordinates.

˚ EXERCISE:

1. Use the de�nition dfpxq “ Bfpxq
Bxµ

dxµ of the di�erential of a function to show that
under a coordinate change (7.19)

dxµ ÞÑ dx̃µ “
Bx̃µ

Bxν
dxν (7.29)

and therefore
ω “ ωµdx

µ
ÞÑ ω̃ “ ω̃µdx̃

µ
“ ωνdx

ν
“ ω . (7.30)

2. Let v “ vµ B

Bxµ
P TpM and ω “ ωµdx

µ P T ˚pM . Show that

ωpvq “ ωµv
µ (7.31)

and that it is independent of the choice of coordinates:

ωµv
µ
“ ω̃µṽ

µ . (7.32)

With all these data we can construct the cotangent bundle

T ˚M “
ď

pPM

T ˚pM (7.33)

as a collection of cotangent spaces over every point on M . For each coordinate chart pUi, ϕiq
on M , we require the cotangent bundle to locally look like T ˚Ui “

Ť

pPUi
T ˚pM – Ui ˆ Rn,

with coordinates pxµ, ωνq for the base and the �bre respectively. Under a change of coordinates
(7.19) in the baseM , the �bre coordinates change as in (7.27), so that ω “ ωµdx

µ is coordinate
independent.

A (smooth) cotangent vector �eld is, in local coordinates,

ω “ ωµpxqdx
µ , (7.34)



TOPIC 7. BUNDLES, CONNECTIONS, CURVATURE AND SECTIONS* 82

Figure 7.4: The cotangent bundle and a cotangent vector �eld.

where ωµpxq are smooth functions. It is a (smooth) section of the cotangent bundle T ˚M , and
we write ω P ΓpT ˚Mq. See �gure 7.4

REMARKS:

1. In Lagrangianmechanics, the generalised coordinates qi and the generalised velocities
vj are coordinates on the tangent bundle TM of the con�guration space M . The gen-
eralised coordinates qi are coordinates on the base M , and the generalised velocities vj
are coordinates on the �bre TpM . Under time evolution, the trajectory of the generalized
coordinates traces a curve pqiptqq in the con�guration space M , while the generalised
velocities pvjptqq “ p 9qjptqq are the components of the tangent vector v “ vjptq B

Bqj
to the

trajectory.

2. In Hamiltonian mechanics, the generalised coordinates qi and the generalised mo-
menta pj are coordinates on the cotangent bundle TM of the con�guration space M ,
where we identify pj “ BL

Bvj
“ BL

B 9qj
. Now θ “ pjptqdq

j is a cotangent vector. The relation
between Lagrangian and Hamiltonian can be written as

H “ L´ 9qi
BL

B 9qi
“ L´ θpvq.

7.2 Fibre bundles
We can generalise the previous construction by replacing the tangent space TpM or cotangent
space T ˚pM by a more general �bre.

The simplest generalization is the notion of vector bundle E, which consists of a base M “
Ť

i Ui (of dimension dimM “ n) and of a �breF which is a �xed vector space V (of dimension
dimV “ m) over every point in M . Locally, the vector bundle E looks like Ui ˆ V , with
coordinates px, vq.
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Figure 7.5: Schematic depiction of a vector bundle.

Mathematically, a di�erentiable manifold E is called a (smooth) vector bundle if:

1. There exists a projection map
π : E ÑM (7.35)

such that
@p PM π´1

ppq – V , (7.36)
where V is a vector space.

2. There exist atlases of E and of M such that for all charts of M there exists a smooth
map

ϕ : π´1
pUq Ñ U ˆ V , (7.37)

which is called a local trivialisation of the vector bundle E over M .

Part 1 is a way of saying that the base M is part of the total space E, and that for each point
in M we have a vector space V . Part 2 means that we can use local coordinates px, vq for E,
where x is a local coordinate for a point p in the base M , and v is a local coordinate of the
�bre, the vector space π´1ppq associated to the point p. The structure of a vector bundle is
summarized in Figure 7.5.

(To be precise, the vector bundle is the collection pE,M, π, V q of the total space E, the base
M which is obtained by the projection map π, and the �bre V , which is the preimage of a
point in the base under the projection map.)

