
Andreas Braun Geometry of Mathematical Physics III, problems week 4

10. Let G be the set of complex 2× 2 matrices of the form

g =
(
α β

−β̄ ᾱ

)

for α, β ∈ C and |α|2 + |β|2 6= 0.

a) Show that G is a group using matrix multiplication as the group oper-
ation.

b) Show that SU(2) is a subgroup of G.
c) Show that V := {γ|g = eiγ ∈ G} is a vector space and find a basis for

V .

solution:

a) We can do this in a straight-forward way by checking the group prop-
erties in this explicit form. A little more elegant is to realize that these
are exactly the complex 2× 2 matrices that obey

g† = g−1 det(g) (0.1)

with det g 6= 0. Writing

g =
(
a b
c d

)
(0.2)

this implies that

g† =
(
ā c̄

b̄ d̄

)
=
(
d −b
−c a

)
(0.3)

which results in the general form above.
Now this is clearly obeyed by the identity, if g obeys it then

(g−1)† = (g†)† det g = g det g−1 (0.4)

so the inverse is in G as well. Matrix multiplication is associative and
finally

(gh)† = h†g† = h−1 deth g−1 det g = (gh)−1 det gh (0.5)

so that composition of group elements makes new group elements.
Remark: this is nothing but the group of quaternions written as com-
plex matrices.

b) SU(2) are those g ∈ G with det g = |α|2 + |β|2 = 1. This feature
is preserved when taking the inverse or multiplying two elements of
SU(2), so that SU(2) is a subgroup.
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c) There are two ways of approaching this. Let me first use part c), which
immediately tells me that I can use iσj with σj the Pauli matrices in
the exponential. We can write any g ∈ G that is also in SU(2) as

gSU(2) = exp
∑
j

iajσj . (0.6)

Now this is all of it for SU(2) which is real 3-dimensional (there are
three real aj), but how about the present case? Any element of G is
determined by fixing the complex numbers α and β s.t. |α|2 + |β|2 6= 0
and this is four real parameters. We are hence looking for one more
direction. What do matrices in G look like that are not in SU(2)? Here
is an example: for any α = er with r 6= 0 we are not in SU(2):

g =
(
er 0
0 er

)
= exp r

(
1 0
0 1

)
. (0.7)

Now we can try writing a g ∈ G as

g = exp
∑

j

iajσj

 exp
(
r

(
1 0
0 1

))
= exp

∑
j

iajσj + r

(
1 0
0 1

)
(0.8)

as the identity matrix commutes with everything. We hence arrive at
the set of all γs as∑

j

ajσj − ir
(

1 0
0 1

)∣∣∣∣∣∣ aj ∈ R, r ∈ R

 (0.9)

We are free to choose the aj and r in the real numbers so that the set
of all γ just described is R4, which is a vector space. Equally, you can
show that addition and scalar multiplication preserves this set. A basis
is given by σj, j = 1, 2, 3 and i times the identity matrix.
What is slightly unsatisfactory about this is that we don’t know if we
might have missed something, i.e. if the above is really V . What
the above argument shows is that the general g we have constructed
is a product of something in SU(2) with the identity matrix times a
positive number, so we can reach

eiγ = gSU(2)

(
er 0
0 er

)
= ergSU(2) (0.10)

We can simply rescale any element in G by a positive number to reach
an element in SU(2), so the above is in fact general and we are done.
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A faster way is to realize that

g† = (eiγ)† = e−iγ
† = g−1 det g = e−iγei trγ (0.11)

implies
γ† = γ − 1trγ (0.12)

which forms a vector space: we have

(cγ)† = cγ − 1trcγ (0.13)

for c ∈ R and

(δ+ γ)† = δ† + γ† = δ+ γ − 1 (trγ + trδ) = δ+ γ − 1tr (γ + δ) (0.14)

A basis of the vector space of solutions to γ† = γ−1trγ are the matrices
we have found above, σj, j = 1, 2, 3 and i1.

11. Which of the following sets are closed? Which are open? For all cases use
the standard topology of Rn or a topology induced from it.

(a) {0 < x < π} ⊂ R with coordinate x
(b) {x1 < −2} ⊂ R2 with coordinates (x1, x2)
(c) {0 < x ≤ π} ⊂ R

(d) {0 < x1 < 1} ⊂ R2 with coordinates (x1, x2)
(e) Rn ⊆ Rn

(f) {(x1, x2) ⊂ R2 |x2
1 ≤ 42− x2

2} ⊂ R2 with coordinates (x1, x2)
(g) {(x1, x2)|x2

1 + x2
2 = 1} ⊂ R3

(h) {(x1, x2)|x2
1+x2

2 = 1} ⊂ {(x1, x2, x3)|x2
1+x2

2+x4
3 = 1} with the topology

induced from R3

solution:

(a) open
(b) open
(c) not open and not closed
(d) open
(e) open and closed
(f) this is a closed disc of radius

√
42

(g) closed
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(h) closed: imposing only the second equation give a tube of varying radius
along x3, the first then gives a circle sitting inside of it.

