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Preliminaries

In these lectures we will explore a modern formulation of several aspects of fundamental

physics which features symmetries and geometry. As we will see, making use of such mathe-

matical concepts not only deepens our understanding of many classical topics, but paves the

way to many of the great conquests of 20th century physics. Our point of view will mostly

be that of action principles and classical �eld theories (or just the mechanics of point particles

sometimes) and we will review those aspects that are needed as we go along. Sometimes, it

will prove worthwile to change perspective and consider quantum mechanics instead, but we

will limit ourselves to a few crucial topics for this.

There are many more advanced topics that are outside the scope of these lectures, but that

will come too close for us to completely ignore. The short detours into this terrain that we

will undertake are meant to stimulate your intellectual curiosity, but do not form part of the

examinable content. The corresponding sections will be clearly marked with a
˚
.

These lectures combine material that naturally belongs together, but can rarely be found all

in one source. Furthermore, many standard texts on the subjects covered pitch their material

at a somewhat higher level. While I hope you take a look at the references given, don’t get

discouraged if what you �nd seems very di�cult. These notes form the core of the material

you should use in this course and the exercises given re�ect the level of understanding I expect

you to achieve. Only what is discussed in the lecture notes (and does not have a
˚
) forms the

examinable material.
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Introduction˚

In (classical) theoretical physics, we typically specify which kind of physical system we are

talking about by stating the physical degrees of freedom, e.g. some generalized coordinates

qi and their derivatives 9qi with respect to ‘time’, which uniquely determine the con�guration

of our system, together with an action Srqi, 9qis that encodes the dynamics. We will introduce

actions formally later, so if you are unfamiliar with actions or feel a little rusty, nevermind,

all that matters for this discussion is that the action is a functional of qiptq and 9qiptq which

determines the equations of motion by demanding that the equations of motion are extrema

of S.

De�ning systems using an action S a sensible
1

de�nition of what is a symmetry might be

De�nition 0.1. Let g be an invertible map

g :
qi Ñ gpqiq

9qi Ñ gp 9qiq
(0.1)

such that

Srgpqiq, gp 9qiqs “ Srqi, 9qis . (0.2)

Then g is called a symmetry of the action S. Note that this must hold true no matter what qi
and 9qi are.

Given an action we can ask about the set G of all of its symmetries (and this is something we

will frequently do), and our de�nition above has two immediate consequences for that:

i) The identity map g “ 1 is a (rather trivial) symmetry.

ii) For any two symmetries g and g1 we can form another symmetry by compositon:

Srgpg1pqiqq, gpg
1
p 9qiqqs “ Srg1pqiq, g

1
p 9qiqs “ Srqi, 9qis . (0.3)

1
We will be more precise with these things later.
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Here it is crucial that S stays invariant no matter what qi and 9qi are. In particular, it does

not matter to apply our de�nition that we act with g on g1pqiq, g
1p 9qiq instead of qi, 9qi.

If you consider the above overly formal, we can unpack what it means intuitively: if you can

map the system using both g and g1 without changing S, you might as well �rst act with

g1, after which S did not change (read the above equation from right to left). Then we sub-

sequently apply g, and again the action does not change. We hence acted with both maps

without changing the action.

The properties of the set of symmetries we have just uncovered are exactly what is called a

group (or rather, this is why groups are de�ned the way they are). Recall the following from

Linear Algebra I:

De�nition 0.2. A group is a set G equipped with an operation ˝ : GˆGÑ G such that

i) there is an identity element e in G such that x ˝ e “ e ˝ x “ x for all x P G;

ii) if x, y P G then x ˝ y P G;

iii) px ˝ yq ˝ z “ x ˝ py ˝ zq for all x, y, z P G.;

iv) for each x P G, there exists an inverse x´1 in G with x´1 ˝ x “ e;2

Proposition 0.1. The symmetries of a classical action form a group.

Proof. The composition ˝ is just the composition of maps here and the identity e is the identity

map g “ 1. We just seen the identity is a symmetry and that the composition of symmetries

is a symmetry as well, taking care of i) and ii). Composition of maps satis�es associativity (in

each case we simply apply three maps after each other), so we also have iii). Finally, we have

assumed that symmetries are invertible maps, so we also have iv). ˝

Exercise 1. Let C be the complex numbers and C˚ “ Czt0u. Which of these is a group under

2
This implies that x ˝ x´1 “ e as well. Let y “ x ˝ x´1

. Then

y “ y´1 ˝ y ˝ y “ y´1 ˝ x ˝ x´1 ˝ x ˝ x´1 “ y´1 ˝ y “ e .

Note how we made use of associativity here.
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addition? Which of these is a group under multiplication?

Note that the way we introduced groups did not depend on groups acting in a physics context.

More generally, groups naturally appear as symmetries of whatever object you are interested

in. Take a moment to think about how you would argue that the de�ning properties of a group

are present for any symmetries that you can think of.

REMARK: In the last years it has become widely appreciated that one needs to rethink the

notion of symmetry somewhat when discussing quantum systems with extended objects, and

things become more complicated than what we discuss here. Here, a suitable notion of symme-

try is di�erent to ‘it is a transformations that leaves the action invariant’, which in turn leads

to the possibility that symmetries are no longer groups, which is exactly what happens. This is

an active �eld of research at present, here is a popular science article about the topic [Hartnett,

2023].

Symmetries have remarkable consequences on the physics in that they imply conservation

laws via what is called ’Noether’s theorem’. Understanding which symmetries an action has

hence immediately gives us conserved quantities which we can use in turn to constrain the

dynamics. Here is a famous example without which we would not exist: the ‘Standard Model

of particle physics’ classically has a symmetry which implies ‘baryon number conservation’.

This in turn implies that the proton cannot decay into any of the particles lighter than itself,

as this would violate the conservation law. Without this restriction, protons could decay into

positrons (the electron’s anti particle) and the world as we know it would end in a �ash. So we

can explain that the proton is stable by a symmetry! If you try to come up with an extension

of the Standard Model you better be careful not to violate this symmetry
3
.

Instead of investigating if a given action has some group of symmetries, we can hence turn

things around and try to construct actions symmetric under a given group G if the conse-

quences of the symmetry match experiments. This point of view is precisely what people

mean when they say that ‘we understand’ fundamental physics using symmetries. Imagine

we have good reasons to write down an action

Srqs “ S1rqs ` αS2rqs (0.4)

with a parameter α, and measurements tell us that α “ 0. You will immediately write a

3
It turns out a

˚
tiny

˚
little bit is okay, and that there are quantum e�ects that in fact do this. This is good

news, as this is what is needed for baryogenesis in the early universe, i.e. is needed to explain why there is matter

but no antimatter in the universe.
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publication and receive much fame if you can �nd a symmetry G which leaves S1 invariant,

but not S2. In this case we simply add ’invariance under G’ as a fundamental requirement

which forces α “ 0.

Figure 1: The group Up1q is isomorphic to a circle with a distinguished point, the identity

element.

Having established the relevance of groups we of course want to study them in more detail.

Two questions that immediately come to mind (and which correspond to topics 1 and 2) are

‘what are they like?’ and ‘how can they act?’. To give you a feeling about the �rst question,

consider the

Example 0.1. The group Up1q is the group of complex numbers of unit modulus under mul-

tiplication. For ϕ “ 0..2π we can write any group element as

g “ eiϕ . (0.5)

However, it is not true that this group is isomorphic to the interval r0..2πs as ϕ “ 0 and

ϕ “ 2π are one and the same group element. It is isomorphic to a circle S1
, see �gure 1.

The fact that this group is topologically non-trivial will turn out to be the reason we can have

magnetic monopoles in the second half of this course! In topic 1 we will examine several

classes of groups that are also non-trivial spaces (‘manifolds’) in their own right, these are

called ‘Lie groups’.

To appreciate the second question, consider a group that has elements which are nˆnmatrices

(which ones is not really important here). If this group is supposed to act on the generalized
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Figure 2: A projection of the root system of the Lie group E8, which can be used to construct

its representations.

coordinates in our theory, you might be tempted to say that they might be a vector with n
components and the group acts as

q ÑMq . (0.6)

However, this is not the only possibility. We might say that the generalzied coordinates in our

theory are nˆ n matricesQ themselves and the group acts as

QÑM´1QM . (0.7)

Note that set of n ˆ n matrices is a vector space as well, but its dimension is n2
, which is

di�erent from n. The general study of how groups can linearly act on vector spaces of various

dimensions (and which dimensions can occur) is called ‘representation theory’ and will discuss

this in topic 2. As linear maps on vector spaces can always be written in terms of matrices, we

can also say that representation theory is the question of how abstract relations such as

gg1 “ g2 (0.8)

can be concretely realized using matrices. In �gure 2 you can see a glimpse of the beautiful

structures that emerge when asking (and answering) such questions.

Exercise 2. Consider the set S of real nˆ n matrices.

a) Show that S this is a (real) vector space V of dimension n2.

b) Let U Ă S be the set of matrices with determinant 1. Is U a vector space as well?

c) For any matrix Q in V de�ne a map

gM : QÑM´1QM
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whereM is a �xed invertible matrix. Show that gM is a linear map on V .

In Epiphany term, we will start investigating what happens when we consider group actions

that vary across space-time, i.e. we let

g “ gpt, ~xq . (0.9)

Such things are called gauge symmetries and form the underpinning for the interactions of

the Standard Model of particle physics. Interestingly, demanding such symmetries forces us

to have forces which are transmitted by ‘gauge bosons’ such as photons or gluons.

After spending some time formulating gauge theories as classical �eld theories, we will inves-

tigate the impact of the ‘gauge group’ G on the physics and will discover that the topology of

G plays a central role.



Topic 1

Lie Groups and Lie Algebras

1.1 Motivating Examples
Before giving formal de�nitions of Lie groups, Lie Algebras, let us look at some motivating

examples and explore their properties a bit. These examples will serve as templates for all

there is to come, so make sure you understand them well
1
.

1.1.1 The group Up1q: three easy pieces.

Figure 1.1: Group multiplication in Up1q.

1
The theoretical physicists Richard Feynman was famous for his approach of ‘example based research’: �nd

an good example for what you want to study and understand it really well. Then develop the general theory

such that the main features that ‘make it work’ are kept. Although it is not often presented like that, a lot of

mathematics came about in this way.

9
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1) The group Up1q derives its name from unitary complex 1ˆ 1 matrices. Acting with g on a

complex number c
z Ñ gz, g P Up1q, z P C (1.1)

we require that the inner form |c|2 remains unchanged. As

|z|2 “ z̄z Ñ z̄ḡgz “ |g|2|z|2 (1.2)

this implies that g is a complex number of modulus one, |g|2 “ 1, so that we can write g “ eiφ

(as before). Hence

De�nition 1.1. Up1q is are the complex numbers of unit modulus.

Proposition 1.1. Using multiplication as the group operation, Up1q is a group.

Proof. : The group operation can be written as

eiφeiφ
1

“ eipφ`φ
1q . (1.3)

Let’s check that this is a group indeed.

i) there is an identity element e in G such that x ˝ e “ e ˝ x “ x for all x P G;

Ø

we simply use 1

ii) if x, y P G then x ˝ y P G;

Ø

the product of any two complex numbers of unit modulus is again of unit modulus

iii) px ˝ yq ˝ z “ x ˝ py ˝ zq for all x, y, z P G;

Ø

multiplication of complex numbers is associative

iv) for each x P G, there exists an inverse x´1 in G such that x´1 ˝ x “ e;
Ø

for g “ eiφ, g´1 “ e´iφ.

Note that gg1 “ g1g for all g, g1 P Up1q. This is a special property that has a name: ‘abelian’.

Up1q is an example of an abelian group.

De�nition 1.2. A group G is called abelian if xy “ yx for all elements x and y of G.
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2) Already in the introduction we realized that the map from R to Up1q given by writing

g “ eiφ is not a one-to-one map. If we are to do calculus on Up1q, we cannot simply do

calculus on R and map that to Up1q which is a circle. This is the easiest non-trivial example

of what we call a manifold.

3) We already introduced Up1q as acting on complex numbers as in (1.1). We might be inter-

ested in asking what happens when we perform an in�nitesimal transformation, i.e. when φ
is very close to 0. In this case we can approximate the exponential to linear order and get

z Ñ p1` iφqz . (1.4)

The approximation eiφ “ p1 ` iφq is tangent to the group Up1q at g “ 1, see �gure 1.2. We

Figure 1.2: In�nitesimal transformations in Up1q are tangent to the group at the identity

element.

can try to reconstruct �nite elements of Up1q by succesive in�nitesimal transformations. Let

us hence look at

p1` iφq2 “ 1` 2iφ´ φ2 . (1.5)

This fails to reproduce the expansion of the exponential

eiφ “ 1` iφ`
piφq2

2
`
piφq3

3!
` ¨ ¨ ¨ (1.6)

but we can easily �x this by considering instead

p1` iφ{2q2 “ 1` iφ´
φ2

4
. (1.7)

Now we at least have the linear term right, but the quadratic term is still way o�. Now consider

p1` iφ{3q3 “ 1` iφ`
piφq2

3
`
piφq3

27
. (1.8)
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Again, we are forced to have the 1{3 to get the linear term right and the quadratic term came

closer to 1{2. This continues as we consider p1` iφ{nqn for higher values of n, we always get

the linear term right and the subsequent terms come closer to the expansion of the complex

exponential. One can also understand the need for 1{n as follows: we are trying to reproduce

a �nite group element with phase φ by taking n consecutive in�nitesimal group elements. For

these to match up, we need the ‘phase’ of the in�nitesimal group elements to be φ{n.

We might hence guess that we can recover a �nite map from an in�nitesimal one by looking

at p1` iφ{nqn and letting n go to in�nity, which turns out to be correct.

Proposition 1.2. limnÑ8p1` iφ{nq
n “ eiφ

Proof. We can expand the powers to �nd

lim
nÑ8

p1` iφ{nqn “ lim
nÑ8

n
ÿ

k“0

piφqk

nk

ˆ

n

k

˙

“ lim
nÑ8

n
ÿ

k“0

piφqk

k!

n!

pn´ kq!nk

(1.9)

This already looks like the series of the exponential except for the factor

n!

pn´ kq!nk
“
npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ k ` 1q

nk
. (1.10)

There are exactly k factors in the numerator of this fraction which all approachnwhennÑ 8.

Hence this factor converges to 1 for any �xed k. In the sum, there are terms for which k
approaches n so we cannot make the above approximation, but these terms multiply piφqn{n!
which is subleading to the rest of the expression when n Ñ 8. In other words, for every

n0 we can choose a large enough n such that the �rst n0 terms in the exponential series are

approximated to any precision by the �rst n0 terms in p1` iφ{nqn. What this means is that

lim
nÑ8

p1` iφ{nqn “
8
ÿ

k“0

piφqk

k!
“ eiφ (1.11)

˝

Exercise 3. .

a) By working out the derivative of

lim
nÑ8

p1` iφ{nqn
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with respect to φ, show that this expression satis�es the same di�erential equation as eiφ.
You may assume that you can swap the order of the limit and taking the derivative.

As both functions have the same value at φ “ 0 this implies that they are equal by the
uniqueness of solutions of ordinary di�erential equations.

b) Consider a square matrix A and let g “ eiA, which is de�ned via the Taylor series of the
exponential. Show that

lim
nÑ8

p1` iA{nqn “ eiA .

Let’s back up a bit and see what this example has taught us:

a) We de�ned a continuous group by demanding that its action on complex numbers leaves

the inner form invariant.

b) This group does not have a one-to-one map to R, it has a ‘non-trivial topology’ and is

isomorphic to S1
. Due to it being a group, it has something S1

does not have: there is a

special point, the identity element 1.

c) We found that in�nitesimal transformations are tangent to the group at the identity

element. We can recover group elements (and in fact the whole group) by iterating

in�nitesimal transformations and taking a limit. This is the same as exponentiating the

in�nitesimal element.

1.1.2 Review: matrices, indices, summation, and all that.
For many of the things that follow, we’ll need to be con�dent in manipulating expressions

involving matrices by using index notation, so let’s review this brie�y. For a vector v in

Rn
we’ll denote the n components (in the standard basis) by vi with i running from 1 to

n. Likewise, we denote the components of a square nˆ n matrix A by Aij where i and j run

from 1 to n. Here, the �rst index corresponds to the row and the second to the column of A.

Using this notation, we can write various familiar objects as follows

• scalar product: v ¨w “
ř

i viwi

• multiplication between a matrix and a vector: w “ Av ô wi “ pAvqi “
ř

j Aijvj
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• a matrix sandwiched between two vectors: wTAv “
ř

ij wiAijvj

• matrix multiplication C “ AB ô Cij “ pABqij “
ř

k AikBkj

• the vector cross product in R3
: pw ˆ vqi “

ř

jk εijkwjvk (recall εijk “ ˘1 if i, j, k are a

cyclical/anti-cyclical permutation of 1,2,3 and zero else)

What makes such expressions easy to manipulate is that components of vectors, matrices, etc

are just numbers, so we can freely rearrange them. Here are two examples:

v ¨w “
ÿ

i

viwi “
ÿ

i

wivi “ w ¨ v (1.12)

or

v ¨ pw ˆ uq “
ÿ

ijk

εijkviwjuk “
ÿ

ijk

εkijukviwj “ u ¨ pv ˆwq (1.13)

As you realize, whenever there is a sum in the above expressions, the sum runs over an index

which appears twice. Of course one can consider objects which are not of this type, but this is

the typical state of a�airs for many ‘natural’ kinds of products
2

To safe time, it is customary to

use ‘summation convention’, i.e. to use the convention to sum whenever an index appears

twice and drop the summation sign. If one wants to write an index twice that is not summed

over, one then needs to speci�cally say what is going on.

Here are a few more things we’ll need:

De�nition 1.3. The transpose of a matrix A is simply A with rows and columns swapped,

i.e. we can write
`

AT
˘

ij
:“ Aji . (1.14)

De�nition 1.4. The Hermitian conjugate A: (‘A dagger’) of a matrix A is transpose
T

and

complex conjugation applied at the same time:

A: :“ ĀT ô
`

A:
˘

ij
“ Āji (1.15)

De�nition 1.5. The trace of a square matrixA is trA :“ Ajj , the sum of its diagonal elements.

2
The deeper reason for this is that all of these can be de�ned without making reference to a basis.
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De�nition 1.6. The determinant of a square matrix A is

detA :“ εi1,i2,¨¨¨inA1i1A2i2 ¨ ¨ ¨Anin . (1.16)

Here εi1,i2,¨¨¨in “ 1 for an even permutation of t1, 2, ¨ ¨ ¨ , nu, εi1,i2,¨¨¨in “ ´1 for an odd permuta-

tion of 1, 2, ¨ ¨ ¨ , n, and εi1,i2,¨¨¨in “ 0 else. Recall that an even/odd permutation of t1, 2, ¨ ¨ ¨ , nu
is one that can be decomposed into an even/odd number of operations which swap two num-

bers only.

Note the use of summation convention in the last two de�nitions!

Proposition 1.3. The determinant has the useful properties:

a) detAB “ detA detB

b) detAT “ detA

Proof. see MATH1071: Linear Algebra I

Exercise 4. Show using index notation that

a) pA`BqT “ AT `BT

b) pABqT “ BTAT

c) trpcAq “ c trpAq

d) trpABq “ trpBAq

e) trAT “ trA

f) trpA`Bq “ trA` trB

g) pAvq ¨ pBwq “ v pATBqw

h) detA: “ detA



TOPIC 1. LIE GROUPS AND LIE ALGEBRAS 16

i) det cA “ cn detA

where A and B are complex n ˆ n matrices, v and w are vectors with n components, and c is a
number.

