10. Let G be the set of complex 2×2 matrices of the form

$$g = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}$$

for $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 \neq 0$.

- a) Show that G is a group using matrix multiplication as the group operation.
- b) Show that SU(2) is a subgroup of G.
- c) Show that $V := \{\gamma | g = e^{i\gamma} \in G\}$ is a vector space and find a basis for V.
- 11. Which of the following sets are closed? Which are open? For all cases use the standard topology of \mathbb{R}^n or a topology induced from it.
 - (a) $\{0 < x < \pi\} \subset \mathbb{R}$ with coordinate x
 - (b) $\{x_1 < -2\} \subset \mathbb{R}^2$ with coordinates (x_1, x_2)
 - (c) $\{0 < x \le \pi\} \subset \mathbb{R}$
 - (d) $\{0 < x_1 < 1\} \subset \mathbb{R}^2$ with coordinates (x_1, x_2)
 - (e) $\mathbb{R}^n \subseteq \mathbb{R}^n$
 - (f) $\{(x_1, x_2) \subset \mathbb{R}^2 \mid x_1^2 \le 42 x_2^2\} \subset \mathbb{R}^2$ with coordinates (x_1, x_2)
 - (g) $\{(x_1, x_2) | x_1^2 + x_2^2 = 1\} \subset \mathbb{R}^3$
 - (h) $\{(x_1, x_2)|x_1^2 + x_2^2 = 1\} \subset \{(x_1, x_2, x_3)|x_1^2 + x_2^2 + x_3^4 = 1\}$ with the topology induced from \mathbb{R}^3
- 12 Prove that arbitrary unions and finite intersections of open sets in \mathbb{R}^n are again open. Why is the intersection of an infinite number of open sets not open in general?
- 13 Consider the sets of points in \mathbb{R}^2 with coordinates (x,y) defined implicitely by the following relations
 - a) $y = x^3$
 - b) xy = 0
 - c) $x^2 + y^4 = 0$
 - d) x > y
 - e) $y^2 + x^3 3x 2 = 0$

Using the induced topology from \mathbb{R}^2 , decide in each case if this is a differentiable manifold. [hint: plot them!]

Here are some things you should discuss with your friends:

- 1. What is a topology, what is a topological space?
- 2. What is a manifold?
- 3. Why do we need to declare which sets we consider open (create a 'topological space') before we can define coordinate patches?