- 14. Consider the stereographic projection of the three-sphere S^3 .
 - a) Show that the inverse of the map between φ_{\pm} and the x_i is given by

$$x_1 = \frac{\pm (1 - |\varphi_{\pm}|^2)}{|\varphi_{\pm}|^2 + 1}$$
$$\begin{pmatrix} x_2 \\ x_3 \\ x_4 \end{pmatrix} = \frac{2}{|\varphi_{\pm}|^2 + 1}\varphi_{\pm}$$

b) Consider the coordinate patches defined by stereographic projection on S^3 and find the coordinate change from U_+ to U_- .

solution:

(a) We only give details for φ_{-} , the computation for φ_{+} is analogous. The crucial part is finding x_{1} as a function of φ_{-} . First work out

$$|\boldsymbol{\varphi}_{-}|^{2} = \frac{x_{2}^{2} + x_{3}^{2} + x_{4}^{2}}{(1 - x_{1})^{2}} = \frac{1 - x_{1}^{2}}{(1 - x_{1})^{2}} = \frac{1 + x_{1}}{1 - x_{1}}$$

Now consider

$$|\varphi_{-}|^{2} + 1 = \frac{1 + x_{1} + 1 - x_{1}}{1 - x_{1}} = \frac{2}{1 - x_{1}}$$

which we can use to find

$$x_1 = \frac{|\varphi_-|^2 - 1}{|\varphi_-|^2 + 1}$$
.

This is x_1 as a function of φ_- . The other coordinates are now φ_- times

$$1 - x_1 = 1 - \frac{|\varphi_-|^2 - 1}{|\varphi_-|^2 + 1} = \frac{|\varphi_-|^2 + 1 - (|\varphi_-|^2 - 1)}{|\varphi_-|^2 + 1} = \frac{2}{|\varphi_-|^2 + 1} \quad (0.1)$$

(b) We are interested in $\varphi_{-}\varphi_{+}^{-1}$, which we can write as

$$\varphi_{-}(\boldsymbol{x}(\boldsymbol{\varphi}_{+})) \tag{0.2}$$

We have

$$x_{1} = \frac{(1 - |\varphi_{+}|^{2})}{|\varphi_{+}|^{2} + 1}$$

$$\begin{pmatrix} x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \frac{2}{|\varphi_{+}|^{2} + 1}\varphi_{+}$$
(0.3)

and

$$\boldsymbol{\varphi}_{-}(\boldsymbol{x}) = \frac{1}{1 - x_1} \begin{pmatrix} x_2 \\ x_3 \\ x_4 \end{pmatrix} . \tag{0.4}$$

so we get

$$\varphi_{-} = \frac{1}{1 - \frac{1 - |\varphi_{+}|^{2}}{|\varphi_{+}|^{2} + 1}} \frac{2\varphi_{+}}{|\varphi_{+}|^{2} + 1} = \varphi_{+} \frac{2}{|\varphi_{+}|^{2} + 1} \frac{|\varphi_{+}|^{2} + 1}{|\varphi_{+}|^{2} + 1 - 1 + |\varphi_{+}|^{2}} = \varphi_{+} / |\varphi_{+}|^{2}$$

$$(0.5)$$

As long as $|\varphi_+|^2 \neq 0$, which is true in $U_+ \cap U_-$, this is a smooth function.

16. O(1,1) are the real 2 × 2 matrices O which leave the bilinear form $x_1^2 - x_2^2$ invariant when acting on $\boldsymbol{x} = (x_1, x_2)$ as

$$oldsymbol{x} o Ooldsymbol{x}$$
 .

- a) Show that O(1,1) is a group using matrix multiplication.
- b) Find the general form of elements of O(1, 1).
- c) Give O(1, 1) the structure of a differentiable manifold by equipping it with a suitable topology and write down coordinate charts.
- d) Find the tangent space of O(1, 1) at the identity element.

solution:

Acting with $O \in O(1, 1)$ on \mathbb{R}^2 is supposed to leave the bilinear form $x_1^2 - x_2^2$ invariant. Imagine you have found two matrics O, O' with this property. We can act first with O

$$\boldsymbol{x} \to O \boldsymbol{x}$$
 (0.6)

which leaves $x_1^2 - x_2^2$ invariant, after which we can then act with O' which again leaves $x_1^2 - x_2^2$ invariant. In summary, we have then acted with O'O, which makes using matrix multiplication as the group composition a good idea.

