4 Show using index notation that
a) $(g h)^{\dagger}=h^{\dagger} g^{\dagger}$
b) $\operatorname{tr}(g h)=\operatorname{tr}(h g)$
c) $(g \boldsymbol{v}) \cdot(h \boldsymbol{w})=\boldsymbol{v}\left(g^{T} h\right) \boldsymbol{w}$
d) $\operatorname{det} g^{\dagger}=\overline{\operatorname{det} g}$
where g and h are complex $n \times n$ matrices and \boldsymbol{v} and \boldsymbol{w} are n-dimensional vectors. Solution:
a) First note that

$$
\begin{equation*}
(g h)_{i j}=g_{i k} h_{k j} \tag{0.1}
\end{equation*}
$$

where we are using summation convention, i.e. k is being summed over. All that the \dagger does is transposition, i.e. swapping the two indices of a matrix, together with complex conjugation, so that

$$
\begin{equation*}
(g h)_{i j}^{\dagger}=\overline{g_{j k} h_{k i}}=\bar{g}_{j k} \bar{h}_{k i}=h_{i k}^{\dagger} g_{k j}^{\dagger}=\left(h^{\dagger} g^{\dagger}\right)_{i j} \tag{0.2}
\end{equation*}
$$

b) We have $\operatorname{tr} g h=(g h)_{i i}$ so that

$$
\begin{equation*}
\operatorname{tr} g h=g_{i j} h_{j i}=h_{j i} g_{i j}=\operatorname{tr} h g \tag{0.3}
\end{equation*}
$$

c) First recall that $(g \boldsymbol{v})_{i}=g_{i j} v_{j}$ and $\boldsymbol{a} \cdot \boldsymbol{b}=a_{i} b_{i}$, so that

$$
\begin{equation*}
(g \boldsymbol{v}) \cdot(h \boldsymbol{w})=g_{i j} v_{j} h_{i k} w_{k}=v_{j} g_{j i}^{T} h_{i k} w_{k}=\boldsymbol{v} g^{T} h \boldsymbol{w} \tag{0.4}
\end{equation*}
$$

d) We can write the determinant as

$$
\begin{equation*}
\operatorname{det} g=\epsilon_{i_{1} i_{2} \ldots i_{n}} \epsilon_{j_{1} j_{2} \ldots j_{n}} g_{i_{1} j_{1}} g_{i_{2} j_{2}} \cdots g_{i_{n} j_{n}} \tag{0.5}
\end{equation*}
$$

using the ϵ tensor with n indices which I have called $i_{1} \cdots i_{n}$ and $j_{1} \cdots j_{n}$. Take a moment to unpack this and convince yourself that this produces the usual rule for e.g. a 2×2 matrix. Note that we are summing over all indices and it does not matter what we call them.
Now we are ready to work out

$$
\begin{align*}
\operatorname{det} g^{\dagger} & =\epsilon_{i_{1} i_{2} \ldots i_{n}} \epsilon_{j_{1} j_{2} \ldots j_{n}} g_{i_{1} j_{1}}^{\dagger} g_{i_{2} j_{2}}^{\dagger} \cdots g_{i_{n} j_{n}}^{\dagger} \\
& =\epsilon_{i_{1} i_{2} \ldots i_{n}} \epsilon_{j_{1} j_{2} \ldots j_{n}} \bar{g}_{j_{1} i_{1}} \bar{g}_{j_{2} i_{2}} \cdots \bar{g}_{j_{n} i_{n}} \tag{0.6}\\
& =\epsilon_{j_{1} j_{2} \ldots j_{n}} \epsilon_{i_{1} i_{2} \ldots i_{n}} \bar{g}_{j_{1} i_{1}} \bar{g}_{j_{2} i_{2}} \cdots \bar{g}_{j_{n} i_{n}} \\
& =\overline{\epsilon_{j_{1} j_{2} \ldots j_{n}} \epsilon_{i_{1} i_{2} \ldots i_{n}}} g_{j_{1} i_{1}} g_{j_{2} i_{2}} \cdots g_{j_{n} i_{n}}
\end{align*}=\overline{\operatorname{det} g} \overline{ }
$$

5. For a general $k \times k$ matrix M show that
(a) $\operatorname{det} e^{M}=e^{\operatorname{tr} M}$.
(b) Use this to conclude that for $g=e^{M}$ we have $\log \operatorname{det} g=\operatorname{tr} \log g$. Here the log of a matrix is defined as the inverse function of the exponential.

Solution:

(a) We can start as in the lecture to find

$$
\begin{equation*}
\operatorname{det} e^{M}=\lim _{n \rightarrow \infty}[\operatorname{det}(\mathbb{1}+M / n)]^{n} \tag{0.7}
\end{equation*}
$$

Now consider $\operatorname{det}(\mathbb{1}+M / n)$. The terms appearing in the determinant are all products of entries of the matrix $\mathbb{1}+M / n$. Terms that do not contain diagonal elements have a factor n^{-k}, whereas each diagonal factor in a summand of the determinant replaces one factor of n^{-1} by one factor $\left(1+M_{i i} / n\right)$ (where i is the index of the diagonal element). The leading terms in the limit $n \rightarrow \infty$ are hence coming from the term in the determinant which has only factors from the diagonal of $\mathbb{1}+M / n$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}[\operatorname{det}(\mathbb{1}+M / n)]^{n}=\lim _{n \rightarrow \infty}\left[\prod_{i}\left(1+\frac{M_{i i}}{n}\right)\right]^{n} \tag{0.8}
\end{equation*}
$$

A similar feature appears when expanding the product, the leading terms are those that contain only a single factor of n^{-1} :

$$
\begin{equation*}
\prod_{i}\left(1+\frac{M_{i i}}{n}\right)=1+\frac{1}{n} \sum_{i} M_{i i}+\mathcal{O}\left(n^{-2}\right) \tag{0.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\operatorname{det} e^{M}=\lim _{n \rightarrow \infty}[\operatorname{det}(\mathbb{1}+M / n)]^{n}=\lim _{n \rightarrow \infty}\left[1+\frac{\operatorname{tr} M}{n}\right]^{n}=e^{\operatorname{tr} M} \tag{0.10}
\end{equation*}
$$

(b) We have $g=e^{M}$ and $M=\log g$. Applying the above formula we find

$$
\begin{equation*}
\log \operatorname{det} g=\log \operatorname{det} e^{M}=\log e^{\operatorname{tr} M}=\operatorname{tr} M=\operatorname{tr} \log g \tag{0.11}
\end{equation*}
$$

In the physics literature, the relationship proven in a) is mostly stated in the above form as ' \log det $=\operatorname{tr} \log$ '.
6. Show that the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{0.12}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

satisfy

$$
\begin{equation*}
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \tag{0.13}
\end{equation*}
$$

Solution:

We work out

$$
\begin{align*}
{\left[\sigma_{1}, \sigma_{2}\right] } & =\sigma_{1} \sigma_{2}-\sigma_{2} \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{0.14}\\
& =\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)-\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)=2 i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=2 i \sigma_{3}=2 i \epsilon_{123} \sigma_{3} \\
{\left[\sigma_{2}, \sigma_{3}\right] } & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \tag{0.15}\\
& =\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=2 i\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=2 i \sigma_{1}=2 i \epsilon_{231} \sigma_{1} \\
{\left[\sigma_{3}, \sigma_{1}\right] } & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=2 i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=2 i \sigma_{2}=2 i \epsilon_{312} \sigma_{2} \tag{0.16}
\end{align*}
$$

The remaining cases of commutators follow from the antisymmetry of both the commutator and the $\epsilon_{i j k}$.