1.1.3 The group SUp2q: three easy pieces revisied
1) The group SUp2q is the group of special unitary 2ˆ 2 matrices. Special refers to det g “ 1
and unitary means they keep the inner product (or canonical ‘length’) in C2

invariant when

multiplying a vector z P C2
by g:

z “

ˆ

z1
z2

˙

Ñ gz “

ˆ

a b
c d

˙ˆ

z1
z2

˙

. (1.17)

The inner product

|z|2 “ z̄ ¨ z “ z̄1z1 ` z̄2z2 (1.18)

transforms as

|z|2 Ñ ḡ

ˆ

z̄1
z̄2

˙

¨ g

ˆ

z1
z2

˙

(1.19)

Let us write this out in components

ḡ

ˆ

z̄1
z̄2

˙

¨ g

ˆ

z1
z2

˙

“ ḡij z̄j gikzk “ ḡijgikz̄jzk “ z̄jg
:

jigikzk “ z̄
Tg:gz “ z:g:gz . (1.20)

The above implies that we need g: “ g´1. We hence make the

De�nition 1.7. SUp2q is the group of complex 2ˆ 2 matrices g with det g “ 1 and g:g “ 1.

Let us check that all of this makes sense, i.e. that this is a group indeed.

i) there is an identity element e in G such that x ˝ e “ e ˝ x “ x for all x P G;

Ø

we simply use 1 which satis�es 1:1 “ 1 and det1 “ 1, so is part of SUp2q.

ii) if x, y P G then x ˝ y P G;

Ø

for two elements g, g1 in SUp2q we have detpgg1q “ det g det g1 “ 1 and pgg1q:gg1 “
pg1q:g:gg1 “ 1.
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iii) px ˝ yq ˝ z “ x ˝ py ˝ zq for all x, y, z P G;

Ø

matrix multiplication is associative

iv) for each x P G, there exists an inverse x´1 in G such that x´1 ˝ x “ e;
Ø

First note that as g:g “ 1 g: plays the role of the inverse. The question hence is if g: is

in SUp2q whenever g is in SUp2q. We work out

det g: “ det ḡT “ det gT “ det g “ 1 . (1.21)

and

pg:q:g: “ gg: “ 1 . (1.22)

With the operation of matrix multiplication we hence have de�ned a group. Note that even

though we needed to work through some equations using properties of the
:
, we could have

anticipated this by observing that we de�ned this group as a set of linear maps (to get asso-

ciativity) that are a symmetry of the inner form on C2
.

2) Next, let us describe what SUp2q looks like and how we can parametrize it. For any invert-

ible complex 2ˆ 2 matrix

g “

ˆ

a b
c d

˙

(1.23)

we can write

g´1 “
1

det g

ˆ

d ´b
´c a

˙

(1.24)

As det g “ 1, g´1 “ g: hence implies

ˆ

d ´b
´c a

˙

“

ˆ

ā c̄
b̄ d̄

˙

(1.25)

i.e. the most general matrix in SUp2q can be written as

g “

ˆ

a b
´b̄ ā

˙

(1.26)

and det g “ 1 implies |a|2 ` |b|2 “ 1. As a and b are complex numbers, we can write a “
x1 ` ix2 as well as b “ x3 ` ix4 and �nd

SUp2q : tx “ px1, x2, x3, x4q P R4
|x21 ` x

2
2 ` x

2
3 ` x

2
4 “ 1u . (1.27)
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This is the de�ning equation of a three-sphere
3

, i.e. SUp2q is a space which looks like the

three-sphere S3
and a “ x1 ` ix2, b “ x3 ` ix4 de�ne an embedding of S3

into R4
.

3) In the Up1q example we managed to write the whole group as the complex exponential of

something simple, a real number, which generated the in�nitesimal group elements. Let’s try

something similar here and write

g “ eiA (1.28)

for a matrix A and a group element g of SUp2q. The exponential of a matrix is de�ned via the

series

eiA “
8
ÿ

k“0

piAqk

k!
. (1.29)

Let us �rst impose unitarity g: “ g´1 and see what this implies for A. As pAnq: “ pA:qn we

have

g: “ e´iA
:

, (1.30)

and as furthermore

g´1 “ e´iA (1.31)

we �nd

A: “ A . (1.32)

Such matrices are called ‘Hermitian’ and they play an important role in quantum mechanics.

You may be familiar with exponentials of Hermitian matrices giving unitary ones from there.

Next we investigate

det g “ det eiA (1.33)

Proposition 1.4. For a 2ˆ 2 matrix A, we have det eiA “ eitrA.

Proof. : Let us �rst write

det g “ det eiA “ det lim
nÑ8

p1` iA{nqn “ lim
nÑ8

detp1` iA{nqn

“ lim
nÑ8

rdetp1` iA{nqsn
(1.34)

We can write the determinant explicitely as

det

ˆ

1`
iA

n

˙

“

ˆ

1`
iA11

n

˙ˆ

1`
iA22

n

˙

´
i2A21A12

n2
“ 1`

itrA

n
` ... , (1.35)

3
A sphere of dimension n is the set of points in Rn`1

for which x21 ` x
2
2 ` ...` x

2
n`1 “ 1.
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where the dots stand for terms of order n´2. In the limit n Ñ 8 these terms are subleading

and we hence have

det g “ det eiA “ lim
nÑ8

p1` i trA{nqn “ eitrA . (1.36)

Exercise 5. For a general k ˆ k matrixM show that

a) det eM “ etrM .

b) Use this to conclude that for g “ eM we have log det g “ tr log g . Here the log of a
matrix is de�ned as the inverse function of the exponential.

The requirement det g “ 1 now implies eitrA “ 1 which gives trA “ 0 4
. If we can write

g P SUp2q as a complex exponential, we hence have to use traceless hermitian 2ˆ 2 matrices

in the exponent. For g P SUp2q writing g “ eiA implies that A P T where

T “
 

A|A: “ A, trA “ 0
(

. (1.37)

Whenever A,B are in T , then also aA` bB for a, b, P R are in T : we have

trpaA` bBq “ a trA` b trB “ 0

paA` bBq: “ āA: ` b̄B: “ aA` bB .
(1.38)

This means that T is a vector space over the real numbers. It is not too hard to convince

yourself
5

that T has dimension 3. This is a real vector space which contains (in general)

complex matrices, so it really pays o� to be able to think of vector spaces abstractly! We can

make the following choice of basis vectors for T

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (1.39)

These three matricess are know as the ‘Pauli matrices’.
6
. By a direct computation one can

work out that

4
We could also allow matrices with trace a multiple of 2π at this point. These can be ignored for the following

reason: modulo the (traceless) Pauli matrices, any such matrix is of the form nπ1 for n P Z. This commutes with

any other matrix and exponentiates to ˘1. We hence get nothing new this way.

5
Try to write down the most general complex 2 ˆ 2 matrix which obeys A: “ A and trA “ 0 in terms of

real numbers.

6
They are named after Wolfgang Pauli who introduced them in the 1920s to describe the spin of electrons.

Why and how that works will be explained later.

https://en.wikipedia.org/wiki/Wolfgang_Pauli
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Proposition 1.5. The Pauli matrices satisfy

rσi, σjs “ 2iεijkσk (1.40)

where ra, bs ” ab´ ba is the commutator.

Proof. :

Exercise 6. Show that
rσi, σjs “ 2iεijkσk (1.41)

where σi are the Pauli matrices.

Note in particular that di�erent g P SUp2q in general do not commute, i.e. in general g1g2 ‰
g2g1. Similarly, the Pauli matrices do not commute with each other, so that in general

eiα1σ1eiα2σ2 ‰ eiα2σ2eiα1σ1

eiα1σ1eiα2σ2 ‰ eiα1σ1`iα2σ2
(1.42)

SUp2q is an example of a non-abelian Lie group.

We can form group elements of SUp2q by exponentiating arbitrary real linear combinations

of the Pauli matrices. Let α “ pα1, α2, α3q and write

gpαq “ eiαjσj “ eiασ αk P R. (1.43)

As αkσk is traceless and Hermitian for any real α, it follows that g P SUp2q.

We hence get a group element for every vectorα P R3
. This map cannot possibly be injective

as R3
is not the same as S3

. To make contact with the earlier characterization SUp2q » S3
let

us try to work out what kind of coordinates the αk give us. As a warmup, let us �rst consider

gppα1, 0, 0qq “ eiα1σ1 “

8
ÿ

k“0

piα1σ1q
k

k!
“

ÿ

k“even

piα1σ1q
k

k!
`

ÿ

k“odd

piα1σ1q
k

k!
(1.44)

As σ2
i “ 1, all of the matrix powers in the sum over even k are equal to 1, and all of the matrix

powers in the sum over odd k are equal to σ1. Hence

eiασ1 “
ÿ

k“even

piα1q
k

k!
1`

ÿ

k“odd

piα1q
k

k!
σ1 “ cospα1q1` i sinpα1qσ1 . (1.45)
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You can think of this as a generalization of Euler’s formula eiφ “ cosφ ` i sinφ. Note in

particular that α1 ` 2π maps to the same group element as α1, so we see the non-injectivity

of the exponential map explicitely.

As σ1 commutes with itself, we can write

gppα1, 0, 0qqgppα
1
1, 0, 0qq “ eiα1σ1eiα

1
1σ1 “ eipα1`α11qσ1 “ gppα1 ` α

1
1, 0, 0qq (1.46)

so that matrices of this form are a subgroup of SUp2q:

De�nition 1.8. For a groupG,H Ă G is called a subgroup if the elements ofH form a group

with the group composition of G.

Let us quickly check that elements of the form gppα1, 0, 0qq form a group in their own right

(we already know all of them are in SUp2q). I copied the de�nition for you so we can check

i) there is an identity element e in G such that x ˝ e “ e ˝ x “ x for all x P G;

Ø

we simply use α “ 0 which gives gpp0, 0, 0qq “ 1

ii) if x, y P G then x ˝ y P G;

Ø

this works as gppα1, 0, 0qqgppα
1
1, 0, 0qq “ gppα1 ` α

1
1, 0, 0qq

iii) px ˝ yq ˝ z “ x ˝ py ˝ zq for all x, y, z P G;

Ø

matrix multiplication is associative

iv) for each x P G, there exists an inverse x´1 in G such that x´1 ˝ x “ e;
Ø

we have gppα1, 0, 0qqgpp´α1, 0, 0qq “ 1

This subgroup ‘looks like’ or ‘works in the same way’ as Up1q parametrized as eiφ if we set

α1 “ φ. A more precise way to say this is to use the word group isomorphism:

De�nition 1.9. For two groups G and H , a group homomorphism is a map f : G Ñ H
such that

fpg1 ˝G g2q “ fpg1q ˝H fpg2q (1.47)
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Note that in this de�nition we are using the group composition in G on the left side and the

group composition in H on the right side. The map f is hence compatible with the group

structures of G and H . Note further that this de�nition does not assume that f is injective or

surjective.

Example 1.1. The map

g : xÑ gpxq “ ex (1.48)

is a group homomorphism from C (with composition ˝` being addition) to C˚ (with compo-

sition ˝˚ being multiplication). We can check that for every x, y P C we �nd

gpx ˝` yq “ gpx` yq “ ex`y “ exey “ gpxqgpyq “ gpxq ˝˚ gpyq . (1.49)

Saying that this is a homomorphism is just another way to express the ‘nice’ property of the

exponential that ex`y “ exey.

Exercise 7. Let f be a homomorphism between two groups G and H . Show that

a) fpeGq “ eH where eG and eH are the unit elements of G and H , respectively.

b) fpg´1q “ fpgq´1 for any g P G.

Exercise 8. Up2q is the group of complex 2 ˆ 2 matrices g such that g: “ g´1, with the group
composition being matrix multiplication. Let F be the map which sends

g ÞÑ det g . (1.50)

Show that F is a group homomorphism from Up2q to Up1q.

De�nition 1.10. For two groups G and H , a group isomorphism is a map f : G Ñ H
which is one-to-one and a group homomorphism.

If two groups have a group isomorphisms, they are the same: the have the same elements that

have the same group composition rule, i.e. in the present case we can identify

eiφ Ø gppφ, 0, 0qq , (1.51)

using the earlier presentation of Up1q. As the composition rule of the elements gppα1, 0, 0qq is

the same as that of elements of Up1q this is a group isomorphism. It is hence fair to say that

there is a Up1q sitting inside of SUp2q.
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We can summarize the above observation as

Proposition 1.6. There is an injective group homomorphism Up1q Ñ SUp2q, the image of

which is a Up1q subgroup of SUp2q.

A similar computation shows that the same works not just for α of the form α “ pα1, 0, 0q
but for any subset of αs that can be written as α “ tα0, so that there are in fact in�nitely

many Up1q subgroups of SUp2q. These deserve a special name:

De�nition 1.11. A subgroup Gα of SUp2q whose elements are of the form

Gα “ te
itασ

|t P Ru (1.52)

for some �xed α is called the one-parameter subgroup generated by α.

What is nice about the parametrization in terms of exponentials of matrices is that we can

easily work out all in�nitesimal elements. When α is very small, we can approximate by

gpαq » 1` iαjσj “ 1` iα ¨ σ . (1.53)

Equivalently, the space of tangent vectors at g “ 1 is spanned by the σj (times i), see �gure

1.3 and a general vector is written as iα ¨ σ. Convince yourself that this is indeed a vector

space. As before, we can get back elements of SUp2q by an in�nite iteration of in�nitesimal

elements:

gpαq “ lim
nÑ8

p1` iα ¨ σ{nqn “ eiασ . (1.54)

What is more, we can think of recovering any in�nitesimal generator iασ by considering a

path

sptq “ eitασ (1.55)

in SUp2q and taking a derivative w.r.t t evaluated at t “ 0 (which corresponds to 1 P SUp2q:

Bsptq

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“
B

Bt
eitασ

ˇ

ˇ

ˇ

ˇ

t“0

“ iασ . (1.56)

A natural question that is hopefully on your mind is the surjectivity of the map from iασ to

elements of SUp2q. Can we reach any element via the exponential? We can approach this by

brute force and start working out
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Figure 1.3: For the path gpptα1, 0, 0qq in S3
, taking a derivative w.r.t t at 1 produces a tangent

vector α1σ1.

Exercise 9. a) Show that
σiσj ` σjσi “ 2δij1 (1.57)

where σi are the Pauli matrices.

b) Show that

gpαq “ eiασ “

ˆ

cospaq ` i sinpaqa3{a sinpaqa2{a` i sinpaqa1{a
´ sinpaqa2{a` i sinpaqa1{a cospaq ´ i sinpaqa3{a

˙

(1.58)

where a “
a

α2
1 ` α

2
2 ` α

2
3. [hint: write α “ an with |n|2 “ 1, i.e. nj “ αj{a]

As expressions of the type AB `BA appear frequently they are given a special name:

De�nition 1.12. For two matrices A,B, the anti-commutator t., .u is

tA,Bu “ AB `BA . (1.59)

The remaining question is if we can choose an α that maps to any element of SUp2q. We will

examine if every point on the S3
that is SUp2q is in the image of this map. We write a general

group element as

g “

ˆ

x1 ` ix2 x3 ` ix4
´x3 ` ix4 x1 ´ ix2

˙

(1.60)
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where xi P R subject to x21 ` x22 ` x23 ` x24 “ 1. First note that x1 P r´1, 1s. Fixing x1 gives

a slice of S3
that is a two-sphere of radius

a

1´ x21. Comparing to the form of gpαq we can

always choose a such that cospaq “ x1. Note that this is not unique, but there always exists

and a such that this is satis�ed for any x1. The other variables are mapped as

¨

˝

x2
x3
x4

˛

‚“
sinpaq

a

¨

˝

α3

α2

α1

˛

‚ . (1.61)

The question is now if we can always �nd α such that this equation is satis�ed for every

x1, x2, x3, x4 subject to x21 ` x
2
2 ` x

2
3 ` x

2
4 “ 1. As we have already set cospaq “ x1, this �xes

the length of α to be

α2
“ α2

1 ` α
2
2 ` α

2
3 “ a2 (1.62)

which is a two-sphere as well. The points on this two-sphere are mapped to the two-sphere

x22 ` x
2
3 ` x

2
4 “ 1´ x21 (1.63)

by (1.61), which is a one-to-one map. This is consistent as

x22 ` x
2
3 ` x

2
4 “ 1´ x21 “ 1´ cospaq2 “ sinpaq2 “

sinpaq2

a2
pα2

1 ` α
2
2 ` α

2
3q . (1.64)

Hence we have shown that

Theorem 1.1. Every element of the group SUp2q can be written as

gpαq “ eiα¨σ (1.65)

where σj are a basis for in�nitesimal transformations (which can be chosen as the matrices (1.39))
and αj P R .

Exercise 10. Let G be the set of complex 2ˆ 2 matrices of the form

g “

ˆ

α β
´β̄ ᾱ

˙

for α, β P C and |α|2 ` |β|2 ‰ 0.

a) Show that G is a group using matrix multiplication as the group operation.

b) Show that SUp2q is a subgroup of G.

c) Show that V :“ tγ|g “ eiγ P Gu is a vector space and �nd a basis for V .
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Let’s back up again and see what this example has taught us:

a) We de�ned a continuous group by demanding that its action on vectors in C2
leaves the

inner form invariant.

b) This group does not have a one-to-one map to R3
, it has a ‘non-trivial topology’ and can

be identi�ed with S3
. Again there is the special point 1 lying on this sphere.

c) We found that in�nitesimal transformations are tangent to the group at the identity

element. We can recover group elements by iterating in�nitesimal transformations and

taking a limit. This is the same as exponentiating the in�nitesimal element and gives us a

surjective map toSUp2q. This is quite nice, as it means we can do all of our computations

using the algebra of Pauli matrices σi instead of the group SUp2q.

1.1.4 SOp3q vs. SUp2q

De�nition 1.13. The group SOp3q is the group of real 3ˆ 3 matrices S such that ST “ S´1

and detS “ 1.

In this example, we will explore the global structure of SOp3q by examining a clever map from

SUp2q to SOp3q. Let’s take the components of v and rearrange them in a 2ˆ 2 matrix Mv:

Mv “

ˆ

v3 v1 ´ iv2
v1 ` iv2 ´v3

˙

. (1.66)

This is just a funny way of writing R3
. Note that addition of vectors in R3

becomes addition

of matricesMv, and multiplication of vectors in R3
by a real number c becomes multiplication

of Mv by c.

Now consider

F pgq : Mv Ñ gMvg
:
“ F pgqrMvs (1.67)

for g P SUp2q. What this means is that for every g in SUp2q, we get a map F pgq acting on R3
.

Proposition 1.7. F is a group homomorphism from SUp2q to SOp3q.

Proof. : problem class 1
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REMARK: This homomorphism is not injective (it is not a group isomorphism), we have

F pgq “ F p´gq . (1.68)

as in both cases we act in the same way on R3
:

F pgq :Mv Ñ gMvg
:

F p´gq :Mv Ñ p´gqMvp´gq
:
“ gMvg

:
(1.69)

The element g “ ´1 is in its kernel
7
,

F p´1q rMvs “ ´1Mvp´1q
:
“Mv (1.70)

which is 1 P SOp3q.

