Problem Class 2

Problem 1: Patches on the torus. A two-torus T^{2} is defined to be \mathbb{R}^{2} where we identify $x x+1$ and $y y+1$ for all x and y.
a) Show that T^{2} is a differentiable manifold and describe coordinate patches.
b) What is the minimal number of coordinate patches you can find?

solution:

a) First of all, let's try to understand the definition of T^{2} just given. Wherever we are in \mathbb{R}^{2}, we can use the identifications to make sure (x, y) are both in the interval $[0,1]$, so that we just have a box instead of \mathbb{R}^{2}. The torus is not just a box, as e.g. the point $(1, y)$ is identified with $(0, y)$, as are $(x, 1)$ and $(x, 0)$. Hence the torus is a box with opposite edges identified and we can draw it like this:

Note that the blue line is in fact a closed loop.
We can also draw the torus as a donut as follows

where I have shown what the red/green lines so that you can see how the square is folded into a donut. Also shown is the closed path drawn in blue above.
Now we want to describe coordinate patches from T^{2} to \mathbb{R}^{2}. Let me start by drawing one patch U which includes everything except a cross in the middle. Note that U is a rectangle due to the identifications.

Now we can continute to cover those parts of T^{2} not in U, e.g. by the green and blue stripes shown below.

For each one of these patches, we can map them to a copy of \mathbb{R}^{2} as a homeomorphism.
Finally, there is only a little bit in the middle not covered, and we can achieve this by mapping the yellow region to another copy of \mathbb{R}^{2}.

We are now finished and have covered T^{2} by four coordinate charts. For each there is a homeomorphism to R^{2} and the coordinate changes are smooth maps. We have done this in a pictorial fashion, but if you like, try to work this out explicitely.
b) As shown above, we have managed to cover T^{2} by four coordinate charts, and one may wonder if we can get away with less. The image below shows how this can be accomplished using just two charts U_{1} and U_{2}. Each of these looks like a cylinder which can be mapped by a homeomorphism to an open disc in \mathbb{R}^{2} with a hole in the middle. The overlap $U_{1} \cap U_{2}$ is two copies of a cylinder.
Equally well, you can think of these patches as covering a donut from above and below.

Problem 2: Describe the tangent space of $S O(3)$ at the identity. solution:

We can approach this in two ways. First, let me construct some paths in $S O(3)$ and then use these to find an expression for tangent vectors. Here is an element of $S O(3)$:

$$
\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \tag{0.1}\\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

As this is in $S O(3)$ for any ϕ, we can make this into a path which I will call Γ_{3} (as this is a rotation around the x_{3} axis) by simply relabelling ϕ into t which is in some interval $t \in(-1,1)$:

$$
\Gamma_{3}: t \mapsto\left(\begin{array}{ccc}
\cos t & \sin t & 0 \tag{0.2}\\
-\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

It is important that this contains $t=0$, as this is where we reach the identity, $\Gamma_{3}(0)=\mathbb{1}$. We can now work out the associated tangent vector as

$$
T_{\mathbb{1}}\left(\Gamma_{3}\right)=\left.\frac{\partial}{\partial t}\left(\begin{array}{ccc}
\cos t & \sin t & 0 \tag{0.3}\\
-\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)\right|_{t=0}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Note that we could have also used the description of a patch of $S O(3)$ using coordinates to describe the tangent vector, but I chose here to use the form above instead. In the end, tangent vectors are geometrical objects, and we are free to explicitely describe them in different ways (see also problem 3 below).

We can now repeat the same for rotations around the x_{1} or x_{2} axis. Denoting the associated paths by Γ_{1} and Γ_{2} we find

$$
T_{\mathbb{1}}\left(\Gamma_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{0.4}\\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \quad T_{\mathbb{1}}\left(\Gamma_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

By a result from the lectures these are supposed to form a vector space of dimension 3. Indeed the three tangent vectors we have found span a vector space of dimension 3 using addition of matrices (the vector space of antisymmetric real 3×3 matrices), so that we can conclude that

$$
\begin{equation*}
T_{\mathbb{1}} S O(3)=\left\{\gamma \mid \gamma^{T}=-\gamma\right\} \tag{0.5}
\end{equation*}
$$

