
Andreas Braun Geometry of Mathematical Physics III MM Problem Class 2

Problem Class 2

Problem 1: Patches on the torus. A two-torus T 2 is defined to be R2 where we
identify x x+ 1 and y y + 1 for all x and y.

a) Show that T 2 is a differentiable manifold and describe coordinate patches.

b) What is the minimal number of coordinate patches you can find?

solution:

a) First of all, let’s try to understand the definition of T 2 just given. Wherever
we are in R2, we can use the identifications to make sure (x, y) are both in
the interval [0, 1], so that we just have a box instead of R2. The torus is not
just a box, as e.g. the point (1, y) is identified with (0, y), as are (x, 1) and
(x, 0). Hence the torus is a box with opposite edges identified and we can
draw it like this:

Note that the blue line is in fact a closed loop.
We can also draw the torus as a donut as follows
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where I have shown what the red/green lines so that you can see how the
square is folded into a donut. Also shown is the closed path drawn in blue
above.
Now we want to describe coordinate patches from T 2 to R2. Let me start by
drawing one patch U which includes everything except a cross in the middle.
Note that U is a rectangle due to the identifications.

Now we can continute to cover those parts of T 2 not in U , e.g. by the green
and blue stripes shown below.

For each one of these patches, we can map them to a copy of R2 as a
homeomorphism.
Finally, there is only a little bit in the middle not covered, and we can
achieve this by mapping the yellow region to another copy of R2.
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We are now finished and have covered T 2 by four coordinate charts. For each
there is a homeomorphism to R2 and the coordinate changes are smooth
maps. We have done this in a pictorial fashion, but if you like, try to work
this out explicitely.

b) As shown above, we have managed to cover T 2 by four coordinate charts,
and one may wonder if we can get away with less. The image below shows
how this can be accomplished using just two charts U1 and U2. Each of
these looks like a cylinder which can be mapped by a homeomorphism to
an open disc in R2 with a hole in the middle. The overlap U1 ∩ U2 is two
copies of a cylinder.
Equally well, you can think of these patches as covering a donut from above
and below.
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Problem 2: Describe the tangent space of SO(3) at the identity.
solution:

We can approach this in two ways. First, let me construct some paths in
SO(3) and then use these to find an expression for tangent vectors. Here is an
element of SO(3):  cosφ sinφ 0

− sinφ cosφ 0
0 0 1

 (0.1)

As this is in SO(3) for any φ, we can make this into a path which I will call Γ3
(as this is a rotation around the x3 axis) by simply relabelling φ into t which is
in some interval t ∈ (−1, 1):

Γ3 : t 7→

 cos t sin t 0
− sin t cos t 0

0 0 1

 (0.2)

It is important that this contains t = 0, as this is where we reach the identity,
Γ3(0) = 1. We can now work out the associated tangent vector as

T1(Γ3) = ∂

∂t

 cos t sin t 0
− sin t cos t 0

0 0 1


∣∣∣∣∣∣∣
t=0

=

 0 1 0
−1 0 0
0 0 0

 (0.3)

Note that we could have also used the description of a patch of SO(3) using
coordinates to describe the tangent vector, but I chose here to use the form above
instead. In the end, tangent vectors are geometrical objects, and we are free to
explicitely describe them in different ways (see also problem 3 below).

We can now repeat the same for rotations around the x1 or x2 axis. Denoting
the associated paths by Γ1 and Γ2 we find

T1(Γ1) =

0 0 0
0 0 1
0 −1 0

 T1(Γ2) =

 0 0 1
0 0 0
−1 0 0

 (0.4)

By a result from the lectures these are supposed to form a vector space of di-
mension 3. Indeed the three tangent vectors we have found span a vector space
of dimension 3 using addition of matrices (the vector space of antisymmetric real
3× 3 matrices), so that we can conclude that

T1SO(3) =
{
γ|γT = −γ

}
(0.5)
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We can recover the same result as follows: we have already seen that writing

g = eγ (0.6)

for g ∈ SO(3) implies that γT = −γ, and any such anti-symmetric γ gives us
something in SO(3) upon exponentiating. Hence we can write a path

Γγ : t 7→ etγ , t ∈ (−1, 1) . (0.7)

for any such γ. Note that multiplying an anti-symmetric matrix by a real number
gives another anti-symmetric matrix, so etγ ∈ SO(3) for all real t. Each such path
passes through the identity for t = 0, so we find

T1(Γγ) = ∂

∂t
etγ
∣∣∣
t=0

= γ . (0.8)

Hence the set of all tangent vectors is found again to be

T1SO(3) =
{
γ|γT = −γ

}
. (0.9)

Problem 3:

a) Find the tangent space of a 2-sphere S2 at the North pole using the coordi-
nates of stereographic projection.

b) Find the tangent space of a 2-sphere S2 at the North pole using the embed-
ding of S2 in R3.

solution:

Our sphere is x2 + y2 + z2 = 1. Let us pick the north pole as the point (0, 0, 1)
(any other point has equal rights to be called the north pole but I will choose that
one). We can pick a path

Sφ : t 7→

x(t)
y(t)
z(t)

 =

sin(φ) sin(t)
cos(φ) sin(t)

cos(t)

 (0.10)

for t in some interval containing t = 0 (where we pass through (0, 0, 1)) and for
any φ.
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a) Let us work out the tangent vector using the coordinates

ϕ+ =
(
ϕ+1
ϕ+2

)
= 1

1 + x

(
y
z

)
(0.11)

Our path is written in this coordinates as

Sφ : t 7→
(
ϕ+1(t)
ϕ+2(t)

)
= 1

1 + sinφ sin t

(
cosφ sin t

cos t

)
(0.12)

and the associated tangent vector is
∂

∂t

(
ϕ+1(t)
ϕ+2(t)

)∣∣∣∣∣
t=0

= − cos t sinφ
1 + sinφ sin t

(
cosφ sin t

cos t

)
+ 1

1 + sinφ sin t

(
cosφ cos t
− sin t

)∣∣∣∣∣
t=0

=
(

cosφ
sinφ

)
(0.13)

By considering the paths Sφ(rt) for a real r we get(
r cosφ
r sinφ

)
(0.14)

which gives all of R2 when considering all possible r and φ. This is the
tangent vector expressed in local coordinates ϕ+. If we choose a different
coordinate system, such as ϕ−, we will find a different expression.

b) Using the paths above

Sφ :


xy
z

 =

sin(φ) sin(t)
cos(φ) sin(t)

cos(t)


 (0.15)

we can just stay in R3 with coords x, y, z and work out the tangent vector
in this description. We get

∂

∂t
Sφ(t)

∣∣∣∣∣
t=0

= ∂

∂t

sin(φ) sin(t)
cos(φ) sin(t)

cos(t)


∣∣∣∣∣∣∣
t=0

=

sin(φ)
cos(φ)

0

 . (0.16)

As we can make any choice for φ and furthermore consider Sφ(rt) for any
real r, we get anything of the formr sin(φ)

r cos(φ)
0

 . (0.17)

so these span a whole of R2 which is now given as sitting in R3.
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