You might wonder if the group homomorphism from SUp2q to SOp3q is surjective. Consider

the following simple example of how a one-parameter subgroup of SUp2q is mapped:

gp0, 0, θq “

ˆ

eiθ 0
0 e´iθ

˙

“ eiθσ3 . (1.71)

We have

gp0, 0, θqMvgp0, 0, θq
:
“

ˆ

eiθ 0
0 e´iθ

˙ˆ

v3 v1 ´ iv2
v1 ` iv2 ´v3

˙ˆ

e´iθ 0
0 eiθ

˙

“

ˆ

v3 e2iθpv1 ´ iv2q
e´2iθpv1 ` iv2q ´v3

˙ . (1.72)

As

e2iθpv1 ´ iv2q “ pcosp2θq ` i sinp2θqqpv1 ´ iv2q

“ v1 cosp2θq ` v2 sinp2θq ´ ipv2 cosp2θq ´ v1 sinp2θqq
(1.73)

this map sends

¨

˝

v1
v2
v3

˛

‚ ÞÑ

¨

˝

v1 cosp2θq ` z2 sinp2θq
v2 cosp2θq ´ z1 sinp2θq

v3

˛

‚“

¨

˝

cosp2θq sinp2θq 0
´ sinp2θq cosp2θq 0

0 0 1

˛

‚

¨

˝

v1
v2
v3

˛

‚ . (1.74)

In other words

Φpgp0, 0, θqq “

¨

˝

cosp2θq sinp2θq 0
´ sinp2θq cosp2θq 0

0 0 1

˛

‚ . (1.75)

7
For a group homomorphism, the kernel are those elements send to the identity element.
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This g hence maps to a rotation around the v3 axis by 2θ.
8

Similarly, one can show that

rotations around other axes are generated by using other group elements of SUp2q; e.g. for a

rotation around the axis v0 simply use eiθv0¨σ .

If we can write any element of SOp3q as a composition of rotations around �xed axis, such

as v1, v2 and v3, we have hence proven that the homomorphism from SUp2q to SOp3q is

surjective. This is indeed true as the following proposition shows:

Proposition 1.8. Every element R of SOp3q can be written as a product of three rotations

Rvipφiq around �xed axis vi by angles φi: R “ Rv1pφ1qRv2pφ2qRv3pφ3q.

Proof. : see [Sternberg, 1995]. You can also �nd a proof of this in many texts on mechanics.

Theorem 1.2. There is surjective group homomorphism from SUp2q to SOp3q. It is not injective,
and its kernel is the cylic group with two elements: Z2 “ t1,´1u P SUp2q. As there are exactly
two points inSUp2q that aremapped to each point inSOp3q, this map is called a (double) covering
map. We can write

SOp3q » SUp2q{Z2 “ S3
{Z2

where the Z2 acts by identifying antipodal points on the three-sphere.

Proof. : We have shown above that it is a non-injective homomorphism with kernel t1,1u and

that any rotation around a �xed axis is in the image. As any element in SOp3q can be written

as a product of three rotations, any element of SOp3q is in the image of this homomorphism,

it is surjective. We have also seen that SUp2q is isomorphic to S3
. Antipodal points on S3

correspond to sending xi Ñ ´xi for any solution to

x21 ` x
2
2 ` x

2
3 ` x

2
4 “ 1. (1.76)

As

g “

ˆ

x1 ` ix2 x3 ` ix4
´x3 ` ix4 x1 ´ ix2

˙

(1.77)

g and´g are hence antipodal points in SUp2q. We have seen that g and´g are mapped to the

same element of SOp3q. If we hence identify g and ´g in SUp2q, this group homomorphism

becomes a group ismorphism. As the map from SUp2q to SOp3q is surjective, we conclude

that SOp3q » SUp2q{Z2 “ S3{Z2. ˝

8
Recall that θ going from 0 to 2π was a full Up1q inside SUp2q. Under this map this is mapped to a rotation

that goes with double speed from 0 to 4π. This is how it had to be such that ´1 in SUp2q, which is θ “ π, is

mapped to 1 in SOp3q and is a consequence of the map F being two-to-one.
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REMARK:
˚

One may be forgiven to think that the group SOp3q of rotations in R3
is a two-

sphere by imagining all the positions that a vector v in R3
can be rotated to. This is NOT

true, however, as there are non-trivial rotations that leave the chosen vector v invariant. The

subgroup of SOp3q that leaves any v ‰ 0 invariant is a Up1q “ S1
which miraculously

combines with S2
to form S3{Z2. Studying the same for the double cover SUp2q reveals that

S3
is in fact a �bration of S1

over S2
. This is called the Hopf �bration and is very pretty.

The topology of SUp2q vs. that of SOp3q ˚

As a �nal observation, let us examine the topology of those two groups by considering closed

loops, i.e. continuous maps φ : r0, 1s Ñ G such that φp0q “ φp1q. For SUp2q there are no

non-trivial such maps: any closed loop in S3
can be shrunk to a point. Such spaces are called

simply connected.

Now consider a path going from 1 to ´1 in SUp2q. Under F , this maps to a closed path

in SOp3q that starts and ends at 1. Let us see if we can shrink this curve in SOp3q. If we

continously deform this curve, it will still lift to an open curve in SUp2q, although now it may

go from g to ´g in SUp2q. But this means there is no way of shrinking it! Hence SOp3q is

not simply connected. If we consider looping twice around any loop in SOp3q, we can lift to a

closed curve in SUp2q, which we already know can be collapsed. We have hence shown that

the fundamental group of SOp3q contains a Z2 element (in fact, this is the whole fundamental

group). For a given manifold with non-trivial fundamental group, there is a unique way to

�nd a covering space (called universal cover) that is simply connected: SUp2q is the universal

cover of SOp3q.

In this example we have seen:

a) Another continuous group de�ned by demanding that its action on vectors in R3
leaves

the inner form invariant.

b) This group has an even more interesting topology; it is isomorphic to S3{Z2.

c) Curiously, we found this via a surjective homomorphism from SUp2q to SOp3q. This

in particular gave us an action of SUp2q on vectors in R3
instead of the usual action on

C2
. This came at the price that g and ´g act in the same way though.



TOPIC 1. LIE GROUPS AND LIE ALGEBRAS 30

In the motivating examples, we have mostly used a fairly pedestrian approach, but have al-

ready discovered many interesting things. In the following, these will be appropriately for-

malized and generalized.

1.2 Di�erentiable Manifolds
The groups we have investigated in our motivating examples were fundamentally di�erent

from vectors spaces. Whereas we could cover parts using (subsets) of Rn
, we could not �nd

one-to-one maps to these as a whole. As you might anticipate, such a behaviour is not exclusive

to continuous groups, but gives rise to the more general notion of a di�erentiable manifold.

In this section, we will introduce these objects and give some more elementary examples. The

basic idea is that a di�erentiable manifolds X can be covered by open sets for each of which

we can �nd a continuous one-to-one map to an open set sitting in a vector space, i.e. X is

sewn together from things that we know how to handle.

For ease of exposition and in order not to venture too far into the realms of topology
9

we will

restrict ourselves to manifolds that are given to us as subsets of Rm
, i.e. submanifolds of Rm

.

If you like you can try to think about how what we are saying here might be generalized, or

take a look at e.g. [Nakahara, 2003]. Considering subsets of Rm
is exactly the setup we need

to study when talking about continuous groups of matrices. The set of all k ˆ k matrices is

isomorphic to Rm
with m “ k2, so that those k ˆ k matrices forming some given group G

will naturally sit inside Rm
.

Let us start by reviewing the notions of open and closed sets inRm
. An open ball inRm

centred

at p is the set

Brppq “ tx P Rn
| ‖ x´ p ‖2ă r2u . (1.78)

Using this, we can de�ne open and closed sets as

De�nition 1.14. A subset U of Rn
is open if for every point p in U there is an r such that

Brppq is fully contained in U .

De�nition 1.15. A subset U of Rn
is closed if its complement RnzU is open.

Note that not every subset ofRm
has to be either closed or open. Furthermore, these properties

are not mutually exclusive. Take some time to think of some examples that are open but not

closed, closed but not open, not open and not closed, or both open and closed. De�ning what

we mean by open and closed subsets of a given set is called de�ning a topology, and the above

is called the standard topology of Rm
.

9
For a lively introduction to elementary topology I can recommend the book [Jänich and Levy, 1995].
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Exercise 11. Which of the following sets are closed in the standard topology of Rm? Which are
open?

a) t0 ă x ă πu Ă R with coordinate x

b) tx1 ă ´2u Ă R2 with coordinates px1, x2q

c) t0 ă x ď πu Ă R

d) t0 ă x1 ă 1u Ă R2 with coordinates px1, x2q

e) Rn Ď Rn

f) tpx1, x2q Ă R2 |x21 ď 42´ x22u Ă R2 with coordinates px1, x2q

g) tpx1, x2q|x21 ` x
2
2 “ 1u Ă R3

An important property of the notion of openess is that

Proposition 1.9. Arbitrary unions and �nite intersections of open sets in Rm
are open again.

For closed sets of Rm
it consequently works the opposite way: arbitrary intersections and

�nite unions are closed again.

Proof. :

Exercise 12. Prove that arbitrary unions and �nite intersections of open sets in Rm are again
open. Why is the intersection of an in�nite number of open sets not open in general ?

We now want to be able to talk about spaces X sitting inside Rm
. First we need to know what

are open sets of X , i.e. introduce a topology. This is easy: we can simply inherit the notions

of open and closed from Rm
:

De�nition 1.16. For a subset X of Rm
we de�ne the induced topology by declaring that

V Ă X is open if V “ U X X with U open in Rm
. Closed sets of X are then de�ned as

complements (in X) of open sets of X . This turns X into a topological space.
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Example 1.2. Let us consider S1 Ă R2
de�ned by x21 ` x

2
2 “ 1. By intersecting S1

with open

balls we obtain open segments on S1
. Writing x1 “ cosφ, x2 “ sinφ, these are all of the form

φ1 ă φ ă φ2 for some φ1, φ2. Of course this is what one would have naively considered open

sets anyway. Arbitrary unions and �nite intersections of these are then again open, as is H

and all of S1
.

Figure 1.4: An open set of S1 Ă R2
obtained by intersecting with an open Ball. Note that this

intersection is not an open set in R2
.

Given the notion of a topological space allows us to de�ne what we mean by continuous:

De�nition 1.17. A map f : X Ñ Y between topological spaces X and Y is called continu-
ous if the set f´1pUq is open in X whenever U is open in Y .

Similarly, a map f : UX Ñ UY between open sets UX Ă X and UY Ă Y is called continuous
if for all V Ď U the set f´1pV q is open in X whenever V is open in Y .

For maps f : Rn Ñ Rm
and using the standard topology, this agrees with the usual εδ de�ni-

tion from analysis.

De�nition 1.18. A one-to-one map f : X Ñ Y between topological spacesX and Y is called

a homeomorphism if both f and f´1 are continuous.

These are the maps that preserve the structure of topological spaces.

We are now ready to de�ne di�erentiable manifolds sitting inside Rm
.
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De�nition 1.19. A subset X of Rm
with the induced topology is an n-dimensional di�eren-

tiable manifold if the following conditions are met

i) X is covered by open sets Ui Ă X and homeomorphisms φi that map Ui to an open

subset φipUiq of Rn
. These are called coordinate charts or patches. The collection of

patches pUi, φiq is called an atlas.

ii) We only need countably many Ui to cover all of X .

iii) The coordinate changes φi ˝φ´1j and their inverses φj ˝φ
´1
i are C8 (‘smooth’) in their

domains, i.e. they are continuous one-to-one maps that have in�nitely many continuous

derivatives.

Figure 1.5: Using the φi we can make a map of X using open subsets of Rn
.

The property that we can cover X by open sets, each of which ’looks like’ an open set in Rn

poses certain restrictings on what X can look like. For example, X “ txy “ 0u Ă R2
, the

union of two lines x “ 0 and y “ 0 meeting at the origin, is not a manifold. Using the topology

induced from R2
, there is no issue to de�ne coordinates away from the point py, xq “ p0, 0q,
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Figure 1.6: The shape on the left is a manifold, the one on the right is not.

we just cut out a little branch and map it to an open set in R. However any open setU contain-

ing the point py, xq “ p0, 0q also contains (a small piece at least from) both branches. Hence

these open sets look like a cross, which is radically di�erent from any open subset of R. There

cannot be any homeomorphism to an open subset of R for such a U .

We can make a slightly more detailed argument about why that is as follows: choose a point

pa on the line x “ 0, and an open interval on xy “ 0 which connects it to p0, 0q, and then to

a second point pb on the line x “ 0 beyond p0, 0q. Using that we want a continuous map to

R, this interval must be mapped to an open interval in R and p0, 0q goes to 0 P R (say). The

image of the interval on one branch gives us an open interval in R. Its inverse image must be

an open set as well, as we need our coordinate map to be a homeomorphism. The open sets

containing p0, 0q all contain points on the other branch as well, so it needs to be mapped to

our interval Ă R as well. But this cannot be as we need a 1-1 map. Note that this problem

disappears as soon as you either drop that our map and its inverse are continuous, or that it

is 1-1.

Exercise 13. Consider the sets of points in R2 with coordinates px, yq de�ned implicitely by the
following relations

a) y “ x3

b) xy “ c

c) x2 ` y4 “ 0

d) x ě y

e) y2 ` x3 ´ 3x´ c “ 0
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Using the induced topology from R2, decide in each case if it is a di�erentiable manifold. For
relations containing a constant c, decide for which value of c it is a di�erentiable manifold.

Example 1.3. Let us try to see how we can make a circle into a di�erentiable manifold. The

�rst thing to notice is that we need to choose a topology O on the set teiψ|ψ P Ru. As Up1q
naturally sits inside C » R2

, we can use this to de�ne a topology. Using the induced topology,

i.e. we declare that

U P Up1q is open if and only if U “ Up1q X V (1.79)

for V open in R2
, turns Up1q into a topological space which is Hausdor�. The properties we

need to check are inherited from R2
being a Hausdor� topological manifold.

We already saw that we can write

g “ eiψ (1.80)

which however does not give us good coordinates: gp0q “ gp2πq “ 1 for example. Note that

it would be a bad idea to let ψ P p´π..πs. This would not be an open set, so we cannot use this

as a coordinate patch. Here is why coordinate patches are de�ned that way: even though this

would give a one-to-one map to Up1q, we still cannot do calculus on Up1q by doing calculus

on p´π..πs. A smooth function on p´π..πs would not even give us a continuous function on

Up1q unless the limit of its value when going ´π equals its value at π.

Let us hence get rid of the multivaluedness of the coordinate ψ by restriciting its range such

that ψ P p´π..πq. Now we have a one-to-one map from the open interval p´π..πq to all of

Up1q except the point g “ ´1. To make sure we can cover all of Up1q by coordinates, we

hence need a second patch. Let us set g “ eiπ`iθ and again let θ P p´π..πq. Now we can cover

all of Up1q except g “ 1. In summary, we have

g “ eiψ , φ P p´π..πq

g “ eiπ`iθ , θ P p´π..πq
(1.81)

However, we can now describe all points except 1,´1 in two ways using either ψ or θ. The

coordinate changes are

ψ “ π ` θ , θ ă 0

ψ “ ´π ` θ , θ ą 0
(1.82)

Now we can use the open intervals described by ψ and θ to construct functions on Up1q, if the

functions we consider agree on the overlap region g ‰ 1,´1. If it bothers you that the overlap

region is composed of two disconnected pieces, it is not di�cult to introduce more patches

such that the overlap between each pair is either empty or a single interval. Try to write this

down clearly for 3 or 4 patches. Note in particular that the choice above in which every patch

covers all but a single point is somewhat special.
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Example 1.4. ˚ Manifolds and the implicit function theorem.

Figure 1.7: Using the implicit function theorem naturally recovers the abstract notion of a

manifold for implicit surfaces fpx, y, zq “ 0.

We can describe a subspace X of R3
given by the vanishing of a scalar function fpx, y, zq:

X : tpx, y, zq P Rn
|fpx, y, zq “ 0u . (1.83)

as a manifold as follows. By the implicit function theorem (see AMV II) we can �nd a function

gpx, yq such that fpx, y, gpx, yqq “ 0 in a neighboorhood V Ă R3
of a point x0, y0, z0 where

Bf{Bzpx0, y0, z0q ‰ 0. Let us call Û “ V X X and use x̂, ŷ as coordinates in R2
. For a point

p “ px, y, zq in U we set

φ̂ : px, y, zq Ñ px̂, ŷq (1.84)

If Bf{Bzpx0, y0, z0q “ 0 but e.g. Bf{Bxpx0, y0, z0q ‰ 0 we can use the same theorem for

x “ hpy, zq in a patch Ũ :

φ̃ : px, y, zq Ñ pỹ, z̃q . (1.85)

Recalling that z “ gpx, yq and h “ py, zq, the coordinate changes are given by

φ̂ ˝ φ̃´1pỹ, z̃q “ φ̂phpy, zq, y, zq “ phpy, zq, zq (1.86)

and

φ̃ ˝ φ̂´1px̂, ŷq “ φ̃px, y, gpx, yqq “ py, gpx, yqq . (1.87)

A sketch of this situation is given in �gure 1.7. Exercise: using the above strategy, �nd coor-

dinate patches and coordinate changes on the two-sphere S2
where f “ x2 ` y2 ` z2.
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The only points px0, y0.z0q at which this strategy fails is when

fpx0, y0, z0q “ 0

Bf{Bxpx0, y0, z0q “ Bf{Bypx0, y0, z0q “ Bf{Bzpx0, y0, z0q “ 0 .
(1.88)

Hence X can not be given the structure of a di�erentiable manifold at such points. These

points are called singularities of the surface fpx, y, zq “ 0.
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Another concept which we encountered in the examples we studied was that of a tangent

vector. The way we constructed these was simple and can be immediately generalized. First

we need to introduce paths.

De�nition 1.20. A path is a continuous map S from a open interval pa, bq Ă R to X . Letting

t “ pa, bq Ă R we can write this as

S : t ÞÑ qptq P X , (1.89)

where qptq is a description of our path using the coordinates on Rm Ą X . We furthermore

demand that qptq is a di�erentiable function from S to Rm
.

De�nition 1.21. A tangent vector at p is the derivative of a path passing through p with

respect to its parameter t, evaluated at p. Assuming that t0 is such that qpt0q “ p we can

write

TppSq :“
Bqptq

Bt

ˇ

ˇ

ˇ

ˇ

t0

. (1.90)

In the above de�nitions, we have used that the manifold X in question is realized as a sub-

manifold of Rm
, which allows us to write tangent vectors conveniently as sitting inside Rm

.

Given the de�nition of a manifold with coordinate charts we could also use the coordinates

obtained this way to describe tangent vectors. While this is the superior perspective for more

abstract and far-reaching applications to the notion of tangent vectors and, more generally,

tensors, we’ll stick to this more pedestrian approach.

Example 1.5. Tangent vectors of SUp2q at p “ 1 have the form i
ř

j αjσj with σj the Pauli

matrices and αj P R. This can be seen by writing down a path

S : tÑ eitαjσj . (1.91)

which passes through 1 at t “ 0.

We now have

T1pSq “
B

Bt
eitαjσj

ˇ

ˇ

ˇ

ˇ

t“0

“ iαjσj . (1.92)

Proposition 1.10. The tangent vectors TppSq at a point p form a real n-dimensional vector

space TpX , the tangent space at p.

Proof. : To show this, we need to check that (i) both multiples c T pSq for v P R and (ii) sums

T pSq ` T pS 1q also satisfy our de�nition of what a tangent vector is. Finally, we need to show
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that (iii) this vector space has a basis of dimension n. We will do this in a local patch where

we can choose coordinates and denote the image of p by x0.

i) Given a path S : xiptq that de�nes a tangent vector rTppSqsi “ Bxiptq{Bt|t0 at p, i.e.

