14. Consider the stereographic projection of the three-sphere S^{3}.
a) Show that the inverse of the map between $\boldsymbol{\varphi}_{ \pm}$and the x_{i} is given by

$$
\begin{aligned}
x_{1} & =\frac{ \pm\left(1-\left|\boldsymbol{\varphi}_{ \pm}\right|^{2}\right)}{\left|\boldsymbol{\varphi}_{ \pm}\right|^{2}+1} \\
\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\frac{2}{\left|\boldsymbol{\varphi}_{ \pm}\right|^{2}+1} \boldsymbol{\varphi}_{ \pm}
\end{aligned}
$$

b) Consider the coordinate patches defined by stereographic projection on S^{3} and find the transition function from U_{+}to U_{-}.
16. $O(1,1)$ are the real 2×2 matrices O which leave the bilinear form $x_{1}^{2}-x_{2}^{2}$ invariant when acting on $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ as

$$
\boldsymbol{x} \rightarrow O \boldsymbol{x}
$$

a) Show that $O(1,1)$ is a group using matrix multiplication.
b) Find the general form of elements of $O(1,1)$.
c) Give $O(1,1)$ the structure of a differentiable manifold by equipping it with a suitable topology and write down coordinate charts.
d) Find the tangent space of $O(1,1)$ at the identity element.

Here are some things you should discuss with your friends:

1. How does stereographic projection work?
2. What is a tangent vector?
