21. Writing a vector $\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ as

$$
M_{v}=\left(\begin{array}{cc}
v_{3} & v_{1}-i v_{2} \\
v_{1}+i v_{2} & -v_{3}
\end{array}\right) .
$$

consider the action of $g \in S U(2)$ on \mathbb{R}^{3} defined by

$$
F(g): M_{v} \mapsto g M_{v} g^{\dagger} .
$$

Show that this is a representation, and that this representation is the adjoint representation of $S U(2)$.

solution:

Clearly, the set of matrices above forms a vector space which is isomorphic to \mathbb{R}^{3}. Choosing the Pauli matrices as a basis, we can write

$$
\begin{equation*}
M_{v}=\sum_{j} v_{j} \sigma_{j} \tag{0.1}
\end{equation*}
$$

for $v_{j} \in \mathbb{R}$. Furthermore, we can describe this as the vector space of complex 2×2 matrices with $\operatorname{tr} M_{v}=0$ and $M_{v}^{\dagger}=M_{v}$. Both of these properties are preserved by $M_{v} \mapsto g M_{v} g^{\dagger}$:

$$
\begin{align*}
\operatorname{tr} g M_{v} g^{\dagger} & =\operatorname{tr} g^{\dagger} g M_{v}=\operatorname{tr} M_{v}=0 \\
\left(g M_{v} g^{\dagger}\right)^{\dagger} & =\left(g^{\dagger}\right)^{\dagger} M_{v}^{\dagger} g^{\dagger}=g M_{v} g^{\dagger} \tag{0.2}
\end{align*}
$$

Finally, the map $F(g)$ acts linearly on $M_{\boldsymbol{v}}$, so that $F: S U(2) \rightarrow G L(3, \mathbb{R})$. The only thing left to show to have a representation is that F is a homomorphism. We have

$$
\begin{equation*}
F(g h): M_{v} \mapsto g h M_{v}(g h)^{\dagger}=g h M_{v} h^{\dagger} g^{\dagger} \tag{0.3}
\end{equation*}
$$

which is just the composition of the maps $F(h)$ and $F(g)$ acting on M_{v}, so that this is a group homomorphism. More explicitely, if we write the action of $F(g)$ as a matrix acting \boldsymbol{v}, the above must be matrix multiplication, i.e. we can then write $F(g h)=F(g) F(h)$.
As defined in the lectures, the adjoint representation of G acts on \mathfrak{g} as

$$
\begin{equation*}
\gamma \rightarrow g \gamma g^{-1} \tag{0.4}
\end{equation*}
$$

For $\mathfrak{s u}(2), g^{-1}=g^{\dagger}$ and we can write

$$
\begin{equation*}
\gamma=i \sum_{j} v_{j} \sigma_{j} . \tag{0.5}
\end{equation*}
$$

The action of $F(g)$ on the v_{j} is hence the same as above (despite the extra factor of i) which means that $F(g)$ and the adjoint represention take g to the same elements of $G L(3, \mathbb{R})$, so that we conclude that F is the same as the adjoint representation.
22. Let $\mathbf{q} \in \mathbb{C}^{n}$ be acted on in the defining (also called 'fundamental') representation of $S U(n)$ and γ in the adjoint representation of $S U(n)$ (this is often expressed as \mathbf{q} 'lives' in the fundamental and γ 'lives' in the adjoint of $S U(n)$.)
Describe the action of $S U(n)$ on
i) $\mathbf{v}=\gamma \mathbf{q}$
ii) $\overline{\mathbf{q}}$
iii) A matrix Q with components $Q_{i j}=q_{i} q_{j}$
and decide in each case if this defines a representation.

solution:

i) $S U(n)$ acts on both γ and \mathbf{q} and sends

$$
\begin{equation*}
\mathbf{v}=\gamma \mathbf{q} \rightarrow g \gamma g^{-1} g \mathbf{q}=g \gamma \mathbf{q}=g \boldsymbol{v} \tag{0.6}
\end{equation*}
$$

The set of all elements $\gamma \mathbf{q}$ forms a vector space which is just \mathbb{C}^{n}, so that this is again the defining representation of $S U(n)$.
ii) Here we have

$$
\begin{equation*}
\overline{\mathbf{q}} \rightarrow \bar{g} \overline{\mathbf{q}} \tag{0.7}
\end{equation*}
$$

and the set of all $\overline{\mathbf{q}}$ is again \mathbb{C}^{n}. This defines a map from $S U(n)$ to $G L(n, \mathbb{C})$ given by $r(g)=\bar{g}$. Let's check this is a representation by checking it is a homomorphism:

$$
\begin{equation*}
r(g h)=\overline{g h}=\bar{g} \bar{h}=r(g) r(h) . \tag{0.8}
\end{equation*}
$$

iii) In this case the action is (note use of summation convention)

$$
\begin{equation*}
Q_{i j}=q_{i} q_{j} \rightarrow g_{i k} q_{k} g_{j l} q_{l} \tag{0.9}
\end{equation*}
$$

which in matrix language is

$$
\begin{equation*}
Q \rightarrow g Q g^{T} \tag{0.10}
\end{equation*}
$$

To see if this can give us a representation, let us first examine if matrices of the form of Q form a vector space. For this to be the case, we need that there is a $\boldsymbol{q}^{\prime \prime}$ such that for every \boldsymbol{q} and \boldsymbol{q}^{\prime} we can write for all i, j

$$
\begin{equation*}
q_{i}^{\prime \prime} q_{j}^{\prime \prime}=q_{i} q_{j}+q_{i}^{\prime} q_{j}^{\prime} \tag{0.11}
\end{equation*}
$$