φppq “ x0 we can consider the path Sc de�ned by xpctq. This path also runs through p
and the components of its tangent vector are

rTppScqsi “
Bx1ipctq

Bt

ˇ

ˇ

ˇ

ˇ

x0

“ c
Bx1iptq

Bt

ˇ

ˇ

ˇ

ˇ

x0

“ c rTppSqsi . (1.93)

For any tangent vector, there is hence another one with components that are a rescaled

by a real number c.

ii) Given two tangent vectors at p associated to paths S (with coords xptq) and S 1 (with

coords x1ptq), we can form the following path S2 (again in local coords)

x2ptq “
1

2
pxp2tq ` x1p2tqq (1.94)

As xptq and x1ptq both pass through x0, x
2ptq does so as well. At x0 we can compute

rTppS
2
qsi “

Bx2i ptq

Bt

ˇ

ˇ

ˇ

ˇ

x0

“
1

2

˜

Bxip2tq

Bt

ˇ

ˇ

ˇ

ˇ

x0

`
Bx1ip2tq

Bt

ˇ

ˇ

ˇ

ˇ

x0

¸

“ rTppS
1
qsi`rTppS

2
qsi (1.95)

iii) To see this, note that we can choose paths that have xiptq “ t and all other components

vanishing. For such paths

Bxptq

Bt

ˇ

ˇ

ˇ

ˇ

x0

“ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0q , (1.96)

with an entry only at the ith component. There are hence n linearly independent ele-

ments.

Exercise 14. a) For a path px1, x2q “ pcos t, sin tq on a circle, �nd the tangent vector at
t “ t0.

b) Let t P r´1, 1s. Find the tangent vector of SOp3q associated to the path

t ÞÑ

¨

˝

cos t sin t 0
´ sin t cos t 0

0 0 1

˛

‚ (1.97)

at t “ 0.
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c) Let P be the surface given implicitely by x2 ` y2 ` z “ 0 in R3. Find the tangent space at
the point at px, y, zq “ p0, 0, 0q.

Exercise 15. Consider y “ fpxq sitting inside R2 with coordinates x, y and convice yourself that
the notion of tangent introduced here is the same as the usual one.

Exercise 16. Op1, 1q are the real 2ˆ2matricesO which leave the bilinear form x21´x
2
2 invariant

when acting on x “ px1, x2q as
xÑ Ox .

a) Show that Op1, 1q is a group using matrix multiplication.

b) Find the general form of elements of Op1, 1q.

c) Explain why Op1, 1q is a di�erentiable manifold and write down coordinate charts.

d) Find the tangent space of Op1, 1q at the identity element.



TOPIC 1. LIE GROUPS AND LIE ALGEBRAS 41

1.3 Lie groups
We are now ready to formally welcome Lie groups to these lectures. The idea here is simple:

Lie groups unite the structures of groups and di�erentiable manifolds in a compatible way:

De�nition 1.22. A Lie group is a group that is also a di�erentiable manifold such that the

group operations

˝ :GˆGÑ G px, yq Ñ x ˝ y
´1 :GÑ G xÑ x´1

(1.98)

are di�erentiable maps.

Example 1.6. The group C˚ ” Czt0u is a Lie group under multiplication. The map

px, yq Ñ xy (1.99)

is a di�erentiable map from C˚ ˆ C˚ to C˚, and x Ñ 1{x is a di�erentiable map from C˚ to

C˚. This is an example of an abelian group.

Proposition 1.11. The group GLpn,Rq of real invertible nˆ n matrices is a Lie group under

matrix multiplication. Note that these naturally sit inside Rm
with m “ n2

.

Proof. : Recall the de�nition (from AMV II): a map is di�erentiable if it can locally be approx-

imated by a linear map. Let us see if this is true for matrix multiplication. For two matrices

P,Q P GLpn,Rq, the group operation is the map

pP,Qq Ñ PQ . (1.100)

To examine if this can be approximated by a linear map we change P to P ` ∆P and Q to

Q`∆Q:

pP ` ε∆P , Q` ε∆Qq Ñ pP ` ε∆P qpQ` ε∆Qq “ PQ` Pε∆Q ` ε∆PQ` ε
2∆P δQ

» PQ` εpP∆Q `∆PQq
(1.101)

which is manifestly linear in both ∆P and ∆Q. Cramer’s rule for constructing inverse matrices

similarly shows that P Ñ P´1 is di�erentiable ˝

Theorem 1.3. A closed subgroup H of GLpn,Rq is again a Lie group.

REMARK: The word ‘closed’ does not refer to the group operation on elements being closed

in H (this must be true for H to be a subgroup anyway) but is meant in the topological sense:

H is a closed subset of GLpn,Rq.
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Proof. : An elementary proof of this result can be found in [Howe, 1983].

De�nition 1.23. Lie groups that are closed subgroups of GLpn,Rq are called matrix Lie
groups.

REMARK: Not all Lie groups are of this type, but in this course we will only study those. For

the Lie groups that are most interesting to us, this only excludes a handfull of cases.

We can hence get our hands on a lot of examples by �nding closed subgroups of GLpn,Rq.
We start with

De�nition 1.24. The orthogonal group Opnq is the group of real nˆnmatrices g such that

gTg “ 1 . (1.102)

The special orthogonal group SOpnq is the subgroup of matrices in Opnq that have deter-

minant det g “ 1.

REMARK: The group Opnq consists of those invertible maps acting on a real vector space Rn

such that the canonical inner form stays invariant:

x ¨ y Ñ x1 ¨ y1 “ xT gTg y “ x ¨ y . (1.103)

Corollary 1.1. Opnq and SOpnq are Lie groups.

Proof. : One can quickly check that these are indeed groups, they are obviously subgroups

of GLpn,Rq. The conditions that g has to satisfy in order to be in Opnq only hold true on

the closed subset where the de�ning relation gTg “ 1 holds true. To be more precise, for

any matrix that does not satisfy these equations, we can �nd a little ball GLpn,Rq such that

gTg ‰ 1 for every member of this ball. The complement of Opnq in GLpn,Rq is hence open,

which means that Opnq is closed.

For SOpnq we can repeat a similar argument.

Exercise 17. Make the argument above precise, i.e. show that for every g P GLpn,RqzOpnq, i.e.
g P GLpn,Rq such that gTg ‰ 1, there is an open set Ug containing g such that Ug is entirely
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contained in GLpn,RqzOpnq.

hint: GLpn,Rq inherits its topology from the vector space Vnˆn of real n ˆ n matrices, which
is isomorphic to Rn2 : the n2 entries of such a matrix are just the components of a vector in Rn2

from this perspective. We can hence describe the open ball of radius r around a matrixM with
componentsMij as

BrpMq

#

N P Vnˆn|
ÿ

ij

pNij ´Mijq
2
ă r

+

. (1.104)

REMARK: For g P Opnq it follows that det
`

gTg
˘

“ pdet gq2 “ det1 “ 1. As g is a real

matrix, we hence have det g “ ˘1. The space of such matrices is hence disjoint with two

components, the one that contains the identify (which has det1 “ 1) is called SOpnq and is a

subgroup. The other component is not a subgroup.

REMARK: Conditions such as gTg “ 1 and det g “ 1 are typically called ‘closed conditions’

as the sets they de�ne are closed sets in the vector space of all matrices.

Exercise 18. GLpn,Cq is the group of invertible complex n ˆ n matrices. Show that GLpn,Cq
is a Lie group.

De�nition 1.25. The unitary group Upnq is the group of complex n ˆ n matrices g such

that U :U “ 1. The special unitary group SUpnq is the subgroup of matrices in Upnq that

have determinant det g “ 1.

REMARK: The groupUpnq consists of those invertible maps acting on a complex vector space

Cn
such that the canonical inner form stays invariant:

x̄ ¨ y Ñ x̄1 ¨ y1 “ x̄ ḡTg y “ x̄g:gy “ x̄ ¨ y . (1.105)

Corollary 1.2. The unitary and special unitary groups are Lie groups.

Proof. : These are both closed subgroups of GLpn,Rq by identifying C with R2
. ˝
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1.4 Lie algebras
The idea of a Lie algebra is to formalize the notion of in�nitesimal transformation. We �rst

de�ne Lie algebras abstractly.

De�nition 1.26. ALie algebra g is a vector space together with a bilinear map (‘Lie bracket’)

r¨, ¨s : gˆ gÑ g (1.106)

that is antisymmetric rx, ys “ ´ry, xs, and satis�es the Jacobi identity:

rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0 . (1.107)

for all x, y, z P g.

REMARK: This de�nition does not say if we should think of g as a real or complex vector

space, so one and the same algebra can have di�erent ‘real’ or ‘complex’ forms (or even forms

over other �elds).

Theorem 1.4. Every Lie group comes equipped with a Lie algebra which is equal to its tangent
space at the identity element.

g “ T1G . (1.108)

Proof. : This is already a vector space by construction. For matrix Lie groups, we can simply

take the bilinear form r, s to be the commutator, which clearly satis�es the Jacobi identity.

We will show in lemma 1.1 below that the commutator of two Lie algebra elements indeed

returns a Lie algebra element. The general case requires some more technology we have not

introduced, see [Harris et al., 1991] for details.

Corollary 1.3. The dimension of the Lie algebra (as a vector space) is equal to the dimension of
its Lie group (as a di�erentiable manifold).

Exercise 19. Find the dimension of the group SOpnq by �nding the dimension of its Lie algebra.

Example 1.7. The Lie algebra up1q of Up1q are the purely imaginary numbers and rγ, γ1s “ 0
for all γ, γ1 P up1q.

Example 1.8. The Lie algebra of C˚ are the complex numbers and rγ, γ1s “ 0 for all γ, γ1 in

the Lie algebra
˚

of C˚.
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Example 1.9. The Lie algebra supnq of SUpnqwas found for the case n “ 2 in Section 1.1.3. It

is a real vector space with basis the complex nˆn matrices γ such that γ: “ ´γ and trγ “ 0.

We can use i times the three Pauli matrices σj as basis vectors for n “ 2. Note that while these

have complex entries, this is a real vector space !

Example 1.10. As we have seen before, the group SUp2q is a double cover of SOp3q. This

means that a small neighboorhood of the identity P SUp2q is isomorphic to a small neighboor-

hood of the identity P SOp3q, so that these two groups have isomorphic Lie algebras. You can

also check this explicitely by working out the Lie algebra of SOp3q, see problem classes 2 and

3. We can hence have di�erent groups that have the same Lie algebras.

De�nition 1.27. For any Lie algebra, we can choose a basis ttaudim g
a“1 of so called generators

ta. In this basis the Lie bracket reads

rta, tbs “ fab
ctc pa, b, c “ 1, . . . , dim gq (1.109)

where the fab
c

are called structure constants, which express the component of the Lie bracket

rta, tbs along the generator tc. Repeated indices are summed over.

REMARK: While there are reasons for putting one index up in the expression fab
c
, you can

completely ignore this for now. Just think about fab
c

as producing a number for any a, b, c and

think about the positioning of the indices as a pure convention.

The Jacobi identity,(1.107), implies that

fab
dfdc

e
` fbc

dfda
e
` fca

dfdb
e
“ 0 (1.110)

for the structure constants.

Example 1.11. A basis of the Lie algebra sup2q of SUp2q is given by ta “ iσa for σa the Pauli

matrices. We can work out

riσa, iσbs “ ´rσa, σbs “ ´2εabciσc (1.111)

so that we conclude that fab
c “ ´2εabc for sup2q.

De�nition 1.28. The exponential map is a map exp : gÑ G sending γ P g to

eγ :“
ÿ

k

γk

k!
P G . (1.112)
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REMARK: For every matrix γ P g, one can show that the above indeed converges and that it

is indeed in G if γ is in g, see [Hall, 2003] or the non-examinable box below for a sketch of a

proof.

More on the exponential map˚

Let us explain how the exponential map comes about by taking a slightly more geometric

perspective. Elements of the Lie algebra are associated with elements of the tangent space of

G at the identity and we can think of both Lie algebra elements and Lie group elements as

matrices, which can be multiplied. For any γ P T1pGq, it turns out that

Lpγq|g “ gγ . (1.113)

is a tangent vector at g for any point g P G. This de�nes what is called a vector �eld Lpγq,
i.e. something that attaches a tangent vector to any point onG. The vector �elds we have just

de�ned are called left-invariant vector �elds and have the nice property that

g1Lpγq|g “ g1gγ “ Lpγq|g1g . (1.114)

Now whats important about vector �elds is that one can �ow along with them. E.g. �owing

out from the identity is done by solving the di�erential equation

Bgptq

Bt
“ Lpγq|gptq “ gptqγ . (1.115)

The solution to this �ow is a path

gptq “ etγ , (1.116)

and the fact that we constructed this as a �ow shows that the exponential actually lands in

the group.

You can also understand convergence of the series we used to de�ne the exponential by ob-

serving that any power of γ with produce a matrix with entries that are polynomials in the

components of γ. For k Ñ 8 the k! then grows faster at some point which makes the sum

converge to a �nite value.
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Exercise 20. Consider the set G of matrices

G “

"ˆ

a b
0 c

˙

|a, b, c P R, ac ‰ 0

*

(1.117)

a) Show that G is a Lie group using matrix multiplication as the group composition.

b) Find the Lie algebra g of G.

c) Compute the exponentials of the basis elements of the Lie algebra you have found.

Lemma 1.1. Let G be a Lie group and g be its Lie algebra. We then have

i) gγg´1 P g for all γ P g and g P G.

ii) rγ, δs P g for all γ, δ P g

Proof. : To see the �rst part, let’s try to construct a path that gives us gγg´1 as a tangent vector

upon di�erentiating. We could try

etgγg
´1

“
ÿ

k

pgtγg´1qk

k!
“ g

˜

ÿ

k

ptγqk

k!

¸

g´1 “ getγg´1 . (1.118)

As all of the factors on the rhs are in G, it follows that getγg´1 P G. As getγg´1 is a path in G
that passes through 1 at t “ 0 and

B

Bt
getγg´1

ˇ

ˇ

ˇ

ˇ

t“0

“ gγg´1 (1.119)

it follows that gγg´1 P g. Although we are talking about matrix Lie algebras in this course

where we can just multiply elements g P Gwith elements γ P g, you might feel a little uneasy

about just multiplying them. In this case, you can read the above statement as a de�nition of

what gγg´1 is: it is the Lie algebra element you get from the path getγg´1.

For the second part, consider etγδe´tγ for δ P g. It follows from i) that this is in g for all t. As a

tangent space, the Lie algebra is in particular an n-dimensional vector space which sits inside

the vector space of nˆ n matrices. As such it is closed under taking limits. Hence

lim
tÑ0
petγδe´tγ ´ δq{t “ γδ ´ δγ “ rγ, δs . (1.120)

is in g. ˝



TOPIC 1. LIE GROUPS AND LIE ALGEBRAS 48

A natural question about the exponential map concerns its injectivity and surjectivity. Clearly,

it cannot be injective for every group G. We have already seen it is not for Up1q and SUp2q,
which in turn had to be like that, because this is how these groups become topologically non-

trivial.

It can also not always be surjective as the following simple counter-example shows.

Example 1.12. Elements of the Lie algebra slp2,Rq of SLp2,Rq must obey

eγ “ g (1.121)

for g P SLp2,Rq. This implies that γ is real by taking complex conjugation. Furthermore

det eγ “ etrγ “ 1 (1.122)

implies that γ is traceless. Finally, eγ always maps to SLp2,Rq if the above conditions are met:

the inverse is simply e´γ . The Lie algebra slp2,Rq hence contains traceless real matrices. Now

consider the matrix

g “

ˆ

´4 0
0 ´1{4

˙

P SLp2,Rq (1.123)

We claim there is no element γ P slp2,Rq s.t. eγ “ g.

Proof. : If such an element exists, we can immediately write down a square root of g as

?
g “

e
1
2
γ
. But as we show now, no such square root (in SLp2,Rq) exists. The eigenvalues of g are 4

and 1{4, so there is one eigenvalue of

?
g that is˘2i and another one that is˘1

2
i. However, for

?
g to be in SLp2,Rq it must be a real matrix, so that the eigenvalues are given by an equation

of the form λ2 ` pλ` q “ 0 with p, q real. Hence

λ˘ “ ´p{2˘
a

pp{2q2 ´ q (1.124)

so that there are two eigenvalues which are either real or complex conjugates of each other.

However ˘2i is not real and never the complex conjugate of ˘1
2
i. Hence there is no

?
g such

that p
?
gq2 “ g. But this implies that there cannot be a γ with g “ eγ as could write down

such a

?
g otherwise. ˝

Although it does not hold in general, there are favourable circumstances where the exponential

map is surjective. We have already seen this for SUp2q and SOp3q already (see also exercises).

To spell out the general result clearly, we need one more

De�nition 1.29. A subset of Rn
is called compact if it is closed and bounded, i.e. one can

�nd a ball of �nite size that entirely contains it.
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Example 1.13. Up1q and SUp2q are both compact.

Fact 1.1. The orthogonal and unitary groups Opnq, SOpnq, Upnq, SUpnq are all compact.

Theorem 1.5. If G is a connected, compact matrix Lie group, the exponential map for G is sur-
jective.

Proof. : We only give a sketch, details are found in [Hall, 2003]. The main idea is to observe

that the exponential map is surjective for Up1q and then try to replicate this setting. The cru-

cial step is to show for any compact matrix Lie group G that every element g P G lies inside

some Up1q subgroup of G. Once this ‘torus theorem’ is established, we can simply use the

generators of the Up1q to reach g by the exponential map. ˝

REMARK: It is not true that the exponential map is surjective for compact groups only, e.g.

C˚ is not compact but we can write every element in C˚ as ez for some complex number z.

Classi�cation of compact Lie algebras˚

De�nition 1.30. Lie algebras of compact Lie groups are called compact Lie algebras.

De�nition 1.31. An ideal of a Lie algebra is a subset I Ă g such that rι, xs Ă I for all ι P I
and all x P g.

De�nition 1.32. A simple Lie algebra is a Lie algebra that has no non-trivial ideals.

Theorem 1.6. Any compact Lie algebra can be decomposed into the direct sum of up1q Lie alge-
bras and of simple Lie algebras:

g “ up1q ‘ ¨ ¨ ¨ ‘ up1q ‘ g1 ‘ ¨ ¨ ¨ ‘ gl . (1.125)

Proof. : [Hall, 2003].

Simple Lie algebras were in turn classi�ed by Killing and Cartan, and this classi�cation was

put in its de�nitive form by Dynkin. The matrix Lie algebras form four in�nite series, the so

called classical Lie algebras An “ supn` 1q, Bn “ sop2n` 1q, Cn “ uspp2nq, Dn “ sop2nq.



TOPIC 1. LIE GROUPS AND LIE ALGEBRAS 50

But there are a few more exceptional Lie algebras which are not of matrix type: E6, E7, E8,

F4, G2. See [Cahn, 2014] for a down-to-earth introduction to the subject and [Harris et al.,

1991, Hall, 2003] for a more advanced perspective. The structure of these algebras boils down

to the following pictures, called Dynkin diagrams, which determine the structure constants in

a suitable basis of g.



Topic 2

Representations

Although we have introduced groups in a rather concrete form as subspaces of GLpn,Rq or

GLpn,Cq, we can also drop this association and just keep their abstract structure. Taking this

point of view, we will explore how groups can act on vector spaces, and how their structure

prefers some vector spaces over others, in this section. Such questions belong to a subject

called representation theory, and this is a vast �eld that we will only scratch the surface of.

There is dedicated lecture, MATH4241: Representation Theory IV that gives a more detailed

and general account of this subject. Here, we will take a practical approach and mostly only

explore those aspects of direct use to us.

2.1 Generalities and Basic Examples

De�nition 2.1. For a vector space V , we will denote the group of invertible linear maps

acting on V by GLpV q. Hence for V “ Rn
, GLpV q “ GLpn,Rq and for V “ Cn

, GLpV q “
GLpn,Cq.

De�nition 2.2. A representation of a group G is a group homomorphism r : GÑ GLpV q,
where V is a �nite-dimensional (real or complex) vector space.