We can recover the same result as follows: we have already seen that writing

$$
\begin{equation*}
g=e^{\gamma} \tag{0.6}
\end{equation*}
$$

for $g \in S O(3)$ implies that $\gamma^{T}=-\gamma$, and any such anti-symmetric γ gives us something in $S O(3)$ upon exponentiating. Hence we can write a path

$$
\begin{equation*}
\Gamma_{\gamma}: t \mapsto e^{t \gamma}, \quad t \in(-1,1) . \tag{0.7}
\end{equation*}
$$

for any such γ. Note that multiplying an anti-symmetric matrix by a real number gives another anti-symmetric matrix, so $e^{t \gamma} \in S O(3)$ for all real t. Each such path passes through the identity for $t=0$, so we find

$$
\begin{equation*}
T_{\mathbb{1}}\left(\Gamma_{\gamma}\right)=\left.\frac{\partial}{\partial t} e^{t \gamma}\right|_{t=0}=\gamma . \tag{0.8}
\end{equation*}
$$

Hence the set of all tangent vectors is found again to be

$$
\begin{equation*}
T_{\mathbb{1}} S O(3)=\left\{\gamma \mid \gamma^{T}=-\gamma\right\} . \tag{0.9}
\end{equation*}
$$

Problem 3:

a) Find the tangent space of a 2 -sphere S^{2} at the North pole using the coordinates of stereographic projection.
b) Find the tangent space of a 2 -sphere S^{2} at the North pole using the embedding of S^{2} in \mathbb{R}^{3}.

solution:

Our sphere is $x^{2}+y^{2}+z^{2}=1$. Let us pick the north pole as the point $(0,0,1)$ (any other point has equal rights to be called the north pole but I will choose that one). We can pick a path

$$
S_{\phi}: t \mapsto\left(\begin{array}{l}
x(t) \tag{0.10}\\
y(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{c}
\sin (\phi) \sin (t) \\
\cos (\phi) \sin (t) \\
\cos (t)
\end{array}\right)
$$

for t in some interval containing $t=0$ (where we pass through $(0,0,1)$) and for any ϕ.
a) Let us work out the tangent vector using the coordinates

$$
\begin{equation*}
\boldsymbol{\varphi}_{+}=\binom{\varphi_{+1}}{\varphi_{+2}}=\frac{1}{1+x}\binom{y}{z} \tag{0.11}
\end{equation*}
$$

Our path is written in this coordinates as

$$
\begin{equation*}
S_{\phi}: t \mapsto\binom{\varphi_{+1}(t)}{\varphi_{+2}(t)}=\frac{1}{1+\sin \phi \sin t}\binom{\cos \phi \sin t}{\cos t} \tag{0.12}
\end{equation*}
$$

and the associated tangent vector is

$$
\begin{align*}
\left.\frac{\partial}{\partial t}\binom{\varphi_{+1}(t)}{\varphi_{+2}(t)}\right|_{t=0} & =\frac{-\cos t \sin \phi}{1+\sin \phi \sin t}\binom{\cos \phi \sin t}{\cos t}+\left.\frac{1}{1+\sin \phi \sin t}\binom{\cos \phi \cos t}{-\sin t}\right|_{t=0} \\
& =\binom{\cos \phi}{\sin \phi} \tag{0.13}
\end{align*}
$$

By considering the paths $S_{\phi}(r t)$ for a real r we get

$$
\begin{equation*}
\binom{r \cos \phi}{r \sin \phi} \tag{0.14}
\end{equation*}
$$

which gives all of \mathbb{R}^{2} when considering all possible r and ϕ. This is the tangent vector expressed in local coordinates $\boldsymbol{\varphi}_{+}$. If we choose a different coordinate system, such as $\boldsymbol{\varphi}_{-}$, we will find a different expression.
b) Using the paths above

$$
S_{\phi}:\left\{\left(\begin{array}{l}
x \tag{0.15}\\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\sin (\phi) \sin (t) \\
\cos (\phi) \sin (t) \\
\cos (t)
\end{array}\right)\right\}
$$

we can just stay in \mathbb{R}^{3} with coords x, y, z and work out the tangent vector in this description. We get

$$
\left.\frac{\partial}{\partial t} S_{\phi}(t)\right|_{t=0}=\left.\frac{\partial}{\partial t}\left(\begin{array}{c}
\sin (\phi) \sin (t) \tag{0.16}\\
\cos (\phi) \sin (t) \\
\cos (t)
\end{array}\right)\right|_{t=0}=\left(\begin{array}{c}
\sin (\phi) \\
\cos (\phi) \\
0
\end{array}\right)
$$

As we can make any choice for ϕ and furthermore consider $S_{\phi}(r t)$ for any real r, we get anything of the form

$$
\left(\begin{array}{c}
r \sin (\phi) \tag{0.17}\\
r \cos (\phi) \\
0
\end{array}\right)
$$

so these span a whole of \mathbb{R}^{2} which is now given as sitting in \mathbb{R}^{3}.

