Problem class 1

1) (a) Show that $S O(3)$ is a group using matrix multipication as the group composition.
(b) Verify that acting with $g \in S O(3)$ on a vector $\boldsymbol{v} \in \mathbb{R}^{3}$ as $\boldsymbol{v} \rightarrow g \boldsymbol{v}$ implies that the lengh of \boldsymbol{v} stays invariant.
(c) For a matrix $g=e^{\gamma}$, what conditions do we need to put on γ such that $g \in S O(3)$?
(d) The group $O(3)$ is the group of matrices g which map a vector $\boldsymbol{v} \in \mathbb{R}^{3}$ to

$$
\begin{equation*}
\boldsymbol{v} \mapsto S \boldsymbol{v} \tag{0.0.1}
\end{equation*}
$$

such that the inner form on $\mathbb{R}^{3}, \boldsymbol{v} \cdot \boldsymbol{v}=\sum_{i} v_{i}^{2}$, stays invariant.
For a matrix g in the group $O(3)$, show that $\operatorname{det} g= \pm 1$.

Solution:

(a) The definition says $g^{-1}=g^{T}$ and $\operatorname{det} g=1$.

Assume $g \in S O(3)$. Then also $g^{T}=g^{-1} \in S O(3)$: if $g^{T} g=\mathbb{1}$ then also $\left(g^{T}\right)^{T} g^{T}=$ 1. Furthermore $\operatorname{det} g^{T}=\operatorname{det} g=1$.

Clearly $\mathbb{1} \in S O(3)$ and group multiplication is associative.
Finally, if $g, g^{\prime} \in S O(3)$ we have

$$
\begin{equation*}
\left(g g^{\prime}\right)^{-1}=g^{\prime-1} g^{-1}=g^{\prime T} g^{T}=\left(g g^{\prime}\right)^{T} \tag{0.0.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det} g g^{\prime}=\operatorname{det} g \operatorname{det} g^{\prime}=1 \tag{0.0.3}
\end{equation*}
$$

(b) Let $\boldsymbol{v}^{\prime}=g \boldsymbol{v}$. Then

$$
\begin{align*}
\text { length }^{2}\left(\boldsymbol{v}^{\prime}\right) & =\boldsymbol{v}^{\prime} \cdot \boldsymbol{v}^{\prime}=v_{i}^{\prime} v_{i}^{\prime}=g_{i j} v_{j} g_{i k} v_{k}=v_{j} g_{j i}^{T} g_{i k} v_{k}=\boldsymbol{v}^{T} g^{T} g \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{v} \\
& =\operatorname{length}^{2}(\boldsymbol{v}) \tag{0.0.4}
\end{align*}
$$

(c) We have $g^{T}=\left(e^{\gamma}\right)^{T}=e^{\gamma^{T}}=g^{-1}=e^{-\gamma}$. Hence $\gamma^{T}=-\gamma$. Repeating the same steps as done in the proof given in the lecture for $S U(2)$ shows that

$$
\begin{equation*}
1=\operatorname{det} g=\operatorname{det} e^{\gamma}=e^{\operatorname{tr} \gamma} \tag{0.0.5}
\end{equation*}
$$

so that we need the trace of γ to vanish.
(d) Recall $O(3)$ is the group of 3×3 matrices with $g^{-1}=g^{T}$. Using $g^{T} g=\mathbb{1}$ we have that $1=\operatorname{det} \mathbb{1}=\operatorname{det} g^{T} g=\operatorname{det} g^{T} \operatorname{det} g=(\operatorname{det} g)^{2}$.

This implies that $S O(3)$ has two disjoint components, one with $\operatorname{det} g=1$ and one with $\operatorname{det} g=-1$. As the determinant is a continuous function of the components of the matrix, there is no way we there is a continuous path that takes us from matrices with det $=-1$ to those of det $=+1$. Hence $O(3)$ has two connected components. One of these (the one with the +) containes the identity and is a subgroup called $S O(3)$. The other one (the one with the -) does not contain the identity and is hence not a subgroup.
2) Let

$$
\begin{equation*}
F(g): M_{v} \rightarrow g M_{v} g^{\dagger}=: F(g)\left[M_{v}\right] \tag{0.0.6}
\end{equation*}
$$

where $g \in S U(2)$ and

$$
M_{v}=\left(\begin{array}{cc}
v_{3} & v_{1}-i v_{2} \tag{0.0.7}\\
v_{1}+i v_{2} & -v_{3}
\end{array}\right) .
$$

with $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$. Show that $F(g)$ is a group homomorphism from $S U(2)$ to $S O(3)$.