REMARK: What this means is that we ‘represent’ the group G by matrices in GLpV q. Given

r, we can hence act with the groupG on vectors in V using linear maps. This is often expressed

as

• ‘G acts on (elements of) V in the representation r’

51
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• ’elements of V transform under G in the representation r’

• ‘elements of V live in the representation r’

Although a representation is de�ned as the map r which takes elements of G to elements of

GLpV q, it is quite common to speak about the elements in V that the image of G in GLpV q
acts on as a ‘representation’ in the physics literature.

When we de�ne a representation we have essentially two options, and we will see examples

of both:

• We explicitely write some matrices Mpgq in GLpV q for any g P G.

• We describe how Mpgq acts on a vector in V without explicitely giving Mpgq.

REMARK: We only ask a representation to be a homomorphism, i.e. r need not be injective.

This means some aspects of G can get lost in a representation.

Given that we de�ned SUpnq as a group of matrices acting on Cn
, we can just use this as an

example of a representation.

De�nition 2.3. The de�ning representation (also called fundamental representation)

of SUpnq is the representation where the matrices de�ning this groups are allowed to be

themselves: rpgq “ g. The fundamental representation of SUpnq is complex n-dimensional

and is denoted by ‘the n of SUpnq’.

REMARK: We may construct another representation of SUpnq that is also n-dimensional and

is called ‘the n̄ of SUpnq’ by acting with ḡ instead of g. This representation is isomorphic to

the n representation.

De�nition 2.4. The de�ning representation of SOpnq is the representation where the ma-

trices de�ning this groups are allowed to be themselves: rpgq “ g. The de�ning representation

of SOpnq is real n-dimensional and is denoted by ‘the n of SOpnq’.

Even though matrix groups sit inside vector spaces, they themselves are not vector spaces, so

a group action on itself is not a representation (in general). Here is an example of a non-trivial

representation that exists for all Lie groups. It exploits the fact that Lie groups come equipped
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with an intrinsic vector space: each one of them has its own Lie algebra, which is a vector

space.

De�nition 2.5. The adjoint representation is a map Ad : G Ñ GLpgq which sends a group

element g to the GLpgq element Adpgq, which is de�ned by its action on g:

Adpgq : γ ÞÑ gγg´1 . (2.1)

REMARK: Don’t get confused, there are two maps we need to distinguish. There is the map

Adpgq sending g to the GLpgq element Adpgq, but this itself is a map acting on the vector

space g. The de�nition above works by telling us how Adpgq acts on any γ P g f given g, i.e.

γ Ñ gγg´1 is the linear map in GLpgq that is the image of g P G under the representation

Ad. That this is well-de�ned follows directly from theorem 1.1 part i) where we showed that

gγg´1 P g. As it is also a linear non-degenerate map, it is hence in GLpgq. Taken as a vector

space, the Lie algebra g of a Lie group G is hence acted on by a representation of G.

Example 2.1. As eiφiθe´iφ “ iθ for all g P Up1q, the adjoint representation of Up1q is trivial.

Example 2.2. The adjoint representation of SUp2q is precisely the map we used to map it to

SOp3q. Recall that it acts on its own Lie algebra here, which is a real three-dimensional vector

space, so this makes perfect sense.

Example 2.3. The adjoint representation of SUp3q acts on a real eight-dimensional vector

space: the matrices in sup3q are traceless anti-hermitian 3ˆ 3 matrices. Their number of real

components is 2 from the diagonal plus 3ˆ2 from o�-diagonal terms. This is the reason there

are eight di�erent gluons in strong interactions.

Exercise 21. Writing R3 as

Mv “

ˆ

v3 v1 ´ iv2
v1 ` iv2 ´v3

˙

. (2.2)

we considered the action of g P SUp2q on R3 de�ned by

F pgq : Mv ÞÑ gMvg
:

(2.3)

in the lectures. Show that this is a representation, and that this representation is the adjoint
representation of SUp2q.
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Exercise 22. Let q P Cn be acted on in the fundamental representation of SUpnq and γ in the
adjoint representation of SUpnq (this is often expressed as q ‘lives’ in the fundamental and γ
‘lives’ in the adjoint of SUpnq.)

By acting with SUpnq simultaneously on γ and q, describe the action of SUpnq on

i) v “ γq

ii) q̄

iii) A matrix Q with components Qij “ qiqj

and decide in each case if this de�nes a representation.

Exercise 23. Let g P SOp3q be given by

g “

¨

˝

cosφ sinφ 0
´ sinpφq cospφq 0

0 0 1

˛

‚ .

Find the action of g in the adjoint representation and describe it using a basis of the vector space
sop3q. As sop3q is the same as R3, we can describe its elements as column vectors after having
chosen a basis. Using the basis you have chosen, write the adjoint action as a 3ˆ 3 matrix acting
on a column vector.

De�nition 2.6. A representation is called faithful if r is injective.

Example 2.4. We have seen examples of SUp2q acting (faithfully) on C2
in Section 1.1.3 and

(non-faithfully) on R3
in example 1.1.4.

Example 2.5. We can act with SUp2q (faithfully) on C4
by using the block-diagonal repre-

sentation

r : g Ñ

ˆ

g 0
0 g

˙

(2.4)

Clearly this seems a bit redundant and we want to distinguish between such cases and those

that truly give us something new. One way to phrase this is in terms of invariant subspaces.
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De�nition 2.7. A subspace W Ď V is called invariant if rpgqw P W for all g P G and all

w P W .

Example 2.6. Coming back to the example 2.5, we can decompose V “ C2 ‘ C2 ‘ C2 ‘ ¨ ¨ ¨

and every one of those summands is an invariant subspace.

De�nition 2.8. A representation r : G Ñ GLpV q is irreducible if the only invariant sub-

spaces are V and t0u. Otherwise it is called reducible.

Exercise 24. Let G be a Lie group and H be a subgroup of G that is also a Lie group.

a) Explain why any representation rpGq of G also gives us a representation rpHq of H .

b) Let’s assume rpGq is irreducible. Can you think of an example where the representation
rpHq is reducible? Can you think of an example where the representation rpHq is irre-
ducible?

Exercise 25. Let P be a homogeneous polynomial in two complex variables z1 and z2 of degree
d, i.e. we can write

P pzq “
d
ÿ

k“0

αkz
k
1z

d´k
2 (2.5)

for complex numbers αk.

There is a natural action of SUp2q on z “ pz1, z2q, which is just

z ÞÑ gz . (2.6)

For a polynomial P pzq, we can then de�ne an action by SUp2q as

rdpgq : P pzq ÞÑ P pg´1zq . (2.7)

Show that this de�nes a representation of SUp2q.

[remark: in the above formula, g´1 does not act on the argument of P but on z, i.e. the action on
P pAzq for a 2ˆ 2 matrix A would be rdpgq : P pAzq ÞÑ P pAg´1zq. ]

Example 2.7. Mapping all g P G to 1 P GLpV q is a group homomorphism, so this trivial

representation always exists. This is as un-faithful as possible and reducible: every subspace
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of V is an invariant subspace. Objects transforming in this representation are called scalars
or singlets. They are often referred to as ‘living in the 1 of G’.

De�nition 2.9. A representation r : G Ñ GLpV q is unitary if V has an inner form
1 x., .y

and xx, yy “ xrpgqx, rpgqyy for all g P G and all x, y P V .

Example 2.8. The fundamental representation of SUpnq is faithful, irreducible, and unitary.

Given that we have introduced most matrix groups as preserving some inner form, this seems

like a natural concept. It’s power lies in the following

Theorem 2.1. Let r : G Ñ GLpV q be a �nite-dimensional unitary representation. Then it can
be completely decomposed into irreducible representations ripGq:

rpGq “
à

i

ripGq , V “
à

i

Vi , ripGq P GLpViq . (2.8)

If you like, you can think of rpGq as respecting the same block-diagonal form for all g P G
in an appropriate basis of V . We have already seen a reducible representation that can be

decomposed into irreducible ones, see example 2.5.

Proof. :

Let rpGq be a reducible representation (otherwise there is nothing to prove) and consider

any of its invariant subspaces W . The main step of the proof is to show that the orthogonal

complement

WK :“ tv P V |xv, wy “ 0 @w P W u (2.9)

is an invariant subspace as well.

For any rpgq we can de�ne its dual r˚pgq by

xv, rpgquy “ xr˚pgqv, uy . (2.10)

for all v, u P V . It follows that

xv, uy “ xrpgqv, rpgquy “ xr˚pgqrpgqv, uy (2.11)

1
A inner form is a symmetric bilinear map x¨, ¨y : V ˆ V Ñ R s.t. xv, vy ě 0 for all v P V and xv, vy “ 0 if

and only if v “ 0.
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so that r˚pgqrpgq “ 1.

Now for all w P W , v P WK
and all g P G we have

0 “ xv, wy “ xv, rpgqwy “ xr˚pgqv, wy “ xprpgqq´1v, wy (2.12)

where prpgqq´1 is the inverse of the matrix rpgq P GLpV q. As every element in G has an

inverse and prpgqq´1 “ rpg´1q (as shown in problems), we can just write

0 “ xrpgqv, wy (2.13)

for all w P W , v P WK
and all g P G. This means whatever g acts on v P WK

, we stay in WK
.

Hence WK
is an invariant subspace as well, which is what we wanted to show.

Now we can decompose

rpGq “ rW pGq ‘ rWKpGq , V “ W ‘WK . (2.14)

as both W and WK
are invariant subspaces. If both rW pGq and WKpGq are irreducible we are

done. Otherwise, we can simply run the same argument again to achieve a �ner decomposi-

tion. This iteration must terminate as V is �nite dimensional. ˝

For unitary representations all is hence nice and easy. But what can we do when we do not

have an inner form that is respected by rpgq ? Using ‘Weyl’s unitarity trick’ we can just cook

one up (if G is compact)!

Theorem 2.2. Let G be a compact Lie group and rpGq a �nite-dimensional representation on a
vector space with inner form x., .y. Then there exists an inner form that is invariant under rpGq
and hence the same statement as in Theorem 2.1 holds.

Proof. : Let x., .y be some inner form on V . AsG is a compact group, xrpgqv, rpgqwy is bounded

for �xed v, w: this expression cannot diverge for g Ñ ĝ anywhere on G as such a ĝ cannot be

in G. But it follows from G being topologically closed that any sequence of group elements

gi P G has a limit that is also in G. Hence there must be a maximal value of xrpgqv, rpgqwy
for �xed v and w and we can use that as the bound.

Furthermore, G is some bounded subspace in Rm
for somem for the matrix Lie groups we are

treating in these lectures, and as such has a �nite volume. We can then integrate a bounded

function over it and receive a �nite answer. In particular, we can use any realization of G as a

subset of Rn
to de�ne

xv, wyG :“

ż

G

xrpgqv, rpgqwydV . (2.15)
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What is happening here is that we are averaging over the action of the group on xv, wy. Let’s

act with a group element h on v and w

xrphqv, rphqwyG “

ż

G

xrpgqrphqv, rpgqrphqwydV “

ż

G

xrpghqv, rpghqwydV . (2.16)

where we have used that r is a group homomorphism. Now if g sweeps out the whole group,

so does gh for any h P G. In particular, every group element g1 can be uniquely written as

g1 “ gh for some g, just take g “ g1h´1. Hence

xrphqv, rphqwyG “

ż

G

xrpghqv, rpghqwydV “

ż

G

xv, wydV “ xv, wyG . (2.17)

and we are done. ˝

An important feature of complex irreducible representations is Schur’s lemma:

Theorem 2.3. Let r be an irreducible representations ofG on a �nite-dimensional complex vector
space V , and let T : V Ñ V be a linear map such that

rpgqT “ T rpgq (2.18)

for all g P G. Then

a) T “ 0

or

b) T “ c1 for some complex number c

Proof. : First observe that kerT is an invariant subspace: if v P kerT we have

0 “ Tv “ rpgqTv “ Trpgqv (2.19)

so rpgqv P kerT as well. As we have assumed that r is irreducible, kerT “ V or kerT “ t0u.
If kerT “ V it follows that T “ 0, so case a) is realized and we are done.

Let us hence assume from now on that kerT “ t0u. As a complex matrix, T has at least

one non-zero eigenvalue, let that eigenvalue be c and the associated eigenvector be vc. Now

consider the map T̂ :“ T ´ c1 for which vc P ker T̂ . We have

rpgqT̂ “ T̂ rpgq (2.20)
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as the identity commutes with every matrix. Now we can again observe as above that ker T̂
is an invariant subspace and hence must be t0u or V . We already know that ker T̂ ‰ 0, so it

must be that ker T̂ “ V which implies T̂ “ 0, i.e. T “ c1. ˝

2.2 Representations of Up1q
The complex representations of Up1q can be found by more or less elementary considerations.

Theorem 2.4. Complex irreducible representations of Up1q are all unitary, takeUp1q toGLp1,Cq,
i.e. act on C, and only depend on an integer n. For g “ ei φ we can write the homomorphism
fn : Up1q Ñ GLp1,Cq as

fnpgq “ gn “ ein φ . (2.21)

Proof. : We �rst show that all complex irreducible representations ofUp1q are one-dimensional.

Consider such a representation fpgq ofUp1q for which fpgq P GLpm,CqAsUp1q is an abelian

group we have

fpgqfphq “ fpghq “ fphgq “ fphqfpgq . (2.22)

for all g, h P Up1q. Now let us �x h for the time being. Then we can set rpgq “ fpgq in Schur’s

lemma, and use T “ fphq to conclude that fphq must be proportional to the identity map.

This is true for all h P Up1q (di�erent h might produce di�erent c however) which implies

that the representation fpgq is one-dimensional: any subspace of Cm
is an invariant subspace,

and the only subspaces giving irreducible ones are complex one-dimensional ones.

As f is a homomorphism we need

fphgq “ fphqfpgq . (2.23)

Di�erentiating both sides w.r.t h and setting h “ 1 we �nd

gf 1pgq “ f 1p1qfpgq . (2.24)

Let us write the constant f 1p1q by n “ f 1p1q. The the unique solution to the above di�erential

equation that satis�es fp1q “ 1 (a consequence of f being a group homomorphism) is

fpgq “ gn “ eiφn . (2.25)

Letting φ “ 2π yields g “ 1, so that fp1q “ 1 additionally requires e2πin “ 1, i.e. n P Z. For

fpgq we have fpgq: “ fpgq´1, so these are all unitary (using the standard inner form on C). ˝

REMARK: The integer n is often called the ‘charge’ in physics, and you will see later that it

deserves this name when we study electromagnetism, but this also shows up in other contexts
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with a Up1q action. The realization that n is an integer has the profound consequence that

charges are quantized, i.e. they are multiples of some fundamental charge (corresponding to

n “ 1). This doesn’t explain why protons and electrons have the same charges, but already

implies that their charges must satisfy

q
electron

qproton

“
n

electron

nproton

(2.26)

i.e. the ratio must be a rational number.

Exercise 26. .

a) Describe a Up1q subgroup of SUp2q. Is Up1q ˆ Up1q a subgroup of SUp2q as well?

b) Let A be an element of the vector space that is acted on by the adjoint representation of
SUp2q. For the Up1q subgroup of SUp2q you identi�ed above, �nd the action on A and use
this to decompose the action of Up1q into irreducible representations.

Exercise 27. Consider the map rκ : Up1q Ñ GLp3,Cq de�ned by

rκpe
iφ
q “ eφλκ

where κ P C and

λ “

¨

˝

0 i 0
i 0 i
0 i 0

˛

‚

For which values of κ is rκ a representation of Up1q? [hint: think about what happens to eigen-
vectors of λ and use the classi�cation theorem for complex representations of Up1q.]
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2.3 Representations of Lie algebras
If we have found a representation of a Lie group G on some vector space V , every element

g P G is assigned an element rpgq P GLpV q. We can think the same way about representations

of Lie algebras. The only di�erence is that we want to preserve the algebra structure.

De�nition 2.10. A Lie algebra homomorphism is a linear map f : g Ñ h between Lie

algebras g and h such that rfpγq, fpδqs “ fprγ, δsq.

De�nition 2.11. A representation of a Lie algebra g is a Lie algebra homomorphism ρ : gÑ
glpV q for a �nite-dimensional vector space V .

De�nition 2.12. A representation of a Lie algebra g is called reducible if there exists an

invariant subspace, i.e. there exists a W Ă V with W ‰ t0u and W ‰ V s.t.

ρpγqw P W @w P W @γ P g .

In the same way that a path gptq passing through 1 determines an element γ of the Lie algebra,

we can use rpgptqq to determine an associated representation ρpγq: all we need to do is consider

rpgptqq instead of gptq and do the same computation.

Proposition 2.1. Given a �nite-dimensional representation r of a Lie group G, there is a

unique associated representation ρ of its Lie algebra g such that

rpetγq “ etρpγq , (2.27)

we can compute this by working out

ρpγq “
B

Bt
r
`

etγ
˘

ˇ

ˇ

ˇ

ˇ

t“0

. (2.28)

Proof. : First of all (2.28) shows how to compute the map ρpγq from rpgq, i.e. it is uniquely

given once rpgq is �xed.

Nect we check that we satisfy the de�nition. Consider the path

gptq :“ etγetδ . (2.29)

On the one hand we have

B

Bt
r pgptqq

ˇ

ˇ

ˇ

ˇ

t“0

“
B

Bt
r
`

etγetδ
˘

ˇ

ˇ

ˇ

ˇ

t“0

“
B

Bt
r
`

etγ
˘

r
`

etδ
˘

ˇ

ˇ

ˇ

ˇ

t“0

“ ρpγq ` ρpδq . (2.30)
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Now consider

etγetδ “
ÿ

k

ptγqk

k!

ÿ

l

ptγql

l!
“ p1` tγ ` t2γ2{2` ¨ ¨ ¨ qp1` tδ ` t2δ2{2` ¨ ¨ ¨ q

“

˜

ÿ

k

tkpγ ` δqk

k!

¸

`
t2

2
pγδ ´ δγq ` t3p¨ ¨ ¨ q ` ¨ ¨ ¨ .

(2.31)

Such a relation can be given more concisely as what is called the ‘Baker-Campbell-Hausdor�

formula’, see [Hall, 2003] for details.

Hence

B

Bt
r
`

etγetδ
˘

ˇ

ˇ

ˇ

ˇ

t“0

“
B

Bt
r
`

etpγ`δq ` t2p...q
˘

ˇ

ˇ

ˇ

ˇ

t“0

“
B

Bt
r
`

etpγ`δq
˘

ˇ

ˇ

ˇ

ˇ

t“0

“ ρpγ ` δq . (2.32)

In the �rst step, we have used the relation established above, the second step is just the chain

rule, and the third step uses the de�nition of a Lie algebra representation.

Hence we have shown that

ρpγq ` ρpδq “ ρpγ ` δq . (2.33)

Furthermore using the chain rule we have that

ρpcγq “
B

Bt
r
`

etcγ
˘

ˇ

ˇ

ˇ

ˇ

t“0

“ c
B

Bt
r
`

etγ
˘

ˇ

ˇ

ˇ

ˇ

t“0

“ cρpγq

(2.34)

Hence we have shown that ρ is a linear map of g.

