30. Show that any irreducible complex representation of $S O(3)$ also defines an irreducible complex representation of $S U(2)$.

solution:

Let us assume that we are given an irredicible representation $r_{S O(3)}$ of $S O(3)$, i.e.

$$
\begin{equation*}
r_{S O(3)}: S O(3) \rightarrow G L(n, \mathbb{C}) \tag{0.1}
\end{equation*}
$$

is a homomorphism and there is no complex sub-vectorspace W of \mathbb{C}^{n} (except \mathbb{C}^{n} and $\{0\}$) s.t.

$$
\begin{equation*}
r_{S O(3)}(g) w \in W \forall w \in W, \forall g \in S O(3) \tag{0.2}
\end{equation*}
$$

As shown in the lectures there is a close relationship between $S O(3)$ and $S U(2)$, i.e. there is a homomorphism $\pi: S U(2) \rightarrow S O(3)$. We can hence define the following composition

$$
\begin{equation*}
r_{S U(2)}:=r_{S O(3)} \circ \pi \tag{0.3}
\end{equation*}
$$

which takes any $h \in S U(2)$ to an element of $S O(3)$ and then to an element of $G L(n, \mathbb{C})$, so in effect we are taking any $h \in S U(2)$ to an element of $G L(n, \mathbb{C})$. As compositions of homomorphisms are again homomorphisms, this is a homomorphism as well and hence defines a representation of $S U(2)$.
Now let's investigate irredicibility. As we have seen π is surjective, i.e. we can write any $g \in S O(3)$ as $\pi(h)$ for some $h \in S U(2)$. As there is no complex sub-vectorspace W of $\mathbb{C}^{n}\left(\right.$ except \mathbb{C}^{n} and $\left.\{0\}\right)$ s.t.

$$
\begin{equation*}
r_{S O(3)}(g) w \in W \forall w \in W, \forall g \in S O(3) \tag{0.4}
\end{equation*}
$$

and we can write any such g as $g=\pi(h)$, it follows that there is no complex sub-vectorspace W of \mathbb{C}^{n} (except \mathbb{C}^{n} and $\{0\}$) s.t.

$$
\begin{equation*}
r_{S U(2)}(h) w \in W \forall w \in W, \forall h \in S U(2) . \tag{0.5}
\end{equation*}
$$

So $r_{S U(2)}$ is irredicible as well.
31. Let V be the vector space of complex 2×2 matrices, and let $g \in S U(2)$ act on $A \in V$ as

$$
A \rightarrow g A g^{\dagger}
$$

a) Show that this defines a representation r of $S U(2)$.
b) Show that r is reducible. [hint: think about what happens to $\operatorname{tr} A$.]
c) Decompose r into irreducible representations.

solution:

a) This we have already done may times. For all $g \in S U(2)$ this is a linear invertible map on V. Btw, for the inverse just observe that if

$$
\begin{equation*}
r(g): A \rightarrow_{g} g A g^{\dagger} \tag{0.6}
\end{equation*}
$$

then

$$
\begin{equation*}
r\left(g^{-1}\right): g A g^{\dagger} \rightarrow=g^{-1} g A g^{\dagger}\left(g^{-1}\right)^{\dagger}=A \tag{0.7}
\end{equation*}
$$

using $\left(g^{-1}\right)^{\dagger}=\left(g^{\dagger}\right)^{-1}$.
b) We need to find an invariant subspace to show this. As per the hint, lets investigate what happens to the trace of A :

$$
\begin{equation*}
\operatorname{tr} A \rightarrow \operatorname{tr} g A g^{-1}=\operatorname{tr} A \tag{0.8}
\end{equation*}
$$

Now what this implies is that we can never map matrices with a vanishing trace to ones with a non-vanishing trace. Let's try to understand this a bit more clearly and in terms of subspaces of V. The matrices A have the form

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \tag{0.9}\\
a_{21} & a_{22}
\end{array}\right)
$$

and we think of the four complex components $a_{i j}$ as components of a vector in V (which is isomorphic to \mathbb{C}^{4}) that we chose to write as a matrix. Within this vector space there is a complex three-dimensional vector subspace W defined by $a_{11}+a_{22}=0$, and as (??) shows, the group action on V maps vectors in W again to vectors in W, i.e. W is an invariant subspace. More concretely, W is the subspace of matrices of the form

$$
W=\left\{A \left\lvert\, A=\left(\begin{array}{cc}
z_{1} & z_{2} \tag{0.10}\\
z_{3} & -z_{1}
\end{array}\right)\right.,\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}\right\}
$$

This is indeed a vector subspace: the sum of any two such matrices and a scalar multiple looks again like this.
c) There are various ways to approach this. Note that the canonical inner form $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}$ on \mathbb{C}^{4} is left invariant under the action of $S U(2)$. We can write this as

$$
\begin{array}{r}
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}=A_{i j} \bar{A}_{i j} \rightarrow g_{i k} A_{k l} g_{l j}^{\dagger} \bar{g}_{i m} \bar{A}_{m n} g_{n j}^{T} \tag{0.11}\\
=g_{m i}^{\dagger} g_{i k} g_{l j}^{\dagger} g_{j n} A_{k l} \bar{A}_{m n}=\delta_{m k} \delta_{l n} A_{k l} \bar{A}_{m n}=A_{k l} \bar{A}_{k l} .
\end{array}
$$

This is hence a unitary representation and the orthogonal subspace to W must be left invariant as well. This subspace W^{\perp} is the onedimensional subspace of V containing matrices of the form

$$
W^{\perp}=\left\{A \left\lvert\, A=\left(\begin{array}{cc}
z_{4} & 0 \tag{0.12}\\
0 & z_{4}
\end{array}\right)\right., z_{4} \in \mathbb{C}\right\} .
$$

which indeed form an invariant subspace under the group action as you can check easily.
For any A we can write

$$
A=\left(\begin{array}{cc}
z_{1} & z_{2} \tag{0.13}\\
z_{3} & -z_{1}
\end{array}\right)+\left(\begin{array}{cc}
z_{4} & 0 \\
0 & z_{4}
\end{array}\right)
$$

which shows how to decompose any $A \in V$ under $V=W \oplus W^{\perp}$.
Hence r decomposes into a one-dimensional and a three-dimensional complex representation. Are these irredicible? A complex one-dimensional representation is irredicible by definition, so there is nothing to do here. The other representation is likewise irreducible, this is just a complexified version of the adjoint representation which we know to be irredicible.

Have a nice holiday break!

