1) Let \mathbb{C} be the complex numbers and $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. Which of these is a group under addition? Which of these is a group under multiplication?
2) Consider the set V of real $n \times n$ matrices.
a) Show that V is a (real) vector space.
b) Let $U \subset V$ be the set of matrices with determinant 1 . Is U a vector space as well?
c) For any matrix Q in V define a map

$$
g_{M}: Q \rightarrow M^{-1} Q M
$$

where M is a fixed invertible matrix. Show that g_{M} is a linear map on V.
3) a) By working out the derivative of

$$
\lim _{n \rightarrow \infty}(1+i \phi / n)^{n}
$$

with respect to ϕ, show that this expression satisfies the same differential equation as $e^{i \phi}$. You may assume that you can swap the order of the limit and taking the derivative.
As both functions have the same value at $\phi=0$ this implies that they are equal by the uniqueness of solutions of ordinary differential equations.
b) Consider a square matrix A and let $g=e^{i A}$, which is defined via the Taylor series of the exponential. Show that

$$
\lim _{n \rightarrow \infty}(\mathbb{1}+i A / n)^{n}=e^{i A}
$$

Here are some things to ponder:

1. What is a group? Why are symmetries groups?
2. What does the U in $U(1)$ stand for ? What might somebody mean when they say $U(n)$?
3. How many ways to define the exponential function can you come up with?
4. Tangents are linear approximations.