Now we check that it respects the algebra r¨, ¨s, i.e. is a Lie algebra homomorphism. Recall

that we shown earlier that

etgγg
´1

“ getγg´1 (2.35)

so we �nd

r
´

etgγg
´1
¯

“ r
`

getγg´1
˘

“ r pgq r
`

etγ
˘

rpg´1q . (2.36)

Taking a derivative w.r.t t on both sides and then setting t “ 0 we get

ρpgγg´1q “ rpgqρpγqrpg´1q . (2.37)

Now comes the �nal trick: we set g “ etδ in the above equation, take another derivative w.r.t.

t and set t “ 0 again. The rhs becomes

B

Bt
etδρpγqe´tδ

ˇ

ˇ

ˇ

ˇ

t“0

“ ρpδqρpγq ´ ρpγqρpδq “ rρpδq, ρpγqs (2.38)
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For the lhs, recall that ρ is a linear map between vector space, so that
2

B

Bt
ρ pκptqq “ ρ

ˆ

B

Bt
κptq

˙

, (2.39)

The lhs hence becomes

B

Bt
ρpetδγe´tδq

ˇ

ˇ

ˇ

ˇ

t“0

“ ρ

ˆ

B

Bt
etδγe´tδ

˙
ˇ

ˇ

ˇ

ˇ

t“0

“ ρprδ, γsq (2.40)

Hence we have shown that

ρprδ, γsq “ rρpδq, ρpγqs , (2.41)

i.e. we have de�ned a Lie algebra homomorphism. ˝

REMARK: The converse to the above theorem is not always true, i.e. given a representation

ρ of a Lie algebra, there does not need to be a group representation that relates to it via (2.27).

We have actually encoutered this before. Recall that SOp3q and SUp2q have isomorphic Lie

algebras. Hence I can think of the Lie algebra of SUp2q as a (Lie algebra) representation of

sop3q. However, if I exponentiate the Lie algebra sup2q, I do not get a representation of SOp3q
but just SUp2q in the de�ning representation. We will examine this in a little more detail later.

Exercise 28. Consider the Lie group G of upper triangular 2ˆ 2 matrices

G “

"ˆ

a b
0 c

˙

|a, b, c P R, ac ‰ 0

*

(2.42)

a) Let v P R3, v “ pv1, v2, v3q. De�ne an action of G on v by writing

vm :“

ˆ

v1 v2
0 v3

˙

(2.43)

and letting g P G act as
rpgqvm :“ gvmg

´1 . (2.44)

Convince yourself that this is a representation of G. Write the action of g on v de�ned
above in terms of a 3ˆ 3 matrix acting on v:

rpgqv “Mpgqv (2.45)

for a 3ˆ 3 matrixMpgq acting on the vector v P R3 in the usual way.

b) Writing elements of the representation rpGq in terms of the matrices Mpgq, work out the
associated representation ρ of the Lie algebra g of G.

2
Think of how you would di�erentiate Avptq for a constant matrix A and t dependent vector vptq.



TOPIC 2. REPRESENTATIONS 64

c) Check that they obey the same Lie algebra as the Lie algebra g of G (see problem 20), i.e.
�nd a bijective Lie algebra homomorphism between the Lie algebra g of G and the Lie
algebra representation ρpgq associated with rpGq.

Example 2.9. The adjoint representation of the Lie algebra is a map ad : g Ñ GLpgq which

maps δ P g to a linear map acting on g that acts on γ P g as

adpδq : γ Ñ rδ, γs , (2.46)

i.e. adpδq is in GLpgq. We can work out this representation is associated to the usual adjoint

representation of the group, De�nition (2.5), using (2.28):

adpδqpγq “
B

Bt
Adpetγqpγq

ˇ

ˇ

ˇ

ˇ

t“0

“
B

Bt
etδγe´tδ

ˇ

ˇ

ˇ

ˇ

t“0

“ rδ, γs . (2.47)

Earlier, we mentioned that we can characterise Lie algebras by their structure constants fab
c

once a basis ttau was chosen, (1.109).

Proposition 2.2. The structure constants de�ne a representation by setting

pρadjptaqq
b
c “ fac

b . (2.48)

This representation is the adjoint representation written in the basis ttau, i.e. the adjoint action

in the basis ttau is given by matrices ρadjptaq with components ρadjptaq
b
c “ fac

b
.

Proof. :

Exercise 29. .

a) Check that (2.48) de�nes a representation of g.

b) Show that the adjoint action in the basis ttau is given by the matrices ρadjptaq with compo-
nents facb by showing that

adptaqpγ
btbq “ pρadjptaqq

b
cγ
ctb . (2.49)

Theorem 2.5. Let r be a complex representation of a compact Lie group G acting on V , and let
ρ be the associated Lie algebra representation. Writing the basis elements of the Lie algebra g of
G as titau, we can choose a basis of V such that ρptaq are Hermitian matrices, ρptaq: “ ρptaq.
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Proof. :

As we have seen when using Weyl’s unitarity trick, we can choose an inner form x., .y on the

complex vector space V such that

xrpgqv, rpgqwy “ xv, wy . (2.50)

As this is an inner form on a complex vector space, we have that for any c P C

xv, cwy “ cxv, wy xcv, wy “ c̄xv, wy . (2.51)

With this inner form, we can choose a basis ei on V such that

xei, ejy “ δij . (2.52)

Using this basis, we can write rpgq as matrices rpgqij .

For v “ viei and w “ wiei we now work out

v̄iwi “ xv, wy “ xrpgqviei, rpgqwjejy “ xrpgqikvkei, rpgqjlwlejy

“ rpgqikvkrpgqjlwlxei, ejy “ v̄kr
:
pgqkirpgqjlwlδij “ v̄kr

:
pgqkirpgqilwl

(2.53)

i.e. r:pgqkirpgqjl “ δkl so that rpgq: “ rpgq´1.

As we have assumed that titau is a basis of g, we can write

g “ eitaγ
a

(2.54)

for some real numbers γa. By de�ntion this implies that ρptaq satis�es

rpgq “ eiρptaq . (2.55)

Now rpgq: “ rpgq´1 gives us ρpγq: “ ρpγq. ˝

2.4 Representations of SUp2q and SOp3q
Representations of SUp2q

Here is a neat way to explicitely construct representations of SUp2q, and as we will see, it gives

us all the irreducible ones. SUp2q naturally acts C2
in the the fundamental representation.

Given some complex polynomial P pzq in two variables z “ pz1, z2q, we can then let SUp2q
act onP pzq in this way. This is particularly nice ifP pzq is a homogenous polynomial of degree

d, i.e. we can write

P pzq “
d
ÿ

k“0

akz
k
1z

d´k
2 . (2.56)
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The space of such polynomials is a vector space Πd of dimension d ` 1. You can think of the

ak P C as the components of the vector and the monomials as the basis vectors. Letting SUp2q
act on C2

, we have a corresponding induced action on the vector space of polynomials.

Proposition 2.3. The map

rdpgqP :“ P pg´1zq . (2.57)

where g´1 P SUp2q acts on z “ pz1, z2q as

ˆ

z1
z2

˙

Ñ g´1
ˆ

z1
z2

˙

(2.58)

de�nes a representation rd of SUp2q on the complex vector space Πd of dimension d` 1.

Proof. : exercises

We can now �gure out the representations ρd of sup2q that are associated with the rd described

in proposition 2.3. Let us choose `j ”
i
2
σj as the generators of the Lie algebra sup2q:

`1 “
1
2

ˆ

0 i
i 0

˙

, `2 “
1
2

ˆ

0 1
´1 0

˙

, `3 “
1
2

ˆ

i 0
0 ´i

˙

. (2.59)

Their action on the monomials zl1z
d´k
2 is then (see problem class 4):

`1 : zk1z
d´k
2 Ñ ´

i

2

`

kzk´11 zd´k`12 ` pd´ kqzk`11 zd´k´12

˘

`2 : zk1z
d´k
2 Ñ

1

2

`

´kzk´11 zd´k`12 ` pd´ kqzk`11 zd´k´12

˘

`3 : zk1z
d´k
2 Ñ ipd{2´ kqzk1z

d´k
2

(2.60)

Theorem 2.6. For every integer d ě 0, there is a single �nite-dimensional irreducible represen-
tations rd of SUp2q on a complex vector space Πd of dimension d`1. These are all of the complex
irreducible �nite-dimensional representations of SUp2q.

Representations of SUp2q: proof of the main theorem ˚

Before taking on the theorem, let me prove a little lemma that will be quite useful:

Lemma 2.1. Let r be a complex representation of SUp2q acting on V . Then all eigenvalues of
ρpσiq, for ρ the associated representation of sup2q, are real.
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Proof. (of the lemma):

Let us denote exppiρpσjqq ” rj and ρpσjq ” ρj , so exppiρjq “ rj . As SUp2q is compact, we

can choose an inner form x., .y on the complex vector space V such that

xrjv, rjvy “ xv, vy . (2.61)

When using Weyl’s unitarity trick in Theorem 2.5, we further found that we can always choose

a basis such that ρ:i “ ρi. Now let v be an eigenvector of ρj with eigenvalue ev and work out

evxv, vy “ xv, ρjvy “ xρjv, vy “ ēvxv, vy . (2.62)

so that ev must be real. ˝

Now we are ready to prove the theorem:

Proof. :

Let’s start by slightly enlarging the scope and study representation of the Lie algebra slp2,Cq “
sup2qbC “ suCp2q. As we have seen in problem class 4, irreducible representations of slp2,Cq
are in one-to-one correspondence with irreducible representations of sup2q. What this means

is that we consider a complex instead of a real vector space over the Pauli matrices as the

algebra under consideration. This allows us to de�ne

H ”
1

2
ρdpσ3q , L˘ “

1

2
pρdpσ1q ˘ iρdpσ2qq . (2.63)

These obey the algebra

rH,L˘s “ ˘L˘ , rL`, L´s “ 2H . (2.64)

Let us start by assuming thatwn is an eigenvector ofH with eigenvalue n, so thatHwn “ nwn.

Then

HL`wn “ pL`H ` rH,L`sqwn “ pL`H ` L`qwn “ pL`n` L`qwn “ pn` 1qpL`wnq .
(2.65)

This equation means that L`wn is another eigenvector of H , but now the eigenvalue is n` 1.

HenceL` is a ‘raising operator’ that increases the eigenvalue n by one. A similar computation

reveals that L´wn has eigenvalue n´ 1, so L´ is a ‘lowering operator’.

As we only care about representations of SUp2q we can use the lemma above and conclude

that H only has real eigenvalues. As we only consider �nite-dimensional vector spaces, one



TOPIC 2. REPRESENTATIONS 68

of these eigenvalues must be the largest. Let us call this eigenvalue m and wm the associated

eigenvector
3
. Then we must have

L`wm “ 0 . (2.66)

Otherwise L`wm would be another eigenvector with eigenvalue m ` 1, which violates the

assumption that we have chosen the largest.

We can then repeatedly act with L´ to produce more eigenvectors with smaller eigenvalues.

As we are looking for �nite-dimensional representations, this must terminate at some point,

i.e. for some d P Z, pL´q
d`1wm “ 0. A basis of our representation are hence the vectors

wm´l ” pL´q
lwm , l “ 0 ¨ ¨ ¨ d . (2.67)

and its dimension is d` 1. To �nd out which values can appear, we introduce

∆ ”
1

4

`

ρdpσ1q
2
` ρdpσ2q

2
` ρdpσ3q

2
˘

“
1

2
pL`L´ ` L´L`q `H

2
(2.68)

We already know that σ2
i “ 1 in the fundamental representation. That ∆ “ c1 here as well

follows from Schur’s lemma after observing that

r∆, Hs “ r∆, L˘s “ 0 . (2.69)

This does not imply that c “ 3{4 however, as we are not in the fundamental representation!

To �x c, observe that

∆wm “

ˆ

1

2
pL`L´ ` L´L`q `H

2

˙

wm “ pL´L` `HpH ` 1qqwm “ mpm` 1qwm .

(2.70)

Hence c “ mpm ` 1q. As L´wm´d “ 0 and furthermore L`L´ “ ∆ ´ HpH ´ 1q we have

that

0 “ p∆´HpH ´ 1qqwm´d “ pmpm` 1q ´ pm´ dqpm´ d´ 1qqwm´d

“ p1` dqp2m´ dqwm´d
(2.71)

which implies 2m ´ d “ 0. As d is an integer, this implies that m takes half-integer values.

By construction, these are �nite-dimensional irreducible representations of slp2,Cq.

We can easily restrict all of the matrices appearing in this representation to anti-hermitian

ones to �nd a representation of sup2q. As we have that ρpσiq “ ρpσ:i q, we get a representation

of slp2,Cq as
ÿ

j

ajρpσiq for aj P C (2.72)

3
Here, I have made the tacit assumption that wm is unique, i.e. there is only a single eigenvector with the

maximal eigenvalue m. You can try to see what will happen if you repeat the following argument without this

assumption, and you will �nd that this results in a reducible representation.
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and a representation of sup2q as

ÿ

j

iajρpσiq for aj P R . (2.73)

In problem class 4 we have seen using the above that irreducible representations of slp2,Cq
are in one-to-one correspondence with irreducible representations of sup2q, so we can think

of the representations just found as representations of sup2q. 4

In order to compare this with the representations ρd of sup2q associated to the representations

rd of SUp2q that we already know exist, it is convenient to rescale the basis vectors wj as

follows. We de�ne vm ” wm and

L´vk “ pm` kqvk´1 (2.74)

which implies

L`vk “
1

m` k ` 1
L`L´vk`1 “

1

m` k ` 1
p∆´HpH ´ 1qq vk`1

“
1

m` k ` 1
pmpm` 1q ´ kpk ` 1qq “ pm´ kqvk`1 .

(2.75)

In this basis, the action of the `i is

`1vm´k “
i

2
pL` ` L´qvm´k “

i

2
pkvm´k`1 ` pd´ kqvm´k´1q

`2vm´k “
1

2
pL` ´ L´qvm´k “

1

2
pkvm´k`1 ´ pd´ kqvm´k´1q

`3vm´k “ iHvm´k “ ipm´ kqvd{2´k

(2.76)

where m “ d{2 for an integer d. Comparing with (2.60) we see that these representations are

identi�ed if we associate

zk1z
d´k
2 » p´1qkvm´k . (2.77)

This means all the representations of sup2q we have found are the associated representations

of the group representations rd we already know exist.

This representation ρd is irreducible as can be seen as follows. Take any invariant subspace

V of Πd. By assumption the action of the `k maps any vector of V to another vector of V . As

V is a complex vector space, complex linear combinations are again in V . This implies that if

P P V , we also have that any linear combination of

`n` :“ pz2
B

Bz1
q
nP , `p´ :“ pz1

B

Bz2
q
pP (2.78)

4
Recall that the punchline here was that these representations and their irreducibility is both determined

solely by representing the Pauli matrices, i.e. �xing ρpσjq. In the case of slp2,Cq its representation is a complex

vector space with basis tρpσjqu, in the case of sup2q you get a real vector space with basis tiρpσjqu.



TOPIC 2. REPRESENTATIONS 70

is in V (these are just powers of the polynomial versions of raising and lowering operators).

We can hence apply a suitable power of `´ to mapP to the single monomial zd1 . This monomial

is hence in V , which implies that any complex multiple of it is in V as well. But now we can

use `` to conclude the same for any other monomial. As the monomials are a basis of Πd, it

follows that V “ Πd. The Lie algebra representations ρd are hence irreducible.

This implies that rd is irreducible as well. If W P Πd is an invariant subspace of rd, then

it must be invariant under etρpγq for all t and γ P sup2q, so in particular under B{Btetρpγq and

hence under ρdpsup2qq. But the Lie algebra representation ρ is irreducible as we already know.

So now we know all irreducible representations of SUp2q: if there were others, the associated

Lie algebra representation would have had to show up in our analysis. ˝

Representations of SOp3q

We are now ready to discuss representations of SOp3q. As the Lie algebra of SOp3q is the same

as the Lie algebra of SUp2q, it has the same irreducible representations. Coming to the groups,

recall that there is a 2 to 1 map from SUp2q to SOp3q that we investigated in problem class

1 which mapped both 1 P SUp2q and ´1 P SUp2q to 1 P SOp3q. We can hence construct

representations of SOp3q from representations of SUp2q if rp´1q “ 1. Let us look at the

action of rdp´1q on a monomial

rdp´1q : zk1z
d´k
2 Ñ p´1qdzk1z

d´k
2 . (2.79)

This map is the identity only if d is an even integer, i.e. m “ d{2 is an integer. We have

seen that every representation of a Lie group gives us an associated representation of its Lie

algebra. The above shows that the converse is not true, the representations of sop3q where m
is half-integer cannot come from any representations of SOp3q. On the other hand, we can

lift any �nite-dimensional representation R of SOp3q to one of SUp2q:

Exercise 30. Show that any irreducible complex representation of SOp3q also de�nes an irre-
ducible complex representation of SUp2q.

Hence we have

Theorem 2.7. The rd for d “ 2m, m P Z are all of the �nite-dimensional complex irreducible
representations of SOp3q.
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SOp3q, SUp2q, and Spin

In physics in R3
, the half-integer m is called the spin: if there is a physical object that trans-

forms in the representation rd, we say it has spin m “ d{2. This applies both to �eld theories,

where SOp3q acts on the components of a �eld, and to quantum mechanics, where SOp3q
acts on states. If d “ 0 we have a one-dimensional representation, e.g. a scalar �eld, that

does not transform at all, this is the spin 0 case. An ordinary vector in R3
transforms in the

three-dimensional representation r2 of SUp2q, so you would call a �eld φ “ pφ1, φ2, φ3q trans-

forming like a vector in R3
a ‘vector �eld’ as well. Here m “ 1, so this is ‘spin 1’.

The representations of SOp3q show up in most courses on quantum mechanics when treating

the hydrogen atom. Using wavefunctions gives us a very concrete version of these represen-

tations: the ‘spherical harmonics’.

It is a fact of nature that there are particles of ‘spin 1/2’, e.g. the electron or quarks. You might

�nd this irritating as we might want to classify particles according to how they transform

under space-time symmetries, i.e. SOp3q for rotations, and form “ 1{2 we do not get a repre-

sentation of SOp3q, but only one of its Lie algebra. One way to explain this is that in quantum

mechanics, multiplying any state vector by a non-zero complex number does not change the

state we are in. Taking this into account means studying projective representations, which

for SOpnq are in one-to-one correspondence with ordinary representations of the associated

‘spin groups’: Spinp3q “ SUp2q.

De�nition 2.13. The spinor representation is the 2 of SUp2q, and objects transforming

in this representation are called spinors (of SOp3q). The covering group SUp2q of SOp3q is

likewise called the ‘spin group’ Spinp3q.

REMARK: We saw earlier how to map SUp2q to SOp3q. For the element of SUp2q of the form

gSUp2q “

ˆ

eiφ{2 0
0 e´iφ{2

˙

(2.80)

the corresponding element in SOp3q was

gSOp3q “

¨

˝

cospφq sinpφq 0
´ sinpφq cospφq 0

0 0 1

˛

‚ (2.81)

Let us assume we are performing a rotation by 360˝ using the (usual) rotation group SOp3q
in R3

, i.e. we let φ go from 0 to 2π in the above matrix gSOp3q. In the corresponding SUp2q
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matrix gSUp2q this takes us from 1 to ´1, i.e. we do not come back to where we started from,

and need to let φ go from 0 to 4π to return to 1. In this sense, a spinor needs to be rotated by

720˝ for a full rotation!

2.5 Representations of SUpnq and other Lie Groups ˚

For more general Lie groups such as SUpnq, you will not be surprised to hear that there is a

richer representation theory. We know already two representations: the fundamental and the

adjoint. Instead of developing the general theory, we will only try to sketch how one might

go about creating such representations. Given a representation of a group G, this implies rep-

resentations of any subgroup H by simply restricting the homomorphism r : GÑ GLpV q to

H Ă G. Every group SUpnq for n ą 2 contains many copies of SUp2q as subgroups, and we

have seen how we could construct representations of SUp2q using the operators H,L`, L´.

This motivates to try and lift the method used for SUp2q to that of SUpnq by writing the

(complexi�ed) Lie algebra of supnq in terms of number operators Hi, lowering operators and

raising operators. This is called a ‘Cartan-Weyl basis’ and leads to what are called ‘root sys-

tems’ which can in turn be used to classify certain classes of Lie algebras. Such a root system

is shown in �gure 2.

