7. Let f be a homomorphism between two groups G and H. Show that
a) $f\left(e_{G}\right)=e_{H}$ where e_{G} and e_{H} are the unit elements of G and H, respectively.
b) $f\left(g^{-1}\right)=f(g)^{-1}$ for any $g \in G$.
8. $U(2)$ is the group of complex 2×2 matrices g such that $g^{\dagger}=g^{-1}$, with the group composition being matrix multiplication. Let F be the map which sends

$$
\begin{equation*}
g \mapsto \operatorname{det} g . \tag{0.1}
\end{equation*}
$$

Show that F is a group homomorphism from $U(2)$ to $U(1)$.
9. (a) Show that

$$
\begin{equation*}
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} \mathbb{1} \tag{0.2}
\end{equation*}
$$

where σ_{i} are the Pauli matrices.
(b) Show that

$$
g(\boldsymbol{\alpha})=e^{i \boldsymbol{\alpha} \boldsymbol{\sigma}}=\left(\begin{array}{cc}
\cos (a)+i \sin (a) a_{3} / a & \sin (a) a_{2} / a+i \sin (a) a_{1} / a \tag{0.3}\\
-\sin (a) a_{2} / a+i \sin (a) a_{1} / a & \cos (a)-i \sin (a) a_{3} / a
\end{array}\right)
$$

where $a=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}}$. [hint: write $\boldsymbol{\alpha}=a \boldsymbol{n}$ with $|\boldsymbol{n}|^{2}=1$, i.e. $\left.n_{j}=\alpha_{j} / a\right]$

Here are some things you should discuss with your friends:

1. What is a group homomorphism and why is this a good concept?
2. What is the relationship between $S U(2)$ and $S O(3)$?
