1) Let \mathbb{C} be the complex numbers and $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. Which of these is a group under addition? Which of these is a group under multiplication?

Solution:

\mathbb{C} satisfies the definition of a group under addition, here the inverse of z is $-z$ and the neutral element is 0 . Under multiplication, 0 does not have an inverse, so it is not a group under multiplication.
\mathbb{C}^{*} satisfies the definition of a group under multiplication, here the inverse of z is z^{-1} and the neutral element is 1 . It is not a group under addition as it does not contain a neutral element for that.
2) Consider the set S of real $n \times n$ matrices.
a) Show that S this is a (real) vector space V.
b) Let $U \subset S$ be the set of matrices with determinant 1 . Is U a vector space as well?
c) For any matrix Q in V define a map

$$
g_{M}: Q \rightarrow M^{-1} Q M
$$

where M is a fixed invertible matrix. Show that g_{M} is a linear map on V.

Solution:

a) We need to show that for any vectors $v, v^{\prime} \in V, v+v^{\prime}$ and $a v$ for $a \in \mathbb{R}$ is also in V. For arbitrary real $n \times n$ matrices S, S^{\prime}, both the sum $S+S^{\prime}$ and a rescaled $a S$ is another real $n \times n$ matrix. Hence this is a vector space.
b) Here we are in trouble: is $S \in U$ we have $S=1$. But to be a vector space, U also has to contain $a S$ for all $a \in \mathbb{R}$. But $\operatorname{det} a S=a^{n}$, so $a S$ is not in U. Hence U is not a vector space.
c) First note that for $Q \in V, g_{M}(Q)$ is another real $n \times n$ matrix, the map hence maps elements in V to elements in V again. To check linearity we work out that for $Q, P \in V$ we have
$g_{M}(Q+P)=M^{-1}(Q+P) M=M^{-1} Q M+M^{-1} P M=g_{M}(Q)+g_{M}(P)$
so g_{M} is a linear map acting on V.
3) a) By working out the derivative of

$$
\lim _{n \rightarrow \infty}(1+i \phi / n)^{n}
$$

with respect to ϕ, show that this expression satisfies the same differential equation as $e^{i \phi}$. You may assume that you can swap the order of the limit and taking the derivative.
As both functions have the same value at $\phi=0$ this implies that they are equal by the uniqueness of solutions of ordinary differential equations.
b) Consider a square matrix A and let $g=e^{i A}$, which is defined via the Taylor series of the exponential. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\mathbb{1}+i A / n)^{n}=e^{i A} \tag{0.2}
\end{equation*}
$$

Solution:

a) The differential equation of the exponential $g=e^{i \phi}$ is

$$
\begin{equation*}
\frac{\partial}{\partial \phi} g=i g \tag{0.3}
\end{equation*}
$$

We now work out

$$
\begin{equation*}
\frac{\partial}{\partial \phi}(1+i \phi / n)^{n}=n(1+i \phi / n)^{n-1} \frac{i}{n}=\frac{i(1+i \phi / n)^{n}}{1+i \phi / n} \tag{0.4}
\end{equation*}
$$

In the limit $n \rightarrow \infty$, the rhs converges to $i(1+i \phi / n)^{n}$. Assuming that differentiation and taking the limit commute (which we can do by using uniform convergence), we have hence shown that

$$
\begin{equation*}
\frac{\partial}{\partial \phi} \lim _{n \rightarrow \infty}(1+i \phi / n)^{n}=i \lim _{n \rightarrow \infty}(1+i \phi / n)^{n} \tag{0.5}
\end{equation*}
$$

Letting $e(\phi) \equiv \lim _{n \rightarrow \infty}(1+i \phi / n)^{n}$, we have just shown that

$$
\begin{equation*}
\frac{\partial}{\partial \phi} e(\phi)=i e(\phi) \tag{0.6}
\end{equation*}
$$

and can conclude that $e(\phi)=c e^{i \phi}$ using uniqueness of solutions of ordinary differential equations. Setting $\phi=0$ the constant of proportionality c is seen to be 1 and we are done.
b) We can repeat the proof in the lecture by replacing ϕ with A in every step.

