Problem class 1

- 1) (a) Show that SO(3) is a group using matrix multiplication as the group composition.
 - (b) Verify that acting with $g \in SO(3)$ on a vector $v \in \mathbb{R}^3$ as $v \to gv$ implies that the length of v stays invariant.
 - (c) For a matrix $g = e^{\gamma}$, what conditions do we need to put on γ such that $g \in SO(3)$?
 - (d) The group O(3) is the group of matrices g which map a vector $\boldsymbol{v} \in \mathbb{R}^3$ to

$$\boldsymbol{v} \mapsto S \boldsymbol{v}$$
 (0.0.1)

such that the inner form on \mathbb{R}^3 , $m{v}\cdotm{v}=\sum_i v_i^2$, stays invariant.

For a matrix g in the group O(3), show that det $g = \pm 1$.

Solution:

(a) The definition says $g^{-1} = g^T$ and det g = 1.

Assume $g \in SO(3)$. Then also $g^T = g^{-1} \in SO(3)$: if $g^T g = 1$ then also $(g^T)^T g^T = 1$. Furthermore det $g^T = \det g = 1$.

Clearly $1 \in SO(3)$ and group multiplication is associative.

Finally, if $g, g' \in SO(3)$ we have

$$(gg')^{-1} = g'^{-1}g^{-1} = g'^T g^T = (gg')^T$$
(0.0.2)

and

$$\det gg' = \det g \det g' = 1. \tag{0.0.3}$$

(b) Let $\boldsymbol{v}' = g\boldsymbol{v}$. Then

$$length^{2}(\boldsymbol{v}') = \boldsymbol{v}' \cdot \boldsymbol{v}' = v'_{i}v'_{i} = g_{ij}v_{j}g_{ik}v_{k} = v_{j}g^{T}_{ji}g_{ik}v_{k} = \boldsymbol{v}^{T}g^{T}g\boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{v}$$

= length²(\mathbf{v}) (0.0.4)

(c) We have $g^T = (e^{\gamma})^T = e^{\gamma^T} = g^{-1} = e^{-\gamma}$. Hence $\gamma^T = -\gamma$. Repeating the same steps as done in the proof given in the lecture for SU(2) shows that

$$1 = \det g = \det e^{\gamma} = e^{\operatorname{tr}\gamma} \tag{0.0.5}$$

so that we need the trace of γ to vanish.

(d) Recall O(3) is the group of 3×3 matrices with $g^{-1} = g^T$. Using $g^T g = 1$ we have that $1 = \det 1 = \det g^T g = \det g^T \det g = (\det g)^2$.

This implies that SO(3) has two disjoint components, one with det g = 1 and one with det g = -1. As the determinant is a continuous function of the components of the matrix, there is no way we there is a continuous path that takes us from matrices with det = -1 to those of det = +1. Hence O(3) has two connected components. One of these (the one with the +) containes the identity and is a subgroup called SO(3). The other one (the one with the -) does not contain the identity and is hence not a subgroup.

2) Let

$$F(g): M_{\boldsymbol{v}} \to gM_{\boldsymbol{v}}g^{\dagger} =: F(g)[M_{\boldsymbol{v}}]$$

$$(0.0.6)$$

where $g \in SU(2)$ and

$$M_{v} = \begin{pmatrix} v_{3} & v_{1} - iv_{2} \\ v_{1} + iv_{2} & -v_{3} \end{pmatrix} .$$
 (0.0.7)

with $\vec{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$. Show that F(g) is a group homomorphism from SU(2) to SO(3).

Solution:

First of all, you might wonder if the map F(g) preserves the structure of the matrix M_v . Note that M_v is the most general complex 2×2 matrix with the property that $M_v^{\dagger} = M_v$ and $tr M_v = 0$. Under F(g) it is mapped to gM_vg^{\dagger} which also obeys

$$\left(gM_{\boldsymbol{v}}g^{\dagger}\right)^{\dagger} = \left(g^{\dagger}\right)^{\dagger}M_{\boldsymbol{v}}^{\dagger}g^{\dagger} = gM_{\boldsymbol{v}}g^{\dagger} \tag{0.0.8}$$

and

$$tr \left(gM_{\boldsymbol{v}}g^{\dagger}\right) = g_{ij}(M_{\boldsymbol{v}})_{jk}g_{ki}^{\dagger} = g_{ki}^{\dagger}g_{ij}(M_{\boldsymbol{v}})_{jk} = tr \left(g^{\dagger}gM_{\boldsymbol{v}}\right) = trM_{\boldsymbol{v}} = 0 \qquad (0.0.9)$$

as $g^{\dagger}g = 1$ as $g \in SU(2)$. Nexe notice that F(g) is a linear map on the coords of v_i of \mathbb{R}^3 as

$$g(M_{\boldsymbol{v}} + M_{\boldsymbol{v}'})g^{\dagger} = gM_{\boldsymbol{v}}g^{\dagger} + gM_{\boldsymbol{v}'}g^{\dagger}$$

$$(0.0.10)$$

This means that we could write F as

$$F(g): \boldsymbol{v} \to \Phi(g)\boldsymbol{v} \tag{0.0.11}$$

for some 3×3 matrix $\Phi(g)$. We are not going to work out $\Phi(g)$ explicitly for a general g here, but note that we have worked this out in one instance in the lectures, where we showed that

$$g = e^{i\theta\sigma_3} \to \Phi(g) = \begin{pmatrix} \cos 2\theta & \sin 2\theta & 0\\ -\sin 2\theta & \cos 2\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(0.0.12)

Next we observe that $\boldsymbol{v} \cdot \boldsymbol{v} = -\det M_{\boldsymbol{v}}$, which is mapped under F as follows:

$$\det M_{\boldsymbol{v}} \to \det g M_{\boldsymbol{v}} g^{\dagger} = \det g \det M_{\boldsymbol{v}} \det g^{-1} = \det M_{\boldsymbol{v}} . \tag{0.0.13}$$

Hence this map leaves v^2 invariant. As it is also a linear map, it must hence map to O(3). The map F(g) is a continuous map which maps $\mathbb{1} \in SU(2)$ to $\mathbb{1} \in O(3)$. As SU(2) is connected (it is S^3), it only maps to the elements of O(3) connected with the identity, i.e. to SO(3).

For each $g \in SU(2)$ we hence have a way to assign an element of SO(3) by sending g to F(g), or equivalently $\Phi(g)$. And even better, composing two maps in SO(3) is the same as composing two elements in SU(2):

$$F(g'g)(M_{v}) = g'gM_{v}g^{\dagger}g'^{\dagger} = F(g')[F(g)[M_{v}]]$$
(0.0.14)

so that F is a group homomorphism.