2.6 Tensor Representations*

De�nition 2.14. Given two vector spaces V andW we can form their tensor product V bW .

Let ei, i “ 1.. dimV , be a basis of V and f j , i “ j.. dimW , be a basis of W . Then V bW is a

vector space with basis consisting of tuples pei,f jq (also written as ei b f j).

REMARK: It follows from the de�nition that dimV bW “ dimV ¨dimW . Computing with

tensor products works almost the same as with usual products, we have

v bw ` v1 bw “ pv ` v1q bw

v bw ` v bw1 “ v b pw `w1q,
(2.82)

and for c P R (or C)

cpv bwq “ pcvq bw “ v b pcwq . (2.83)

However v b w ‰ w b v: the �rst slot is reserved for vectors from V and the second for

vectors from W , so writingw b v does not even make sense if v P V andw P W . Not every

vector in V bW can be written as a product, e.g. v bw ` v1 bw1 for v ‰ v1 and w ‰ w1.

Example 2.10. Consider R3 b R3
and let e1, e2, e3 be a basis of the �rst R3

and f1, f2, f3 of
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the second. A basis of R3 b R3
is then

e1 b f1, e1 b f2, e1 b f3,

e2 b f1, e2 b f2, e2 b f3,

e3 b f1, e3 b f2, e3 b f3,

(2.84)

whereas R3 ‘ R3
has a basis

e1, e2, e3, f1, f2, f3 . (2.85)

Note that whereas R3 ‘ R3
is six-dimensional, R3 b R3

is 9-dimensional. Note that you can

naturally think of R3bR3
as the vector space of real 3ˆ3 matrices: we can write any element

of R3 b R3
as

v “
ÿ

ij

aijei b fj . (2.86)

What makes tensor products interesting in the present context is that we can form new rep-

resentations out of old ones by tensoring the vector spaces they act on.

Example 2.11. 2 b 2̄ Let’s say you have a vector space C2
that ‘lives’ in the fundamental

representation of SUp2q, and one C2
that lives in the anti-fundamental and you form their

tensor product. The question we are asking is: how does SUp2q act on the tensor product?

For a vector in C2
in the fundamental we have

z Ñ gz (2.87)

and in the antifundamental

z Ñ ḡz . (2.88)

This is how we would things down using a chosen �xed basis, v “ pz1, z2q, so we might also

write this more abstractly as (for the �rst case):

v “
ÿ

i

ziei Ñ gijzjei (2.89)

We can think of this as either acting with g on z (this is called the active interpretation) or

as acting with gT on the tuple of basis vectors (this is called the passive interpretation):

ej Ñ gijei “ gTjiei (2.90)

i.e.
ˆ

e1
e2

˙

Ñ gT
ˆ

e1
e2

˙

. (2.91)

We can use either if we like it, and this will help us to �gure out how to act on elements of

C2 b C2
. As the �rst copy transforms with g and the second with ḡ we have

v “
ÿ

i

aij ei b fj Ñ
ÿ

ijkl

aij pgkiekq b pḡljflq “
ÿ

ijkl

gkiaij ḡlj ek b fl (2.92)
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so in summary the vectors in C2 b C2
behave as

aij Ñ
ÿ

kl

gikaklg
:

lj , (2.93)

i.e. if we collect the aij in a matrix A we get

AÑ gAg: . (2.94)

We can repeat the same logic to �nd out how arbitrary representations acting on vector spaces

V and W act on V bW :

De�nition 2.15. Let rV pGq P GLpV q and rW pGq P GLpW q, and let the components of these

matrices be rV pGqij and rW pGqab. Then the tensor product representation rVbW acts on a

vector U P V bW with components Uia as

U 1ia :“ rV pGqijrW pGqab Ujb . (2.95)

Example 2.12. 2b 2̄ “ 1‘ 3
Continuing example 2.11 we know that we can decompose the representation acting onC2bC2

into irreducible representations. But which ones? As we have seen, SUp2q acts on aij as

AÑ A1 a1ij “ gikaklpg
:
qlj (2.96)

or in matrix notation

AÑ A1 “ gAg: . (2.97)

The trace of A hence transforms as

trAÑ trgAg´1 “ trA . (2.98)

Now what this implies is that the representation 2 b 2̄ is reducible, as we can never map

matrices with a vanishing trace to ones with a non-vanishing trace. Let’s try to understand

this a bit more clearly. The matrices A have the form

A “

ˆ

a11 a12
a21 a22

˙

(2.99)

and we think of the four complex components aij as components of a vector in a vector space

V isomorphic to C4
that we chose to write as a matrix. Within this vector space there is a

complex three-dimensional vector subspace W de�ned by a11 ` a22 “ 0, and as (2.98) shows,
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the group action onV maps vectors inW again to vectors inW , i.e. W is an invariant subspace.

More concretely, W is the subspace of matrices of the form

W “

"

A

ˇ

ˇ

ˇ

ˇ

A “

ˆ

z1 z2
z3 ´z1

˙

, pz1, z2, z3q P C3

*

. (2.100)

You might want to convince yourself that this is indeed a vector subspace. Similarly WK
is

the one-dimensional subspace containing matrices of the form

WK
“

"

A

ˇ

ˇ

ˇ

ˇ

A “

ˆ

z4 0
0 z4

˙

, z4 P C
*

. (2.101)

which again form an invariant subspace under the group action (2.98). The inner form un-

der which this is
K

is just the standard inner form on C4
, which we can write as xA,A1y “

ř

i,j āija
1
ij using two matrices A,A1. Also note that for any A we can write

A “

ˆ

z1 z2
z3 ´z1

˙

`

ˆ

z4 0
0 z4

˙

. (2.102)

The above shows that the representation 2b 2̄ is not irreducible, but decomposes into a one-

dimensional and a three-dimensional complex representation, i.e. we can write 2b 2̄ “ 1K‘
1. The only remaining thing to show is hence that 1K transforms in the 3 of SUp2q. The

action here is the same as the adjoint representation of SUp2q, except that we are acting on a

complex vector space of dimension three instead of a real one. The irreducibility of the adjoint

representation implies that there is no invariant complex subspace if we act on C3
instead of

R3
, so this is the 3 of SUp2q.

Exercise 31. Consider the representation nb n̄ of SUpnq. Explain why this is always reducible.
Can you identify the irreducible representations and invariant subspaces?

Proposition 2.4. 2b 2 “ 1‘ 3

Proof. : .

Exercise 32. a) Find the transformation of elements of 2b 2.

b) Show that the representations 2 and 2̄ are isomorphic by showing they are related by a
change of basis

z1 “

ˆ

0 1
´1 0

˙

z (2.103)

[Note: of course, v̄ transforms also as v̄ Ñ ḡv̄ if v Ñ gv. In a complex vector space, complex
conjugation is not a change of basis however!]
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c) Use the above to argue that 2b 2 “ 1‘ 3. Can you identify the invariant subspaces?

REMARK: More generally, tensor products can be decomposed into irreducible representa-

tions, i.e. we may write

rVbW pGq “ ‘irVipGq (2.104)

whenever we know any representation of G can be decomposed into irreducible representa-

tions. The change of basis relating the natural basis of the tensor product to a basis showing

the decomposition on the right hand side of the above equation is a well-known problem, and

the coe�cients appearing in the change of basis are called ’Clebsch-Gordan coe�cients’. De-

tails on this can be found in most books on quantum mechanics or [Sternberg, 1995], [Hall,

2003], and [Chaichian and Hagedorn, 1998] for the more mathematically minded.

REMARK: ˚ There are a number of examples in physics in which 2 b 2̄ “ 1 ‘ 3 and

2 b 2 “ 1 ‘ 3 plays an important role in organzing degrees of freedom of a theory. Two

important ones are explained below:

spin 1
2

The rotation group in 3D is the group SOp3q. As we have seen, SOp3q “ SUp2q{Z2, and it

turns out that the relevant group describing the behavior of rotations acting on fermions (such

as electrons, protons, etc ..) is in fact is SUp2q and not SOp3q. The relation between usual rota-

tions and maps in SUp2q is exactly given by the homomorphism we constructed earlier, more

on this topic will be discussed later. This means we can write down the wavefunction of a

fermion as

ψ “

ˆ

ψ`
ψ´

˙

(2.105)

which lives in the 2 representation of SUp2q under rotations. If you have a system composed

of two fermions ψ1 and ψ2, the total wavefunction Ψ is a tensor product of the two wavefunc-

tions
5

Ψ “ ψi b ψ2 (2.106)

and hence lives in the 2 b 2. Decomposing this into irreducible representations, we �nd a

singlet and a triplet of wavefunctions. This is what physicists sometimes call ‘addition of an-
gularmomentum’ and it explains why a Helium atom or Positronium have a singlet (‘para-’)

or triplet (‘ortho-’) behavior under rotations. Note that the triplet we found behaves just as the

adjoint of SUp2q, which corresponds to the usual de�ning (‘vector’) representation of SOp3q.

quarks
The two lightest quarks are the up and the down quark. The have nearly identical masses,

5
In fact, it is an antisymmetric version (under exchange) if you have twice the same particle. I will ignore this

in the present discussion as it does not really alter the conclusions.
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Figure 2.1: Mesons whose structure can be understood as representations of 3 b 3̄ of SUp3q.
As quarks are also fermions, mesons transform as 2 ‘ 2̄ under rotations, which makes them

split into a singlet (‘scalar’) and triplet (‘vector’). The particles on the left are scalar mesons

and the ones on the right are vector mesons.

but di�er in their electric charges. The can form bound states which are called Baryons, and

many di�erent of these were found since the 40s. Until the discovery of quarks, people were

bewildered by how many there were and how to organize them into some sort of pattern.

The simplest bound states, called mesons, contain only two quarks. The force binding them

together is the strong nuclear force which is a lot stronger than electromagnetism, and from

the perspective of the strong force, the up and the down quark look identical if we forget the

small mass di�erence. We can combine their wavefunctions into one

ψq “

ˆ

ψu
ψd

˙

(2.107)

and the statement that they are identical in strong interactions means there is an SUp2q sym-

metry acting in the 2 on ψq. Because this looks exactly like the SUp2q action of rotations on

fermions, it was called ‘iso-spin’ which is a terrible name there is no other relation to spin

than this. But this means that bound states of e.g. a quark and an anti-quark transform in the

2b 2̄ “ 1‘ 3 representation. The triplet are called ‘pions’ pπ`, π´, π0q.

In fact, there is a third quark called the strange quark which also has (almost) the same mass as

up and down. This enhances the SUp2q to an SUp3q and we should be studying 3‘ 3̄ “ 1‘8
for mesons and

3‘ 3‘ 3 “ 1‘ 8‘ 8‘ 10 (2.108)

for Baryons which are made up of three quarks.

Historically, this way of thinking was in fact used to motivate the existence of quarks by

Murray Gell-Mann and Yuval Ne’eman in 1961 as they saw that observed particles could be �t

into this pattern. They called it the ‘Eightfold way’ [Gell-Mann and Neeman, 1964] in a nod to

Buddhism and since the adjoint of SUp3q is eight-dimensional. However, one particle in the

10 had not been seen in experiments yet, so they predicted it. It is now called the Ω´ and was

discovered in 1964 which among other things earned Gell-Mann a Nobel price in 1969. If you

want to read more about this story, [Gri�ths, 1987] is a good starting point.



Topic 3

The Lorentz Group and its
Representations

3.1 The Lorentz group and its Lie algebra
The Lorentz group is one of the most important examples of a Lie group appearing in physics.

It arises in a very similar way to most of the groups we have discussed so far as a symmetry

group that respects some quadratic form, in this case the ‘invariant length’ of special relativity.

A detailed account of many elementary aspects of the Lorentz group can be found e.g. in

[Scheck, 2010]

The fundamental postulate of relativity is that the speed of light is the same in all inertial

frames. Let us take two points p and q in space-time through which a ray of light passes

and assume that they have coordinates tp,xp and tq,xq in one inertial frame, and coordinates

t1p,x
1
p and t1q,x

1
q in another. We hence need

c2 “ pxp ´ xqq
2
{ptp ´ tqq

2
“ px1p ´ x

1
qq

2
{pt1p ´ t

1
qq

2
(3.1)

In other words

´ c2ptp ´ tqq
2
` pxp ´ xqq

2
“ 0 (3.2)

must be invariant under a change of frames. It is not hard to come up with coordinate transfor-

mation that satisfy this requirement, e.g a rotation P SOp3q acting purely on the coordinates

x works. If time is involved in our coordinate change, we need to take the relative minus sign

into account. An example would be acting the matrix

Λ01 “

¨

˚

˚

˝

coshpλq ´ sinhpλq 0 0
´ sinhpλq coshpλq 0 0

0 0 1 0
0 0 0 1

˛

‹

‹

‚

. (3.3)

78
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This keeps ´pctq2 ` x21 invariant as

´pctq2 ` x21 Ñ ´pct1q2 ` px11q
2

“ ´pcoshpλq ct´ sinhpλq x1q
2
` p´ sinhpλq ct` coshpλq x1q

2

“ ´pctq2pcosh2
pλq ´ sinh2

pλqq ` x21pcosh2
pλq ´ sinh2

pλqq

“ ´pctq2 ` x21

(3.4)

as cosh2
pλq ´ sinh2

pλq “ 1 for any λ (this is the hyperbolic analogue of cos2 φ` sin2 φ “ 1).

Note that the origin of the primed system at x11 “ 0 satis�es

´ sinhpλq ct` coshpλq x1 “ 0 (3.5)

so that it moves in the unprimed system with a velocity

v “ x1{t “ c
sinhpλq

coshpλq
“ c tanhpλq “ c

eλ ´ e´λ

eλ ` e´λ
ă c . (3.6)

For this reason λ is called rapidity in the literature. Note that for every λ, this speed is always

less that the speed of light. Instead of using such transformations to �gure out time dilation,

length contraction, etc ... we are going to examine the structure of

De�nition 3.1. The Lorentz group L is the group of linear maps on R4
(with coordinates

px0, x1, x2, x3q) that preserve the quadratic form

|x|2M ” ´px0q2 ` px1q2 ` px2q2 ` px3q2 (3.7)

REMARK:R4
with this quadratic form is also often called R1,3

or ‘Minkowski space’. It is

then appropriate to call the Lorentz group Op1, 3q. We have already learned that the principle

of relativity is obeyed by (at least) two types of transformations: rotations in R3
which leave

time untouched, and boosts such as (3.3) which mediate between relatively moving systems.

Note that |x|2M is not an inner form as it is not positive de�nite.

For two coordinate systems with relative velocity v the coordinate change is

De�nition 3.2. A boost associated with two relatively moving inertial frames with rela-

tive speed v is a Lorentz transformation B with Bpvq00 “ coshλ, Bpvqi0 “ Bpvq0i “
´vi{c coshλ, and

Bpvqik “ δik `
pcoshλq2

1` coshλ

vivk

c2
. (3.8)

where tanhλ “ |v|{c.
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In order to facilitate the book-keeping of the minus sign in this de�nition
1
the following nota-

tion is in widespread use. De�ne px0, x1, x2, x3q “ pct, x, y, zq as the ‘four-vector’ of coordi-

nates combining spatial coordinates and time. De�ne

xµ ” ηµνx
ν

(3.9)

where ηµν are the components of the diagonal matrix

η “

¨

˚

˚

˝

´1
1

1
1

˛

‹

‹

‚

(3.10)

and we are using the summation convention. The inverse of the matrix η is clearly η again,

we need to put the indices up as this satis�es

xµ “ ηµνxν (3.11)

where ηµν “ pdiagp´1, 1, 1, 1qqµν . Note that

ηµνη
νρ
“ δµ

ρ , (3.12)

δν
ρ

is the usual Kronecker delta which is 1 if both indices are equal and zero otherwise. We

can hence write the length |x|M of a vector in Minkowski space as

|x|2M “ xµxνηµν “ xµx
µ
“ xµxνη

µν . (3.13)

Let Λ have components Λµ
ν and assume Λ linearly maps a 4-vector x to a 4-vector x1

xµ1 “ Λµ
σx

σ . (3.14)

Now if Λ is in the Lorentz group we need |x1|2M “ |x|2M , i.e.

|x1|2M “ Λµ
σx

σΛν
ρx

ρηµν “ xσxρΛµ
σηµνΛ

ν
ρ “ xµxνηµν . (3.15)

In other words

Λµ
σΛν

ρηµν “ ησρ (3.16)

or in matrix notation

ΛTηΛ “ η ñ ηΛTη “ Λ´1 (3.17)

Up to the insertion of ηs ΛT
is hence the same as Λ´1. Note that we have the transformation

behaviour

xµ Ñ x1µ “ Λµ
νx

ν

xµ “ ηµρx
ρ
Ñ x1µ “ ηµρx

1ρ
“ ηµρΛ

ρ
νx

ν
“ ηµρΛ

ρ
νη

νσxσ “ xσpηΛTηqσµ “ xσpΛ
´1
q
σ
µ

(3.18)

1
There is a deeper meaning which is that these are in the tangent (xµ) and cotangent spaces (xµ) of space-time.
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Thats how it had to be, as we constructed Lorentz transformations in such a way that xµx
µ

is

invariant!

Objects xµ transforming as above are called ‘Lorentz vectors’. Objects transforming like xµ
are called ‘Lorentz covectors’. We can think of the matrix η as a map which sends every

vector to a covector and vice-versa.

Whenever we contract upper and lower indices, we hence get something that is in-
variant under the Lorentz group. By extension, it is customary to put upper/lower indices

on objects that have the same transformation behaviour as xµ and xµ. The same rule for con-

structing invariants then exists there as well. The positioning of indices hence serves as a

book keeping device for the transformation behaviour and consequently for the constructing

of Lorentz scalars, i.e. invariant quantities.

Exercise 33. Consider a Lorentz vector with components xµ, which transforms under Lorentz
transformations as

xµ Ñ x1µ “ Λµ
νx

ν .

Note that throughout this problem we are using summation convention.

a) Let fµν ” xµxν . Find the transformation behavior of fµν , fµν “ xµxν and fµν “ xµxν
under Lorentz transformations.

b) For another Lorentz vector yµ, �nd the transformation behavior of fµνyµ under Lorentz
transformations.

c) Compute
ÿ

µ

B

Bxµ
xµ .

d) Work out the transformation behavior of

B

Bxµ

under Lorentz transformations. Use c) to argue for the same result.

Let us now examine the global structure of the Lorentz group L. Clearly, the determinant of

Λ is ˘1, so that we get two disconnected components L˘, just as for SOp3q. The component
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L` that is connected to the identity is called proper Lorentz group. Furthermore the p0, 0q
component of ηΛTηΛ “ 1 implies

1 “
`

Λ0
0

˘2
´
`

Λ0
1

˘2
´
`

Λ0
2

˘2
´
`

Λ0
3

˘2
, (3.19)

so that pΛ0
0q

2
ě 1 which has again two components:

LÒ where Λ0
0 ě 1 are called the orthochronous Lorentz transformations.

LÓ where Λ0
0 ď ´1 are called the non-orthochronous Lorentz transformations.

The orthochronous transformations keep the arrow of time pointing in the same direction.

Altogether we hence have four components. The maps ΛT “ diagp´1, 1, 1, 1q (time reversal)

and ΛP “ diagp1,´1,´1,´1q (parity) generate the whole group together with LÒ`: we can

use ΛT , ΛP and ΛTΛP to map any group element toLÒ`, which implies we can write any group

element in L as a product of Λ P LÒ` with Λa
TΛb

P for a, b P p0, 1q.

