14. Consider the stereographic projection of the three-sphere S^{3}.
a) Show that the inverse of the map between $\boldsymbol{\varphi}_{ \pm}$and the x_{i} is given by

$$
\begin{aligned}
x_{1} & =\frac{ \pm\left(1-\left|\boldsymbol{\varphi}_{ \pm}\right|^{2}\right)}{\left|\boldsymbol{\varphi}_{ \pm}\right|^{2}+1} \\
\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\frac{2}{\left|\boldsymbol{\varphi}_{ \pm}\right|^{2}+1} \boldsymbol{\varphi}_{ \pm}
\end{aligned}
$$

b) Consider the coordinate patches defined by stereographic projection on S^{3} and find the coordinate change from U_{+}to U_{-}.

solution:

(a) We only give details for $\boldsymbol{\varphi}_{-}$, the computation for $\boldsymbol{\varphi}_{+}$is analogous. The crucial part is finding x_{1} as a function of $\boldsymbol{\varphi}_{-}$. First work out

$$
\left|\boldsymbol{\varphi}_{-}\right|^{2}=\frac{x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}{\left(1-x_{1}\right)^{2}}=\frac{1-x_{1}^{2}}{\left(1-x_{1}\right)^{2}}=\frac{1+x_{1}}{1-x_{1}}
$$

Now consider

$$
\left|\boldsymbol{\varphi}_{-}\right|^{2}+1=\frac{1+x_{1}+1-x_{1}}{1-x_{1}}=\frac{2}{1-x_{1}}
$$

which we can use to find

$$
x_{1}=\frac{\left|\varphi_{-}\right|^{2}-1}{\left|\boldsymbol{\varphi}_{-}\right|^{2}+1} .
$$

This is x_{1} as a function of φ_{-}. The other coordinates are now φ_{-}times

$$
\begin{equation*}
1-x_{1}=1-\frac{\left|\boldsymbol{\varphi}_{-}\right|^{2}-1}{\left|\boldsymbol{\varphi}_{-}\right|^{2}+1}=\frac{\left|\boldsymbol{\varphi}_{-}\right|^{2}+1-\left(\left|\boldsymbol{\varphi}_{-}\right|^{2}-1\right)}{\left|\boldsymbol{\varphi}_{-}\right|^{2}+1}=\frac{2}{\left|\boldsymbol{\varphi}_{-}\right|^{2}+1} \tag{0.1}
\end{equation*}
$$

(b) We are interested in $\varphi_{-} \varphi_{+}^{-1}$, which we can write as

$$
\begin{equation*}
\varphi_{-}\left(\boldsymbol{x}\left(\boldsymbol{\varphi}_{+}\right)\right) \tag{0.2}
\end{equation*}
$$

We have

$$
\begin{align*}
x_{1} & =\frac{\left(1-\left|\boldsymbol{\varphi}_{+}\right|^{2}\right)}{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1} \\
\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\frac{2}{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1} \boldsymbol{\varphi}_{+} \tag{0.3}
\end{align*}
$$

and

$$
\boldsymbol{\varphi}_{-}(\boldsymbol{x})=\frac{1}{1-x_{1}}\left(\begin{array}{l}
x_{2} \tag{0.4}\\
x_{3} \\
x_{4}
\end{array}\right)
$$

so we get

$$
\begin{equation*}
\boldsymbol{\varphi}_{-}=\frac{1}{1-\frac{1-\left|\boldsymbol{\varphi}_{+}\right|^{2}}{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1}} \frac{2 \boldsymbol{\varphi}_{+}}{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1}=\boldsymbol{\varphi}_{+} \frac{2}{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1} \frac{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1}{\left|\boldsymbol{\varphi}_{+}\right|^{2}+1-1+\left|\boldsymbol{\varphi}_{+}\right|^{2}}=\boldsymbol{\varphi}_{+} /\left|\boldsymbol{\varphi}_{+}\right|^{2} \tag{0.5}
\end{equation*}
$$

As long as $\left|\varphi_{+}\right|^{2} \neq 0$, which is true in $U_{+} \cap U_{-}$, this is a smooth function.
16. $O(1,1)$ are the real 2×2 matrices O which leave the bilinear form $x_{1}^{2}-x_{2}^{2}$ invariant when acting on $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ as

$$
\boldsymbol{x} \rightarrow O \boldsymbol{x}
$$

a) Show that $O(1,1)$ is a group using matrix multiplication.
b) Find the general form of elements of $O(1,1)$.
c) Give $O(1,1)$ the structure of a differentiable manifold by equipping it with a suitable topology and write down coordinate charts.
d) Find the tangent space of $O(1,1)$ at the identity element.

solution:

Acting with $O \in O(1,1)$ on \mathbb{R}^{2} is supposed to leave the bilinear form $x_{1}^{2}-x_{2}^{2}$ invariant. Imagine you have found two matrics O, O^{\prime} with this property. We can act first with O

$$
\begin{equation*}
\boldsymbol{x} \rightarrow O \boldsymbol{x} \tag{0.6}
\end{equation*}
$$

which leaves $x_{1}^{2}-x_{2}^{2}$ invariant, after which we can then act with O^{\prime} which again leaves $x_{1}^{2}-x_{2}^{2}$ invariant. In summary, we have then acted with $O^{\prime} O$, which makes using matrix multiplication as the group composition a good idea.
(a) Let us first find a condition that must be satisfied by matrices in $O(1,1)$. We need

$$
x_{1}^{2}-x_{2}^{2}=\boldsymbol{x}^{T}\left(\begin{array}{cc}
1 & 0 \tag{0.7}\\
0 & -1
\end{array}\right) \boldsymbol{x}
$$

