4 Show using index notation that
a) $(g h)^{\dagger}=h^{\dagger} g^{\dagger}$
b) $\operatorname{tr}(g h)=\operatorname{tr}(h g)$
c) $(g \boldsymbol{v}) \cdot(h \boldsymbol{w})=\boldsymbol{v}\left(g^{T} h\right) \boldsymbol{w}$
d) $\operatorname{det} g^{\dagger}=\overline{\operatorname{det} g}$
where g and h are complex $n \times n$ matrices and \boldsymbol{v} and \boldsymbol{w} are n-dimensional vectors.
5. For a general $k \times k$ matrix M show that
(a) $\operatorname{det} e^{M}=e^{\operatorname{tr} M}$.
(b) Use this to conclude that for $g=e^{M}$ we have $\log \operatorname{det} g=\operatorname{tr} \log g$. Here the log of a matrix is defined as the inverse function of the exponential.
6. Show that the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{0.1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

satisfy

$$
\begin{equation*}
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \tag{0.2}
\end{equation*}
$$

Here are some things to ponder:

1. What is the group $S U(2)$? What do the S and the U stand for? What might $S U(n)$ be?
2. What are some properties of the Pauli matrices?
