10. Let $G$ be the set of complex $2 \times 2$ matrices of the form

$$
g=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

for $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}+|\beta|^{2} \neq 0$.
a) Show that $G$ is a group using matrix multiplication as the group operation.
b) Show that $S U(2)$ is a subgroup of $G$.
c) Show that $V:=\left\{\gamma \mid g=e^{i \gamma} \in G\right\}$ is a vector space and find a basis for $V$.
11. Which of the following sets are closed? Which are open? For all cases use the standard topology of $\mathbb{R}^{n}$ or a topology induced from it.
(a) $\{0<x<\pi\} \subset \mathbb{R}$ with coordinate $x$
(b) $\left\{x_{1}<-2\right\} \subset \mathbb{R}^{2}$ with coordinates $\left(x_{1}, x_{2}\right)$
(c) $\{0<x \leq \pi\} \subset \mathbb{R}$
(d) $\left\{0<x_{1}<1\right\} \subset \mathbb{R}^{2}$ with coordinates $\left(x_{1}, x_{2}\right)$
(e) $\mathbb{R}^{n} \subseteq \mathbb{R}^{n}$
(f) $\left\{\left(x_{1}, x_{2}\right) \subset \mathbb{R}^{2} \mid x_{1}^{2} \leq 42-x_{2}^{2}\right\} \subset \mathbb{R}^{2}$ with coordinates $\left(x_{1}, x_{2}\right)$
(g) $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}=1\right\} \subset \mathbb{R}^{3}$
(h) $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}=1\right\} \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{4}=1\right\}$ with the topology induced from $\mathbb{R}^{3}$

12 Prove that arbitrary unions and finite intersections of open sets in $\mathbb{R}^{n}$ are again open. Why is the intersection of an infinite number of open sets not open in general ?

13 Consider the sets of points in $\mathbb{R}^{2}$ with coordinates $(x, y)$ defined implicitely by the following relations
a) $y=x^{3}$
b) $x y=0$
c) $x^{2}+y^{4}=0$
d) $x>y$
e) $y^{2}+x^{3}-3 x-2=0$

Using the induced topology from $\mathbb{R}^{2}$, decide in each case if this is a differentiable manifold.
[hint: plot them!]
Here are some things you should discuss with your friends:

1. What is a topology, what is a topological space?
2. What is a manifold?
3. Why do we need to declare which sets we consider open (create a 'topological space') before we can define coordinate patches?