12 Prove that arbitrary unions and finite intersections of open sets in Rn are
again open. Why is the intersection of an infinite number of open sets not
open in general ?
solution:
Let U = ⋃

u∈S u be the union of an infinite set S of open sets u. Let p be
any point in U . Then it must be contained in one of the u and hence there
is an open ball entirely contained in u because u is open. As U is the union
of all of these, this ball is also contained in U .
For the second statement, let us start by considering a non-empty intersec-
tion between two open sets U = U1∩U2. For any point p in this intersection
we can find a ball Br1(p) centered at p that sits entirely in U1, and a ball
Br2(p) that is entirely in U2. Without loss of generality we can assume that
r1 ≤ r2, But this means that Br1(p) ⊆ Br2(p) so that Br1(p) ⊂ U .
Now let U = ⋂

u∈S u for a finite set S. Consider any point p ∈ U . By
repeating the above argument a finite number of times, we will find a finite
sized open ball sitting in U .
The latter argument fails for an arbitrary intersection Ui, i ∈ N. Here, it
can happen that the sizes ri approach zero as i → ∞. Letting ri → 0 for
i→∞, the infinite intersection of open sets

∞⋂
i=1

Bri
(p) = p

is just a point, which is not an open set. Note that each ri is finite, so each
Ui is open.

13 Consider the sets of points in R2 with coordinates (x, y) defined implicitely
by the following relations

a) y = x3

b) xy = 0
c) x2 + y4 = 1
d) x > y

e) y2 + x3 − 3x− 2 = 0

Using the induced topology from R2, decide in each case if this is a differ-
entiable manifold.
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[hint: plot them! Note that the word ‘differentiable’ here refers to the man-
ifold and not the functions I used to define a manifold. The two notions are
not unrelated however, details are explained in the non-examinable example
1.10. but this is not needed to answer this question.]
solution:

a) This can be mapped to R using simply x as the coordinate, so this is
in fact homeomorphic to R and it a manifold.

b) This is the union of two lines x = 0 and y = 0 meeting at the origin
and is not a manifold. Using the topology induced from R2, there is no
issue to define coordinates away from the point (y, x) = (0, 0), we just
cut out a little branch and map it to an open set in R. However any
open set U containing the point (y, x) = (0, 0) also contains (a small
piece at least from) both branches. Hence these open sets look like a
cross, which is radically different from any open subset of R. There
cannot be any homeomorphism to an open subset of R for such a U .

We can make a slightly more detailed argument about why that is as
follows: choose a point pa on the line x = 0, and an open interval on
xy = 0 which connects it to (0, 0), and then to a second point pb on the
line x = 0 beyond (0, 0). Using that we want a continuous map to R,
this interval must be mapped to an open interval in R and (0, 0) goes
to 0 ∈ R (say). The image of the interval on one branch gives us an
open interval in R. Its inverse image must be an open set as well, as
we need our coordinate map to be a homeomorphism. The open sets
containing (0, 0) all contain points on the other branch as well, so it
needs to be mapped to our interval ⊂ R as well. But this cannot be as
we need a 1-1 map. Note that this problem disappears as soon as you
either drop that our map and its inverse are continuous, or that it is
1-1.

c) This just looks like a dented circle and is a manifold.
d) This has dimension two, but is a manifold; we can just use the coordi-

nates of R2 used in its description.
e) Let me call this set E. Plotting E reveals it looks like this
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E is an example of what is commonly called an ‘elliptic curve’. As can
be seen from the plot, two branches cross in the point (y, x) = (0,−1).
This can be seen from the structure of the equation as well. For every
x there are two values of y, except when

y2 = −(x3 − 3x− 2) = (2− x)(1 + x)2 = 0 . (0.15)

Note that double root at x+ 1 = 0. We can write the above as

y = ±(1 + x)
√

2− x . (0.16)

so that there are two branches which meet at x = −1.
Zooming in on this point, it looks the same as the example of xy =
0 considered above, so that this cannot be a manifold for the same
reasons.

Here are some things you should discuss with your friends:

1. What is a topology, what is a topological space?

2. What is a manifold?

3. Why do we need to declare which sets we consider open (create a ‘topological
space’) before we can define coordinate patches?
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