Problem class 1

1) (a) Show that SO(3) is a group using matrix multipication as the group composition.

(b) Verify that acting with g € SO(3) on a vector v € R3 as v — gv implies that the
lengh of v stays invariant.

(c) For a matrix g = €7, what conditions do we need to put on 7 such that g € SO(3)?

(d) The group O(3) is the group of matrices g which map a vector v € R3 to
v— Sv (0.0.1)

such that the inner form on R?, v - v = Y, v, stays invariant.

For a matrix ¢ in the group O(3), show that det g = +1.

Solution:

(a) The definition says g~! = g7 and det g = 1.

Assume g € SO(3). Then also g7 = g~ € SO(3): if gT g = 1 then also (¢7)T g =
1. Furthermore det g7 = det g = 1.

Clearly 1 € SO(3) and group multiplication is associative.
Finally, if g, ¢’ € SO(3) we have

(99) ' =g g =4g"9" = (99)" (0.0.2)

and
det g¢' = detgdetg’ = 1. (0.0.3)

(b) Let v’ = gv. Then
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length®(v') = v" - v' = vjv; = gijv;givx = V9,906 = V' g gV =V -V

0.0.4

= length®(v) (0.0

(c) We have g7 = ()T = e’ = g~! = e77. Hence 4/ = —~. Repeating the same
steps as done in the proof given in the lecture for SU(2) shows that

1 =detg = dete? =e™ (0.0.5)

so that we need the trace of 7y to vanish.

(d) Recall O(3) is the group of 3 x 3 matrices with g=! = ¢g*. Using ¢” g = 1 we have
that 1 = det 1 = det g7g = det g7 det g = (det )%



This implies that SO(3) has two disjoint components, one with det g = 1 and one
with det g = —1. As the determinant is a continuous function of the components
of the matrix, there is no way we there is a continuous path that takes us from
matrices with det = —1 to those of det = +1. Hence O(3) has two connected
components. One of these (the one with the +) containes the identity and is a
subgroup called SO(3). The other one (the one with the —) does not contain the
identity and is hence not a subgroup.

2) Let
F(g) : My — gMyg" =: F(g)[M,] (0.0.6)
where g € SU(2) and
M, = ( B _w?) . (0.0.7)
V1 + 109 —U3

with ¥ = (v, v2,v3) € R Show that F(g) is a group homomorphism from SU(2) to
SO(3).

Solution:

First of all, you might wonder if the map F'(g) preserves the structure of the matrix M,,.
Note that M, is the most general complex 2 x 2 matrix with the property that M = M,
and tr M,, = 0. Under F(g) it is mapped to gM,g" which also obeys

T
(9Mug")' = (g MIg" = gM,g (0.0.8)
and
tr (gMyg') = i (My)ingh: = 0b,9i5(My) ji = tr (9'gMy) = trM, =0 (0.0.9)

as g'g = 1 as g € SU(2). Nexe notice that F'(g) is a linear map on the coords of v; of
R? as
g(My + My)g' = gM,g" + gMy g (0.0.10)

This means that we could write F" as
F(g):v — ®(g)v (0.0.11)

for some 3 x 3 matrix ®(g). We are not going to work out ®(g) explicitely for a general
g here, but note that we have worked this out in one instance in the lectures, where we

showed that
cos20 sin20 0

g=¢" 5 d(g) = | —sin20 cos20 0 (0.0.12)
0 0 1



Next we observe that v - v = — det M,,, which is mapped under F’ as follows:

det M, — det gM,g" = det gdet M, det g~* = det M,, . (0.0.13)

Hence this map leaves v? invariant. As it is also a linear map, it must hence map to O(3).

The map F'(g) is a continuous map which maps 1 € SU(2) to 1 € O(3). As SU(2) is
connected (it is S5®), it only maps to the elements of O(3) connected with the identity,
ie. to SO(3).

For each g € SU(2) we hence have a way to assign an element of SO(3) by sending ¢
to F(g), or equivalently ®(g). And even better, composing two maps in SO(3) is the
same as composing two elements in SU(2):

F(q'9)(My) = ¢'gMug'q" = F(¢') [F(g)[M,]] (0.0.14)

so that F'is a group homomorphism.