These are $n(n+1) / 2$ independent relations in n complex variables, which have no solution for $n>1$. (you can also note that setting $i=j$ already fixes all $q_{i}^{\prime \prime}$ and we cannot solve the remaining relations.). So matrices of the form Q do not form a vector space and we have nothing to talk about in terms of representations. However, they naturally sit inside the vector space V of all $n \times n$ matrices, or all symmetric $n \times n$ matrices, which are vector spaces. As $g h$ then acts as

$$
\begin{equation*}
Q \rightarrow g h Q(g h)^{T}=g h Q h^{T} g^{T} \tag{0.12}
\end{equation*}
$$

which is just the composition of the maps $r(h)$ and $r(g)$ on Q, so that we have a homomorphism from $S U(n)$ to $G L(V)$.
23. Let $g \in S O(3)$ be given by

$$
g=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin (\phi) & \cos (\phi) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Find the action of g in the adjoint representation and describe it using a basis of the vector space $\mathfrak{s o}(3)$. As $\mathfrak{s o}(3)$ is the same as \mathbb{R}^{3}, we can describe its elements as column vectors after having chosen a basis. Using the basis you have chosen, write the adjoint action as a 3×3 matrix acting on a column vector.

solution:

The Lie algebra $\mathfrak{s o}(3)$ of $S O(3)$ is a real three-dimensional vector space with basis (see problem class 2 and 3)

$$
\ell_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{0.13}\\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \quad \ell_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \quad \ell_{3}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and we can write

$$
\begin{equation*}
\gamma=\sum_{j} a_{j} \ell_{j} \tag{0.14}
\end{equation*}
$$

with real a_{j} for any $\gamma \in \mathfrak{s o}(3)$.

For the above element we find the adjoint action

$$
\begin{equation*}
\gamma \rightarrow g \gamma g^{-1}=g \sum_{j} a_{j} \ell_{j} g^{-1}=\sum_{j} a_{j} g \ell_{j} g^{-1} \tag{0.15}
\end{equation*}
$$

and we need to work out what $g \ell_{j} g^{-1}$ is to make progress.
Doing a direct computation we find

$$
\begin{align*}
g \ell_{1} g^{-1} & =\cos \phi \ell_{1}+\sin \phi \ell_{2} \\
g \ell_{2} g^{-1} & =\cos \phi \ell_{2}-\sin \phi \ell_{1} \tag{0.16}\\
g \ell_{3} g^{-1} & =\ell_{3}
\end{align*}
$$

i.e.

$$
\begin{equation*}
\sum_{j} a_{j} \ell_{j} \rightarrow \sum_{j} a_{j} R_{j k} \ell_{k} \tag{0.17}
\end{equation*}
$$

with

$$
R_{j k}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \tag{0.18}\\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Note that the matrix R appearing here is the same as the g we started from! We can hence describe the adjoint action of g on $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)$ as

$$
\begin{equation*}
\boldsymbol{a} \rightarrow R^{T} \boldsymbol{a} \tag{0.19}
\end{equation*}
$$

24. Let G be a Lie group and H be a subgroup of G that is also a Lie group.
a) Explain why any representation $r(G)$ of G also gives us a representation $r(H)$ of H.
b) Let's assume $r(G)$ is irreducible. Can you think of an example where the representation $r(H)$ is reducible? Can you think of an example where the representation $r(H)$ is irreducible?

solution:

(a) As we have a representation of G, there is a group homomorphism

$$
\begin{equation*}
r: G \rightarrow G L(V) \tag{0.20}
\end{equation*}
$$

for some vector space V so that

$$
\begin{equation*}
r\left(g g^{\prime}\right)=r(g) r\left(g^{\prime}\right) \tag{0.21}
\end{equation*}
$$

for all $g, g^{\prime} \in G$. As H is a subgroup, we can simply restrict ourselves to consider only element $h, h^{\prime} \in H$. As H is a subgroup, $h h^{\prime} \in H$ for all $h, h^{\prime} \in H$. Hence

$$
\begin{equation*}
r\left(h h^{\prime}\right)=r(h) r\left(h^{\prime}\right) \tag{0.22}
\end{equation*}
$$

for all $h, h^{\prime} \in H$, so that we get a group homomorphism and hence a representation.
(b) To find an example where this becomes reducible, consider the group $S U(3)$ and its subgroup $S U(2)$ of matrices of the form

$$
\left(\begin{array}{ccc}
a & b & 0 \tag{0.23}\\
-\bar{b} & \bar{a} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with $|a|^{2}+|b|^{2}=1$. Taking the defining representation of $S U(3)$, the $S U(2)$ subgroup acts on \mathbb{C}^{3} as written above, which leaves the subspace of vectors of the form $\left(0,0, z_{3}\right)$ invariant, so that it is reducible.

To find an example where the representation stays irreducible, consider the defining representation of $O(3)$. This is clearly irreducible. But $O(3)$ has a subgroup $S O(3)$, and restricting the defining representation of $O(3)$ to $S O(3)$ gives the defining representation of $S O(3)$ which is also irreducible.

Here are some things you should discuss with your friends:

1. What is the geometric meaning of the Lie algebra of a Lie group?
2. When and how can you recover a Lie group from its Lie algebra?
3. What is a group representation?