Solution:

First of all, you might wonder if the map $F(g)$ preserves the structure of the matrix M_{v}. Note that M_{v} is the most general complex 2×2 matrix with the property that $M_{v}^{\dagger}=M_{v}$ and $\operatorname{tr} M_{v}=0$. Under $F(g)$ it is mapped to $g M_{v} g^{\dagger}$ which also obeys

$$
\begin{equation*}
\left(g M_{\boldsymbol{v}} g^{\dagger}\right)^{\dagger}=\left(g^{\dagger}\right)^{\dagger} M_{\boldsymbol{v}}^{\dagger} g^{\dagger}=g M_{v} g^{\dagger} \tag{0.0.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(g M_{v} g^{\dagger}\right)=g_{i j}\left(M_{v}\right)_{j k} g_{k i}^{\dagger}=g_{k i}^{\dagger} g_{i j}\left(M_{v}\right)_{j k}=\operatorname{tr}\left(g^{\dagger} g M_{v}\right)=\operatorname{tr} M_{v}=0 \tag{0.0.9}
\end{equation*}
$$

as $g^{\dagger} g=\mathbb{1}$ as $g \in S U(2)$. Nexe notice that $F(g)$ is a linear map on the coords of v_{i} of \mathbb{R}^{3} as

$$
\begin{equation*}
g\left(M_{\boldsymbol{v}}+M_{\boldsymbol{v}^{\prime}}\right) g^{\dagger}=g M_{\boldsymbol{v}} g^{\dagger}+g M_{\boldsymbol{v}^{\prime}} g^{\dagger} \tag{0.0.10}
\end{equation*}
$$

This means that we could write F as

$$
\begin{equation*}
F(g): \boldsymbol{v} \rightarrow \Phi(g) \boldsymbol{v} \tag{0.0.11}
\end{equation*}
$$

for some 3×3 matrix $\Phi(g)$. We are not going to work out $\Phi(g)$ explicitely for a general g here, but note that we have worked this out in one instance in the lectures, where we showed that

$$
g=e^{i \theta \sigma_{3}} \rightarrow \Phi(g)=\left(\begin{array}{ccc}
\cos 2 \theta & \sin 2 \theta & 0 \tag{0.0.12}\\
-\sin 2 \theta & \cos 2 \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Next we observe that $\boldsymbol{v} \cdot \boldsymbol{v}=-\operatorname{det} M_{\boldsymbol{v}}$, which is mapped under F as follows:

$$
\begin{equation*}
\operatorname{det} M_{\boldsymbol{v}} \rightarrow \operatorname{det} g M_{\boldsymbol{v}} g^{\dagger}=\operatorname{det} g \operatorname{det} M_{\boldsymbol{v}} \operatorname{det} g^{-1}=\operatorname{det} M_{\boldsymbol{v}} \tag{0.0.13}
\end{equation*}
$$

Hence this map leaves \boldsymbol{v}^{2} invariant. As it is also a linear map, it must hence map to $O(3)$. The map $F(g)$ is a continuous map which maps $\mathbb{1} \in S U(2)$ to $\mathbb{1} \in O(3)$. As $S U(2)$ is connected (it is S^{3}), it only maps to the elements of $O(3)$ connected with the identity, i.e. to $S O(3)$.

For each $g \in S U(2)$ we hence have a way to assign an element of $S O(3)$ by sending g to $F(g)$, or equivalently $\Phi(g)$. And even better, composing two maps in $S O(3)$ is the same as composing two elements in $S U(2)$:

$$
\begin{equation*}
F\left(g^{\prime} g\right)\left(M_{\boldsymbol{v}}\right)=g^{\prime} g M_{\boldsymbol{v}} g^{\dagger} g^{\prime \dagger}=F\left(g^{\prime}\right)\left[F(g)\left[M_{v}\right]\right] \tag{0.0.14}
\end{equation*}
$$

so that F is a group homomorphism.