To fully specify the vector bundle when we work in local coordinates, we need to state what
happens to the �bre coordinates when we change coordinates in the base, from a neighbour-
hood U with coordinates x to a naighbourhood Ũ with coordinates x̃. The change of coordi-
nates in the base and the �bre is

xµ ÞÑ x̃µ “ x̃µpxq

v ÞÑ ṽ “ tpxqv ,
(7.38)
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Figure 7.6: Triple overlap and coordinates in local trivialisations of a vector bundle.

where the transition function for the �bre is an x-dependent invertible linear transforma-
tion:4

tpxq P GLpV q ” GLpm,Rq (7.39)

There is a consistency condition associated to triple overlaps Ui X Uj X Uk, which ensures
the uniqueness of the vector bundle. See Figure 7.6. Let pxi, viq be local coordinates in UiˆV ,
and likewise for j and k, and tjÐipxiq be the transition function for the �bre when we switch
to the i-th trivialization to the j-th trivialization, and similarly for other transition functions.5
Then there are two ways of going from the i-th trivialization to the k-th trivialization: we can
either go from i to k directly, or go from i to j and then from j to k. The results of the two
processes are

vk “ tkÐipxiqvi

vk “ tkÐjpxjqvj “ tkÐjpxjqtjÐipxiqvi .
(7.40)

Demanding the compatibility of the two expressions for every vector vi leads to the cocycle
condition

tkÐipxiq “ tkÐjpxjpxiqqtjÐipxiq . (7.41)
It can be proven that there are no further compatibility conditions associated to quadruple or
higher overlaps.

˚ EXERCISE:

Show that the transition functions for the tangent bundle TM and the cotangent bundle
T ˚M obey (7.39) and the cocycle condition (7.41).

4This is for a real vector bundle, in which the �bre V is a real vector space. If V is a vector space over a �eld
F, replace R by F.

5Here i, j, k are labels, not vector indices. In the notation used at the beginning of this chapter, I would have
written pxpiq, vpiqq etc. I am omitting brackets here to avoid cluttering the notation.
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REMARKS:

1. Unlike for TM and T ˚M , the transition functions for the �bre of a general vector bundle
are independent of the transition functions for the base.

2. We could take x̃µ “ xµ, namely not change coordinates in the base, but still change
coordinates in the �bre. Equations (7.39) and (7.41) must still hold.

Vocabulary: A (usually complex) vector bundle with one-dimensional �bre is called a line
bundle.

We can generalize the previous structure further if we allow the �bre F to be a more general
object than a vector space. We will restrict ourselves to considering �bres F which are dif-
ferentiable manifolds themselves, even though this assumption can be relaxed further. Vector
bundles are included as a special case, since a vector space is a di�erentiable manifold.

A di�erentiable manifold E is called a (smooth) �bre bundle if:

1. There exists a projection map
π : E ÑM (7.42)

such that
@p PM π´1

ppq – F . (7.43)

2. There exist atlases of E and of M such that for all charts of M there exists a smooth
map

ϕ : π´1
pUq Ñ U ˆ F , (7.44)

which is called a local trivialisation of the �bre bundle E over M .

The interpretation is the same as for vector bundles, with the exception that the �bre need not
be a vector space. In a local trivialisation, we can choose local coordinates px, yq, where x is
a local coordinate on the base M and y is a local coordinate on the �bre F . When we change
coordinates in the base, the �bre coordinates must change appropriately, and the transition
functions for the �bre must obey a cocycle condition.

The transition functions for the �bre are elements of a group, which is called the structure
group of the �bre bundle E.6

EXAMPLE: Principal G-bundle P
6The transition functions for the base M are also elements of a group, the di�eomorphism group of M .
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A principal bundle7 is a �bre bundle where the �bre is a Lie group, F “ G, for example
G “ Up1q, G “ SUp2q or G “ SOp3q. Let px, hq be coordinates in (the image of) a local
trivialization U ˆ G, and px̃, h̃q be coordinates in U ˆ G, where h, h̃ are elements of the
group G. We require the transition function tpxq for the �bre to be a group element itself,
tpxq “ gpxq P G for all x, which acts by group multiplication on the �bre coordinate:

pxµ, hq ÞÑ px̃µpxq, h̃ “ gpxqhq . (7.45)

So for a principal G-bundle the �bre is the Lie group G, and the structure group is also G.

REMARKS:

1. This is called a ‘principal’ bundle because of its importance: it controls the structure of
in�nitely many vector bundles. Indeed, for each representation r ofGwe have a vector
space V prq of dimension r and an action of the Lie group G on V prq by a representation
matrix rpgq. We can then de�ne an associated vector bundle E with

�bre F “ V prq

transitions functions tpxq “ rpgpxqq
(7.46)

so that under a change of coordinates

px, vq ÞÑ px̃pxq, ṽ “ rpgpxqqvq . (7.47)

The ‘associated vector bundle’ is associated to the principal bundle P and the represen-
tation r.

2. We can start to observe a correspondence between Maths and Physics emerge:

Maths Physics

Principal G-bundle Gauge symmetry G
(Section of) Associated vector bundle Charged �eld

We will complete this correspondence in the next section.