The component of L that is continously connected to the identity is the proper orthochronous

Lorentz group LÒ`. LÒ` admits the following decomposition

Theorem 3.1. ˚ Every proper orthochronous Lorentz transformation Λ P LÒ` has a unique de-
composition as

Λ “ Bpvq

ˆ

1
R

˙

(3.20)

where Bpvq is a boost with parameter

vi{c “ Λi
0{Λ

0
0 (3.21)

and R is an element of SOp3q given by

Rik
“ Λi

k ´
1

1` Λ0
0

Λi
0Λ

0
k . (3.22)

Proof. : First of all, it follows from (3.19) that

ř

ipΛ
i
0{Λ

0
0q

2 ă 1 as

ÿ

i

pΛi
0{Λ

0
0q

2
“
pΛ0

0q
2 ´ 1

pΛ0
0q

2
ă 1 . (3.23)

A boost associated to the speed v{c hence makes sense. From de�nition 3.2 above it follows

that B0
0pvq “ coshλ “ Λ0

0 and B0
ipvq “ ´v

i{c coshλ “ Λ0
i. Hence

Bi
jpvq “ δij `

1

1` Λ0
0

Λ0
iΛ

0
j (3.24)
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using (3.8). We now show that

R :“ Bp´vqΛ “ B´1pvqΛ (3.25)

is indeed a rotation and R “ 1‘R, which �nishes the proof. We work out

R0
0 “ pΛ

0
0q

2
´
ÿ

i

pΛi
0q

2
“ 1

R0
i “ Λ0

0Λ
0
i ´

ÿ

j

Λj
0Λ

j
i “ 0

Ri
k “ Λi

k ´
1

1` Λ0
0

Λi
0Λ

0
k

. (3.26)

Here we used ΛTηΛ “ η repeatedly. This is a rotation with the right block-diagonal structure

as claimed. ˝

To understand the global structure of LÒ` “ SOp1, 3q`, we can repeat the trick we used when

describing the relationship between SOp3q and SUp2q. For a 4-vector px0, x1, x2, x3qwe write

it as a matrix Mx with M :
x “Mx:

Mx :“

ˆ

x0 ` x3 x1 ´ ix2

x1 ` ix2 x0 ´ x3

˙

. (3.27)

We can now formulate a map SLp2,Cq Ñ L by sending g P SLp2,Cq

g Ñ F pgq F pgqMx :“ gMxg
: . (3.28)

Proposition 3.1. F pgq is a surjective group homomorphism from SLp2,Cq to LÒ`.

Proof. :

Exercise 34. .

a) Show that F is a surjective homomorphism from SLp2,Cq to LÒ`.

hint: Try to follow a similar logic as for the homomorphism from SUp2q to SOp3q studied
before. You can take for granted that SLp2,Cq is connected.

b) For a rotation in the x1, x2-plane, �nd the element g P SLp2,Cq that is mapped to it by F .
Repeat the same for a boost along the x1 direction.
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Finally, we can work out the Lie algebra of the Lorentz group. As we have seen, a

general Lorentz transformation is uniquely given in terms of an element of SOp3q (which is

real three-dimensional) and a boost (which is parametrized by a real three-dimensional vector

v). We hence conclude that the Lorentz group is a real six-dimensional manifold. This �ts with

the fact that a real 4 ˆ 4 matrix has 16 components and ΛTηΛ “ η imposes 10 independent

constraints. Using rotation and boost matrices like (3.3) with parameters gives us paths in the

group, and we �nd that the Lie algebra is generated by the six matrices

l01 “

¨

˚

˚

˝

0 ´1 0 0
´1 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

l02 “

¨

˚

˚

˝

0 0 ´1 0
0 0 0 0
´1 0 0 0
0 0 0 0

˛

‹

‹

‚

l03 “

¨

˚

˚

˝

0 0 0 ´1
0 0 0 0
0 0 0 0
´1 0 0 0

˛

‹

‹

‚

l12 “

¨

˚

˚

˝

0 0 0 0
0 0 1 0
0 ´1 0 0
0 0 0 0

˛

‹

‹

‚

l13 “

¨

˚

˚

˝

0 0 0 0
0 0 0 1
0 0 0 0
0 ´1 0 0

˛

‹

‹

‚

l23 “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

(3.29)

These can be summarized by

plµνqαβ “ ηµαδνβ ´ η
ναδµβ . (3.30)

Note that µ and ν in the equation above label di�erent elements of the Lie algebra, and α, β
are the components of the corresponding matrix.

Exercise 35. Verify that the matrices above are elements in the Lie algebra of the Lorentz group.

After a slightly tedious computation one �nds that they obey the Lie algebra

rlµν , lρσs “ ´ηµρlνσ ´ ηνσlµρ ` ηµσlνρ ` ηνρlµσ (3.31)

3.2 Representations of the Lorentz group
Let us now investigate representations of the Lorentz group. We have already seen the de�ngin

representation:

xµ Ñ Λµ
νx

ν
(3.32)

with

ΛTηΛ “ η (3.33)

so that

xµxµ “ xµηµνx
ν
“ ´px0q2 ` px1q2 ` px2q2 ` px3q2 (3.34)

stays invariant. Now we will ask about other representations of this group. Note that SOp3q
is a subgroup of LÒ`, and that the fundamental representation of its spin group, SUp2q, had

physical signi�cance as a spinor.
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As SO`p1, 3q “ LÒ` has SLp2,Cq as a double covering group (Proposition 3.1), so it will not

be suprising if we make the

De�nition 3.3. The group Spinp1, 3q is equal to the group SLp2,Cq.

And it is again a fact of life that what matters to describing relativistic processes in the real

world, are representations of SLp2,Cq “ Spinp1, 3q instead of representations of L.

Spinors of the Lorentz Group

For SOp3q we found irreducible representations by using Lie algebra of SOp3q, which is the

same as the Lie algebra ofSUp2q. Not all representations of this algebra descended to represen-

tations of SOp3q, but the extra representations we found were exactly the ‘spin 1/2’ spinorial

representations of SUp2q of physical signi�cance. We can use a similar strategy here, which

leads us to what are called spinors of the Lorentz group. Our presentation of spinors mostly

follows [Peskin and Schroeder, 1995], see also [Woit, 2017]. Note that these books use some-

what di�erent convention however.

Recall the Lorentz algebra

rlµν , lρσs “ ´ηµρlνσ ´ ηνσlµρ ` ηµσlνρ ` ηνρlµσ . (3.35)

Proposition 3.2. Let γµ, µ “ 0, 1, 2, 3 be matrices that obey the algebra

tγµ, γνu :“ γµγν ` γνγµ “ 2ηµν1 . (3.36)

Then we can construct a representation of the Lorentz algebra, (3.35), using the matrices

Sµν :“ 1
4
rγµ, γνs . (3.37)

Proof. : we need to check that the Sµν satisfy the Lorentz algebra. First note that the relation

tγµ, γνu “ 2ηµν implies that

γµγν “ ´γνγµ for µ ‰ ν (3.38)

and

pγµq2 “ ηµµ1 (no summation) (3.39)

We can now work out the commutator of rSµν , Sρσs. First note that µ ‰ ν and ρ ‰ σ as the

S otherwise vanish (as do the corresponding `. Hence Sµν “ 1
2
γµγν and Sρσ “ 1

2
γργσ. Let us
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�rst assume that µ, ν, ρ, σ are all di�erent. We get

pµ, ν, ρ, σ all di�erentq :

rSµν , Sρσs “
1

4
pγµγνγργσ ´ γργσγµγνq

Ö

“
1

4
pγµγνγργσ ´ γµγργσγνq

Ö

“
1

4
pγµγνγργσ ´ γµγνγργσq “ 0

(3.40)

As the colours and arrows are supposed to show you, this looks more complicated than it is.

All we have done in the second equality is swapped the γµ with γρ and γσ, which produced

two minus sign, hence no sign at all. In the third equality we did the same with γν . This is the

same as what (3.35) tells us.

Now we assume that µ “ ρ (note that there is no summation over µ in the below expressions):

pµ “ ρq :

rSµν , Sρσs “
1

16
rrγµ, γνs, rγρ, γσss “

1

16
rrγµ, γνs, rγµ, γσss

“
1

16
r2γµγν , 2γµγσs “

1

4
pγµγνγµγσ ´ γµγσγµγνq

“
1

4

`

´pγµq2γνγσ ` pγµq2γσγν
˘

“ ´ηµµSνσ .

(3.41)

Here we only had to swap γµ with γν in the �rst term and with γσ in the second term, each

giving a minus sign. The �nal result is exactly what we �nd from (3.35) when µ “ ρ. The

remaining cases can be worked out analogously. ˝.

REMARK: Algebras of the type tγa, γbu “ 2ηab where ηab is a symmetric diagonal matrix with

entries ˘1 are called ‘Cli�ord algebras’. We have already seen an example when discussing

the Pauli matrices: the Pauli matrices obey a Cli�ord algebra generated by three elements with

ηab “ diagp1, 1, 1q.

When trying to �nd explicit examples of the four γµ for µ “ 0, 1, 2, 3 the above remark is

useful hint. It turns out we need at least 4ˆ 4 matrices, and one possible choice is

De�nition 3.4. The Dirac matrices are

γ0 “

ˆ

0 12ˆ2

´12ˆ2 0

˙

, γi “

ˆ

0 σi
σi 0

˙

i “ 1, 2, 3 (3.42)
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where 1 is the 2ˆ 2 identity matrix and σi are the Pauli matrices

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (3.43)

Note that the γµ are 4ˆ 4 matrices which we have written in a 2ˆ 2 block structure using the

2ˆ 2 Pauli matrices.

Proposition 3.3. The Dirac matrices obey tγµ, γνu “ 2ηµν14ˆ4

Proof. :

Exercise 36. .

a) Show that the Dirac matrices obey tγµ, γνu “ 2ηµν14ˆ4.

b) Show the ‘freshers dream’:
paµγ

µ
q
2
“ aµa

µ14ˆ4 (3.44)

REMARK: This is not the only realization one can write down (and not Dirac’s original ma-

trices). The above version is often called the ‘Weyl’ or ‘chiral’ representation.

Proposition 3.4. Using the Dirac matrices, the algebra generators Sµν are

S0i
“ 1

2

ˆ

σi 0
0 ´σi

˙

, Sjk “
i

2
εjkl

ˆ

σl 0
0 σl

˙

(3.45)

Proof. :

Exercise 37. Using the Dirac matrices, check that the algebra generators Sµν “ 1
4
rγµ, γνs can

be written as

S0i
“

1

2

ˆ

σi 0
0 ´σi

˙

, Sjk “
i

2
εjkl

ˆ

σl 0
0 σl

˙

. (3.46)

De�nition 3.5. A vector Ψ P C4
transforming under Spinp1, 3q as

Ψ Ñ Ψ1
“ eS

µνθµνΨ ” Λ 1
2
Ψ , θµν P R (3.47)

is called a Dirac spinor.
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REMARK: Note that a Dirac spinor transforms in a reducible representation, as the matrices

Sµν are block-diagonal. The irreducible representations we �nd by restricting to the blocks

are called

De�nition 3.6. Decomposing Ψ “ pψL, ψRq, the objects ψL and ψR are called left-handed,

and right-handed Weyl spinors, respectively.

Exercise 38. .

a) For an element Λpθq “ el
12θ of the Lorentz group (l12 is one of the generators of the Lorentz

algebra introduced in the lectures) show that Λp0q “ Λp2πq “ 1. Now compare this behavior to
the corresponding element of the representation acting on a Dirac spinor: Λ1{2pθq “ eS

12θ.

b) Let γ5 :“ iγ0γ1γ2γ3. What is 1
2
pγ5 ˘ 1qΨ for Ψ a Dirac spinor written in terms of Weyl

spinors?

Having de�ned the ‘Dirac spinor’ representation of the (spin group of the) Lorentz group, we

may ask how we can construct Lorentz scalars out of it. Let us denote the complex conjugate

of Ψ by Ψ˚
, an obvious guess might then be

Ψ˚
¨Ψ “ Ψ˚

IΨI (3.48)

where ΨI are the components of Ψ. It turns out it is not quite (but almost) this easy. The

problem here is that

Λ:1{2 ‰ Λ´11{2 (3.49)

De�nition 3.7. For a Dirac spinor Ψ with components ΨI and Ψ˚
its complex conjugate, we

let

Ψ̄ ” Ψ˚γ0 i.e. Ψ̄I ” Ψ˚
Iγ

0
IJ (3.50)

Note the slight break with the general convention that a bar signi�es complex conjugation,

but the above notation is almost universally used, so I will follow this as well.

Proposition 3.5. For a Dirac spinor Ψ with components ΨI

Ψ̄Ψ “ Ψ˚
Iγ

0
IJΨJ (3.51)

is a Lorentz scalar.
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Proof. : A direct computation (see problems class) shows that

Λ:1{2γ
0
“ γ0Λ´11{2 . (3.52)

Now we can work out

Ψ̄Ψ “ Ψ˚γ0Ψ

Ñ Ψ˚Λ:1{2γ
0Λ1{2Ψ “ Ψ˚γ0Λ´11{2Λ1{2Ψ “ Ψ̄Ψ .

(3.53)

˝

Theorem 3.2. For a Dirac spinor Ψ with components ΨI the expression

Ψ̄γµΨ “ Ψ˚
Iγ

0
IJγ

µ
JKΨK (3.54)

transforms as a Lorentz vector.

Note that this means we can e�ectively take the
µ

index we gave the Dirac matrices seriously,

which is the reason for this notation. Before showing this, we need an important lemma:

Lemma 3.1. The matrices Λ 1
2
“ eS

µνθµν satisfy

Λ´11
2

γµΛ 1
2
“ Λµ

νγ
ν
“
`

e l
ρσθρσ

˘µ

ν
γν . (3.55)

Proof. : First we show that

rγµ, Sρσs “ plρσqµνγ
ν . (3.56)

Don’t get confused by the rhs of this equation: ρ and σ label the matrices l, and we are talking

about the µ and ν components of that matrix. As observed earlier in the lectures, these can be

written as

plρσqµν “ ηρµδσν ´ η
σµδρν . (3.57)

Let’s �rst take µ ‰ ρ and µ ‰ σ. The rhs then vanishes and we can the work out the lhs as

2rγµ, γργσs “ 2pγµγργσ ´ γργσγµq “ 0 . (3.58)

Now we take µ “ ρ ‰ σ and compute

pµ “ ρq : rγµ, Sρσs “ 2rγµ, γµγσs “ ηµµγσ pno summationq (3.59)

which equals the rhs of what we want to show for µ “ ρ ‰ σ. Finally, we take µ “ σ ‰ ρ and

�nd

pµ “ σq : rγµ, Sρσs “ 2rγµ, γργµs “ ´ηµµγρ pno summationq (3.60)
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which equals the rhs of what we want to show for µ “ σ ‰ ρ.

The above is equivalent to the statement that, for very small θµν

p1´ Sρσθρσqγ
µ
p1` Sρσθρσq “

`

δµν ` p`
ρσθρσq

µ
ν

˘

γν (3.61)

Let’s look at this equation from the following perspective: consider the vector space of matri-

ces spanned by the γµ. We can write any element of such a vector space as A :“ aµγ
µ
. The

right hand side can be understood as a linear map acting on A mapping it to

A1 “ aµ
`

δµν ` p`
ρσθρσq

µ
ν

˘

γν (3.62)

and (3.61) says that (for θρσ very small) we can also write this map as

A1 “ p1´ SρσθρσqAp1` S
ρσθρσq (3.63)

We can apply the same map n times to �nd

p1´ Sρσθρσq
nγµp1` S

ρσθρσq
n
“ pp1` `ρσθρσq

n
q
µ
ν γ

ν
(3.64)

so also

lim
nÑ8

p1´ Sρσθρσ{nq
nγµp1` S

ρσθρσ{nq
n
“ lim

nÑ8
pp1` `ρσθρσ{nq

n
q
µ
ν γ

ν
(3.65)

which shows what we wanted to show using the description of the matrix exponential estab-

lished before. ˝

Proof. (of the theorem): We can now work out

Ψ̄γµΨ Ñ Ψ˚γ0Λ´11{2γ
µΛ1{2Ψ “ Ψ˚γ0Λµ

νγ
νΨ “ Λµ

νΨ̄γ
νΨ (3.66)

where we have used the identity Λ´11{2γ
µΛ1{2 “ Λµ

νγ
ν

shown in the lemma above. ˝

Corollary 3.1. For a Lorentz vector aµ, aµΨ̄γµΨ ” Ψ̄{aΨ transforms as a Lorentz scalar.

Proof. : We have already seen that aµb
µ

for aµ and bµ any Lorentz vectors gives us a scalar. In

the theorem above we saw that bµ “ Ψ̄γµΨ is a Lorentz vector, so the statement follows.

Exercise 39. How does
Bµν

” Ψ̄γµγνΨ (3.67)

transform under Lorentz transformations for Ψ a Dirac spinor?
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Exercise 40. For a Dirac spinor Ψ write

Ψ̄γµΨ (3.68)

in terms of Weyl spinors.

General Representation Theory ˚

Working with the Lie algebra sop1, 3q of LÒ` reveals the following. Taking this as a Lie algebra

over C instead of R we can de�ne

A1 “
1
2
p´`23 ` i`01q A2 “

1
2
p`13 ` i`02q A3 “

1
2
p´`12 ` i`03q

B1 “
1
2
p´`23 ´ i`01q B2 “

1
2
p`13 ´ i`02q B3 “

1
2
p´`12 ´ i`03q

(3.69)

these satisfy the algebra

rAi, Bjs “ 0 @i, j

rAi, Ajs “ εijkAk rBi, Bjs “ εijkBk

(3.70)

which is two copies of the Lie algebra slp2,Cq. Hence

Proposition 3.6. The complexi�cation of sop1, 3q is equal to slp2,Cq‘slp2,Cq: sop1, 3qbC “
slp2,Cq ‘ slp2,Cq.

Proof. : We can write sop1, 3q b C as (3.70). ˝

We have studied representations of SLp2,Cq in Michaelmas term, and found them to be com-

plex d ` 1 dimensional and labelled by an integer d. Furthermore, we have seen that e.g. the

complex conjugate representation 2̄ becomes the same as 2 after a change of basis in exercise

15. This is not true for SLp2,Cq: conjugation does not change the eigenvalues of a matrix and

g and ḡ have di�erent eigenvalues for g P SLp2,Cq. 2
We hence get di�erent representations

after taking complex conjugation. At the level of the algebras we can repeat the classi�cation

of irreucible representations of sop1, 3q by taking a detour via sop1, 3q bC (just as we did for

sup2q b C “ slp2,Cq), and it turns out that (we will not prove this here)

Theorem 3.3. The complex irreducible representations of SLp2,Cq are the tensor products rs1 b
r̄s2 labelled by pairs ps1, s2qwhere si take half-integer values. They act on a complex vector space
of dimension p2s1 ` 1qp2s2 ` 1q.

2
For rdpgq, g P SUp2q, the eigenvalues are real or come in pairs of complex conjugates, so this does not

happen.
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For the �rst values of ps1, s2q these representations have the following names

• p0, 0q This does not transform at all, so this is a scalar.

• p1
2
, 0q This is a Weyl spinor. For the same reasons we discussed representations of SUp2q

vs. SOp3q, this is only a representation of Spinp1, 3q “ SLp2, Cq but not SOp1, 3q`.

• p0, 1
2
q This is another Weyl spinor.

• p1
2
, 1
2
q This has dimension four and is a vector. It is the representation we have used to

de�ne the Lorentz group. Its action is exactly the one written down in proposition 3.1

when we studied the map from SLp2,Cq to LÒ`.

• p1
2
, 0q ‘ p0, 1

2
q This reducible representation is a Dirac spinor.
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