(a) Let us first find a condition that must be satisfied by matrices in O(1, 1). We need

$$x_1^2 - x_2^2 = \boldsymbol{x}^T \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \boldsymbol{x}$$
 (0.7)

to stay invariant. This is mapped to

$$\boldsymbol{x}^{T}O^{T}\begin{pmatrix}1&0\\0&-1\end{pmatrix}O\boldsymbol{x}\stackrel{!}{=}\boldsymbol{x}^{T}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\boldsymbol{x}$$
(0.8)

so we find the condition

$$O^T L O = L \tag{0.9}$$

with $L = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Let us now check the group property using matrix multiplication as \circ . The condition above is solved by O the identity matrix, so we have the identity element. This equation also implies that det $O \neq 0$, so an inverse exists. We can even write it down: $O^{-1} = LO^T L$ because $LO^T LO = L^2 = 1$. Now multiplying $O^T LO = L$ by O^{-1} from the right and $(O^T)^{-1}$ from the left shows

$$L = (O^{T})^{-1} L O^{-1} = (O^{-1})^{T} L O^{-1}.$$
 (0.10)

so the inverse satisfies the same equation. We have used that $(O^T)^{-1} = (O^{-1})^T$ which can be seen by

$$(O^T)^{-1}O^T = \mathbb{1} = (OO^{-1})^T = (O^{-1})^T O^T.$$
 (0.11)

Finally we can observe that for O'' = OO' with $O, O' \in O(1, 1)$ we have

$$(O'')^T LO'' = (O')^T O^T LOO' = (O')^T LO' = L.$$
 (0.12)

so $O'' \in O(1,1)$ as well.

(b) Note that det $O = \pm 1$ by taking the determinant of $O^T L O = L$ on both sides. We can parametrize O as

$$O = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad O^{-1} = \pm \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \tag{0.13}$$

and plug this into $O^T L O = L$ to find

$$a = \pm d , \qquad b = \pm c . \tag{0.14}$$

The determinant of O changes continuously along any path in O, which implies that there are hence (at least) two components, one for det O = 1 and one for det O = -1.

 $\underline{\det O} = 1$ This implies that

$$O = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \tag{0.15}$$

with $a^2 - b^2 = 1$. We can parametrize solutions of this as

$$a = \pm \cosh \phi$$
 $b = \sinh \phi$. (0.16)

There are two inequivalent solutions as $\cosh(\phi) > 0$, as $-\sinh(\phi) = \sinh(-\phi)$ the choice of sign of *b* does not make a difference. Note that the two types of solution we have found here are disjoint, *a* is always positive for one and always negative for the other. Hence we have found two disconnected components O_+^{\uparrow} (det O > 0, a > 0) and O_+^{\downarrow} (det O > 0, a < 0).

 $\det O = -1$ This implies that

$$O = \begin{pmatrix} a & b \\ -b & -a \end{pmatrix} \tag{0.17}$$

with $-a^2 + b^2 = -1$.

Repeating the same steps as above we find $a = \pm \cosh(\phi)$ and $b = \sinh(\phi)$ for this case. Hence we get two more components O_{-}^{\uparrow} (det O < 0, a > 0) and O_{-}^{\downarrow} (det O < 0, a < 0).

In summary we have hence found 4 disjoint components. Only O_+^{\uparrow} is a subgroup as it is the only component that contains the identity element.

- (c) Note that we can map any component to a copy of \mathbb{R} by the parametrization by ϕ in a one-to-one fashion. Let us call these maps $\Phi_{\pm}^{\uparrow\downarrow}$. These give us good coordinate charts if we simply use the topology in which these are continuous maps, i.e. we can simply declare that for any component of O(1,1), a subset is open if the corresponding subset is open in \mathbb{R} .
- (d) The component connected to $\mathbbm{1}$ is O_+^\uparrow and we can describe a path through $\mathbbm{1}$ by

$$O(t) = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix}$$
(0.18)

for t = -e..e with some e > 0. We work out

$$\frac{\partial}{\partial t}O(t)|_{t=0} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \tag{0.19}$$

so that the tangent space at 1 is the vector space of matrices

$$T_{\mathbb{1}} = \left\{ \begin{pmatrix} 0 & v \\ v & 0 \end{pmatrix} | v \in \mathbb{R} \right\} . \tag{0.20}$$

Note that

$$\exp\left[\begin{pmatrix} 0 & v \\ v & 0 \end{pmatrix}\right] = \begin{pmatrix} \cosh(v) & \sinh(v) \\ \sinh(v) & \cosh(v) \end{pmatrix}$$
(0.21)