17. Show that for every $g \in G L(n, \mathbb{R}) \backslash O(n)$, i.e. $g \in G L(n, \mathbb{R})$ such that $g^{T} g \neq \mathbb{1}$, there is an open set U_{g} containing g such that U_{g} is entirely contained in $G L(n, \mathbb{R}) \backslash O(n)$.
hint: $G L(n, \mathbb{R})$ inherits its topology from the vector space $V_{n \times n}$ of real $n \times n$ matrices, which is isomorphic to $\mathbb{R}^{n^{2}}$: the n^{2} entries of such a matrix are just the components of a vector in $\mathbb{R}^{n^{2}}$ from this perspective. We can hence describe the open ball of radius r around a matrix M with components $M_{i j}$ as

$$
\begin{equation*}
B_{r}(M)=\left\{N \in V_{n \times n} \mid \sum_{i j}\left(N_{i j}-M_{i j}\right)^{2}<r\right\} . \tag{0.1}
\end{equation*}
$$

18. $G L(n, \mathbb{C})$ is the group of invertible complex $n \times n$ matrices. Show that $G L(n, \mathbb{C})$ is a Lie group.
19. Find the dimension of the group $S O(n)$ by finding the dimension of its Lie algebra.
20. Consider the set G of matrices

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \tag{0.2}\\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0\right\}
$$

(a) Show that G is a Lie group using matrix multiplication as the group composition.
(b) Find the Lie algebra \mathfrak{g} of G.
(c) Compute the exponentials of the basis elements of the Lie algebra you have found.

Here are some things you should discuss with your friends:

1. What is a Lie group?
2. How can you find the Lie algebra of a matrix Lie group?