to stay invariant. This is mapped to

$$
\boldsymbol{x}^{T} O^{T}\left(\begin{array}{cc}
1 & 0 \tag{0.8}\\
0 & -1
\end{array}\right) O \boldsymbol{x} \stackrel{!}{=} \boldsymbol{x}^{T}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \boldsymbol{x}
$$

so we find the condition

$$
\begin{equation*}
O^{T} L O=L \tag{0.9}
\end{equation*}
$$

with $L=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Let us now check the group property using matrix multipliction as o. The condition above is solved by O the identity matrix, so we have the identity element. This equation also implies that $\operatorname{det} O \neq 0$, so an inverse exists. We can even write it down: $O^{-1}=L O^{T} L$ because $L O^{T} L O=L^{2}=\mathbb{1}$. Now multiplying $O^{T} L O=L$ by O^{-1} from the right and $\left(O^{T}\right)^{-1}$ from the left shows

$$
\begin{equation*}
L=\left(O^{T}\right)^{-1} L O^{-1}=\left(O^{-1}\right)^{T} L O^{-1} \tag{0.10}
\end{equation*}
$$

so the inverse satisfies the same equation. We have used that $\left(O^{T}\right)^{-1}=$ $\left(O^{-1}\right)^{T}$ which can be seen by

$$
\begin{equation*}
\left(O^{T}\right)^{-1} O^{T}=\mathbb{1}=\left(O O^{-1}\right)^{T}=\left(O^{-1}\right)^{T} O^{T} \tag{0.11}
\end{equation*}
$$

Finally we can observe that for $O^{\prime \prime}=O O^{\prime}$ with $O, O^{\prime} \in O(1,1)$ we have

$$
\begin{equation*}
\left(O^{\prime \prime}\right)^{T} L O^{\prime \prime}=\left(O^{\prime}\right)^{T} O^{T} L O O^{\prime}=\left(O^{\prime}\right)^{T} L O^{\prime}=L \tag{0.12}
\end{equation*}
$$

so $O^{\prime \prime} \in O(1,1)$ as well.
(b) Note that $\operatorname{det} O= \pm 1$ by taking the determinant of $O^{T} L O=L$ on both sides. We can parametrize O as

$$
O=\left(\begin{array}{ll}
a & b \tag{0.13}\\
c & d
\end{array}\right) \quad O^{-1}= \pm\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

and plug this into $O^{T} L O=L$ to find

$$
\begin{equation*}
a= \pm d, \quad b= \pm c \tag{0.14}
\end{equation*}
$$

The determinant of O changes continuously along any path in O, which implies that there are hence (at least) two components, one for $\operatorname{det} O=1$ and one for $\operatorname{det} O=-1$.
$\underline{\operatorname{det} O=1}$ This implies that

$$
O=\left(\begin{array}{ll}
a & b \tag{0.15}\\
b & a
\end{array}\right)
$$

with $a^{2}-b^{2}=1$. We can parametrize solutions of this as

$$
\begin{equation*}
a= \pm \cosh \phi \quad b=\sinh \phi \tag{0.16}
\end{equation*}
$$

There are two inequivalent solutions as $\cosh (\phi)>0$, as $-\sinh (\phi)=$ $\sinh (-\phi)$ the choice of sign of b does not make a difference. Note that the two types of solution we have found here are disjoint, a is always positive for one and always negative for the other. Hence we have found two disconnected components $O_{+}^{\uparrow}(\operatorname{det} O>0, a>0)$ and O_{+}^{\downarrow} ($\operatorname{det} O>0, a<0$).
det $O=-1$ This implies that

$$
O=\left(\begin{array}{cc}
a & b \tag{0.17}\\
-b & -a
\end{array}\right)
$$

with $-a^{2}+b^{2}=-1$.
Repeating the same steps as above we find $a= \pm \cosh (\phi)$ and $b=$ $\sinh (\phi)$ for this case. Hence we get two more components $O_{-}^{\uparrow}(\operatorname{det} O<$ $0, a>0)$ and $O_{-}^{\downarrow}(\operatorname{det} O<0, a<0)$.

In summary we have hence found 4 disjoint components. Only O_{+}^{\uparrow} is a subgroup as it is the only component that contains the identity element.
(c) Note that we can map any component to a copy of \mathbb{R} by the parametrization by ϕ in a one-to-one fashion. Let us call these maps $\Phi_{ \pm}^{\uparrow \downarrow}$. These give us good coordinate charts if we simply use the topology in which these are continuous maps, i.e. we can simply declare that for any component of $O(1,1)$, a subset is open if the corresponding subset is open in \mathbb{R}.
(d) The component connected to $\mathbb{1}$ is O_{+}^{\uparrow} and we can describe a path through $\mathbb{1}$ by

$$
O(t)=\left(\begin{array}{cc}
\cosh (t) & \sinh (t) \tag{0.18}\\
\sinh (t) & \cosh (t)
\end{array}\right)
$$

for $t=-e . . e$ with some $e>0$. We work out

$$
\left.\frac{\partial}{\partial t} O(t)\right|_{t=0}=\left(\begin{array}{ll}
0 & 1 \tag{0.19}\\
1 & 0
\end{array}\right)
$$

so that the tangent space at $\mathbb{1}$ is the vector space of matrices

$$
T_{\mathbb{I}}=\left\{\left.\left(\begin{array}{ll}
0 & v \tag{0.20}\\
v & 0
\end{array}\right) \right\rvert\, v \in \mathbb{R}\right\} .
$$

Note that

$$
\exp \left[\left(\begin{array}{ll}
0 & v \tag{0.21}\\
v & 0
\end{array}\right)\right]=\left(\begin{array}{ll}
\cosh (v) & \sinh (v) \\
\sinh (v) & \cosh (v)
\end{array}\right)
$$

