
Andreas Braun Geometry of Mathematical Physics III MM Problem Class 3

Problem Class 3

Problem 1: Show that the Lie algebra of SO(3) has the same structure con-
stants as the Lie algebra of SU(2) in an appropriate basis.

solution:

We already worked out the tangent space of SO(3) at the identity in problem
class 2.

For the path

s1(t) =

1 0 0
0 cos(t) sin(t)
0 − sin(t) cos(t)

 (0.1)

in SO(3) we cross 1 for t = 0. We can compute the associated tangent vector

`1 ≡ T1(s) = ∂

∂t
s(t)|t=0 =

0 0 0
0 0 1
0 −1 0

 (0.2)

After permuting the different directions we also get the Lie algebra elements from
the corresponding paths.

`2 =

 0 0 1
0 0 0
−1 0 0

 `3 =

 0 1 0
−1 0 0
0 0 0

 (0.3)

Recall problem class 2, where we showed that for g ∈ SO(3) we can write

g = eγ (0.4)

with γ a real matrix s.t. γT = −γ. We can hence find the same result by
considering the path

sγ(t) = etγ (0.5)
for any γ with γT = −γ. We compute

T1(sγ) = ∂

∂t
sγ(t)|t=0 = γ. (0.6)

The three matrices above are the most general matrices which obey γT = −γ.
A direct computation shows that they satisfy

[`i, `j] = εijk`k . (0.7)
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Recall that the Lie algebra of SU(2) has basis vectors iσk for k = 1, 2, 3 and the
σk obey

[σi, σj] = 2iεijkσk . (0.8)

which is the same except for the factor of 2i. Letting σk = 2iσ̂k we get

[σ̂i, σ̂j] = εijkσ̂k . (0.9)

which is the same algebra as the one of SO(3). Note that it does not matter
which matrices we write ! The whole structure is that of a vector space and map
g×g→ g, the commutator [., .], which can be summarized by structure constants
for any given basis.

What we have shown here is that both Lie algebras real 3-dimensional, and
we can choose a basis where the structure constants are the same.

On the one hand, this result might not be unexpected as SU(2) and SO(3)
are ’the same’ in the vicinity of the identity: recall there is a 2-1 map from SU(2)
to SO(3) which send g,−g to the same element in SO(3). To work out the Lie
algebra we restrict ourselves to a small open set containing 1SU(2), which is then
mapped bijectively to a small open set containing 1SO(3).

On the other hand, you might find it unsettling that ‘the same’ Lie algebra
can give different groups. More concretely, one way to see what is going on is
to observe that we get SU(2) when exponentiating ( i times the) Pauli matrices,
whereas we get elements SO(3) when exponentiating the matrices found above.
It hence matters how we ‘represent’ this abstract thing that is a Lie algebra. (we
will properly define representations of Lie algebras later).

Problem 2: Decide if the following define representations

1. Let g ∈ U(2) act on z ∈ C as

z 7→ (det g)z (0.10)

2. Let g ∈ SO(3) act on R3 by letting

~v → r(g)~v = g2~v

for ~v ∈ R3.

solution:

1. In the first case we have shown that this is a group homomorphism from
U(2) to U(1) in problem 8. The same proof shows that this is in fact a
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group homomorphism from U(2) to GL(1,C) = C∗, which is not surprising
as we are simply mapping to the U(1) subgroup of GL(1,C) = C∗.
Let us be more explicit and denote the map from U(2) to C∗ by f , i.e.
f(g) = det g. Both groups are multiplicative, so the only thing we need to
check is that f(gh) = f(g)f(h) which follows as

f(gh) = det gh = det g deth = f(g)f(h) . (0.11)

2. For this to be a representation, we need the map f : g 7→ g2 to be a group
homomorphism from SO(3) to GL(3,R). Lets work out

f(gh) = (gh)2 = ghgh (0.12)

and
f(g)f(h) = g2h2 . (0.13)

As [g, h] 6= 0 for g, h ∈ SO(3), these two expressions are not the same, so
this is not a representation.

Problem 3: The adjoint action representation defines a linear map r(g) acting
on g and as such can be written as a matrix M acting on a column vector after
choosing a basis for g. Make this explicit for

g =
(
eiφ 0
0 e−iφ

)
∈ SU(2) . (0.14)

Is the adjoint representation faithful?
solution: We have to work out the adjoint action on su(2) in detail. We can
write

γ =
∑
j

iαjσj = i

(
α3 α1 − iα2

α1 + iα2 α3

)
(0.15)

for three real numbers αj. Note that using iσj as a basis of su(2), we could also
represent γ as a column vector (α1, α2, α3).

This is mapped to

i

(
α3 α1 − iα2

α1 + iα2 α3

)
→ i

(
α3 e2iφ(α1 − iα2)

e−2iφ(α1 + iα2) α3

)
. (0.16)

The action on the αj is henceα1
α2
α3

→
 cos 2φ sin 2φ 0
− sin 2φ cos 2φ 0

0 0 1


α1
α2
α3

 ≡M

α1
α2
α3

 (0.17)
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Note that we did exactly the same computation already in example 1.4. ! There
we also realized that both g and −g are mapped to the same M , so the adjoint
of SU(2) is not injective. Note that the same applies to the adjoint of any group
(if −g ∈ G for g ∈ G):

(−g)γ(−g)−1 = (−1)2gγg−1 = gγg−1 (0.18)
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