7.3 Connection, holonomy and curvature
Let vpxq be a smooth section of a vector bundle over M , written in local coordinates. See
�gure 7.7. Can we de�ne partial derivatives of v, or directional derivatives of v along a curve
C in M , which in local coordinates is parametrised by xµ “ xµpτq?

7This is often misspelt as principle bundle. We shouldn’t change our principles as we change coordinates in
the base, therefore principle bundles are not a good idea.
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Figure 7.7: Schematic depiction of a vector �eld.

Figure 7.8: Schematic depiction of the notion of parallel transport.

We immediately run into a problem: we cannot subtract vectors de�ned at in�nitesimally close
points, as we would do to de�ne a derivative, because these two vectors belong to two di�erent
vector spaces. In order to de�ne a notion of directional derivative, we need a way of comparing
vectors de�ned at di�erent points along the curve. Let p0 “ cp0q and p “ cpτq be two points
along the curve C , with coordinates “ xp0q and xpτq respectively. Associated to those two
points we have two distinct (though isomorphic) vector spaces, V0 ” π´1pp0q “ π´1pcp0qq and
Vτ ” π´1ppq “ π´1pcpτqq. We can compare elements of V0 and elements of Vτ by introducing
a notion of parallel transport of vectors along the curveC , which is realised by an invertible
linear map

Ωpτq: V0 Ñ Vτ
v0 ÞÑ Ωpτqv0

(7.48)

which obeys Ωp0q “ 1. See �gure 7.8. Picking a basis of the vector space V , Ωpτq is a matrix
in GLpV q.

More generally, we can compare vectors in the �bres above any two points cpτq and cpτ 1q
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along the curve C by using the map

Ωpτ 1qΩ´1
pτq : Vτ Ñ Vτ 1 . (7.49)

By comparing the values of the vector �eld at in�nitesimally close points, with coordinates
xµ “ xµpτq and xµpτ ` εdτq, we can de�ne the covariant derivative∇µv by

∇v “ ∇µv dx
µ :“ lim

εÑ0

vpxpτ ` εdτqq ´ Ωpτ ` εdτqΩ´1pτqvpxpτqq

ε
(7.50)

where dxµ “ 9xµpτqdτ in the parametrization of the curve. The parameter ε is a book-keeping
device which I have introduced to keep track of in�nitesimals and to de�ne the limit.

REMARK:
The de�nition of the covariant derivative (7.50) of the vector �eld v depends on the local form
of parallel transport Ω in an in�nitesimal neighbourhood of τ . Letting

Ωpτ ` εdτq “ Ωpτq ´ εApxpτqqΩpτq `Opε2q , (7.51)

the equation (7.50) becomes

∇vpxq “ dvpxq `Apxqvpxq , (7.52)

whereApxq, which is called the connection of the vector bundle, is a matrix-valued cotangent
vector �eld (or equivalently, a matrix-valued di�erential form):

Apxq “ Aµpxqdx
µ , (7.53)

with Amu a matrix in glpV q for each µ and x.8

In components, the covariant derivative reads

∇µv
α
pxq “ Bµv

α
pxq `Aµpxq

α
βv

β
pxq . (7.54)

The connection A encodes the in�nitesimal version of parallel transport.

Now consider a change of coordinates in the �bre only:

px, vq ÞÑ px, ṽ “ tpxqvq . (7.55)

Being a map from V0 to Vτ , the parallel transport map Ωpτq transforms like

Ωpτq ÞÑ tpxpτqqΩpτqtpxp0qq´1

8Formally, Aµ takes value in the Lie algebra of the structure group of the vector bundle.
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Figure 7.9: Parallel transport and The holonomy ΩC along the loop C .

under changes of coordinates in the �bres. Using the de�nition (7.50), it follows that ∇µv
transforms like v:

∇µvpxq ÞÑ tpxq∇µvpxq , (7.56)

or in terms of di�erential operators

∇µ ÞÑ tpxq∇µtpxq
´1 . (7.57)

This requires the connection to transform as follows:

Aµ ÞÑ Ãµ “ tBµt
´1
` tAµt

´1 . (7.58)

REMARKS:

1. This construction works for any vector bundle E. In fact, it works for any �bre bundle,
with minor adjustments which I leave as an exercise for the interested reader.

2. When E is a vector bundle associated to a principal G-bundle G and a representation r,
the connection is Aµ “ ´iA

prq
µ , with Aprqµ the gauge �eld, acting in the representation

r. For a principal G-bundle, Aµ “ ´iAµ, where Aµ is the Lie algebra valued gauge
�eld which transforms into gAµg´1` igBµg

´1. (The conversion factors of i are conven-
tional: they are there because physicists have good reasons to like unitary and hermitian
operators.)

3. When E is the tangent bundle, Aµ is the a�ne connection which appears in di�erential
geometry and general relativity, also known as Levi-Civita connection.

Now let’s return to the �nite version of parallel transport. Consider a closed curve (or loop)
C in the base manifold M , starting and ending at the same point p0, which is called the base
point of the loop. See �gure 7.9. We can parallel transport a vector v0 P π

´1pp0q along the
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Figure 7.10: Concatenation of two paths C1 and C2.

loop C . When we reach the end of the loop we obtain a new vector ΩCv0 P π
´1pp0q, which is

‘rotated’ by a transformation9

ΩC P GLpV q (7.59)

compared to the original vector v0. This is called the holonomy (of the connection Aµ) along
the loop C .

Holonomies along loops starting and ending at the same base point p0 form a group, called
the holonomy group, which is a subgroup ofGLpV q. This is a consequence of the de�nition
of parallel transport and of the fact that closed paths themselves form a group, where the
composition law is the concatenation of paths. A bit more explicitly:

• If we concatenate two loops C1 and C2 to form a new loop C2 ˝ C1 obtained by going
along C1 �rst and then along C2 (see �gure 7.10), we get

ΩC2˝C1 “ ΩC2ΩC1 , (7.60)

which is the composition law (or multiplication) in the holonomy group.

• The homotopy along the trivial loop, which doesn’t move from the base point p0, is
the identity element in the holonomy group.

• Given a loop C , we can de�ne the loop ´C which traces the same curve with opposite
orientation. Then

Ω´C “ Ω´1
C (7.61)

is the inverse element of ΩC in the holonomy group.

REMARK:
9Recall that π´1pp0q “ V .
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Figure 7.11: Curvature, from the holonomy along the perimeter of an in�nitesimal parallelo-
gram.

The holonomy group is generically non-abelian:

ΩC1ΩC2 ‰ ΩC2ΩC1 . (7.62)

If we parallel transport �rst along C1 and then along C2, we’ll usually get a di�erent result
than if we parallel transported �rst along C2 and then along C1.10

˚ EXERCISE:

LetM be connected, that is, any two points p0, q0 PM can be connected by a curve inM .
Show that the holonomy groups based at p0 and at q0 are isomorphic.
[Hint: think about the following picture:

]

The curvature Fµν is the holonomy along an in�nitesimal loop. More precisely, consider an
in�nitesimal loop dC which is the perimeter of a parallelogram with vertices

xµ , xµ ` εvµ , xµ ` εpvµ ` wµq , xµ ` εwµ , (7.63)

as in �gure 7.11. Then
ΩdC “ 1` ε2Fµνpxqv

µwν `Opε3q , (7.64)
where

Fµν “ BµAν ´ BνAµ ` rAµ,Aνs . (7.65)
10There are exceptions, for instance if the structure group of the �bre bundle is abelian, or if the connection

vanishes. Hence the quali�er ‘generically’.
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Figure 7.12: Contractible and non-contractible loops on a 2-torus.

Proof. Exercise.

Under a change of coordinates in the �bre (7.55), the curvature transforms as follows:

Fµν ÞÑ tFµνt
´1 . (7.66)

REMARKS:

1. For a principalG-bundle, Fµν “ ´iFµν , where Fµν is the �eld strength ofAµ. (Similarly,
Fµν “ ´iF

prq
µν for an associated vector bundle.

2. Let us assume that the curvature vanishes. This does not mean that the connection
vanishes. This has the surprising consequence that the holonomy can be non-trivial
(that is, ΩC ‰ 1) if the loop C is not contractible to a point. For instance, on a 2-torus
T 2 (the surface of a doughnut), see �gure 7.12, the holonomy along the loop C1, which
is not contractible, can be non-trivial, whereas the holonomy along the loop C1, which
is continuously contractible to a point, can be shown to be trivial.

Vocabulary:
if the curvature vanishes, Fµν “ 0, we say that Aµ is a �at connection, or equivalently
that the bundle E is �at. The holonomy of a �at connection is called monodromy.

There is a lot more that can be said, but this will be left to future courses. I’ll conclude this
chapter by summarizing the correspondence between the geometry of �bre bundles and the
formulation of gauge theories in physics:
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Geometry Physics

Principal G-bundle P Gauge symmetry G
Connection Aµ of P Gauge �eld (or vector potential) Aµ
Curvature Fµν of P Field strength Fµν

(Section of) Associated vector bundle Charged �eld
Covariant derivative ∇µ Gauge covariant derivative Dµ

Parallel transport Wilson line
Trace of the holonomy Wilson loop
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