25. Let P be a homogeneous polynomial in two complex variables z_{1} and z_{2} of degree d, i.e. we can write

$$
\begin{equation*}
P(\boldsymbol{z})=\sum_{k=0}^{d} \alpha_{k} z_{1}^{k} z_{2}^{d-k} \tag{0.1}
\end{equation*}
$$

for complex numbers α_{k}.
There is a natural action of $S U(2)$ on $\boldsymbol{z}=\left(z_{1}, z_{2}\right)$, which is just

$$
\begin{equation*}
\boldsymbol{z} \mapsto g \boldsymbol{z} \tag{0.2}
\end{equation*}
$$

For a polynomial $P(\boldsymbol{z})$, we can then define an action by $S U(2)$ as

$$
\begin{equation*}
r_{d}(g): P(\boldsymbol{z}) \mapsto P\left(g^{-1} \boldsymbol{z}\right) . \tag{0.3}
\end{equation*}
$$

Show that this defines a representation of $S U(2)$.
[remark: in the above formula, g^{-1} does not act on the argument of P but on \boldsymbol{z}, i.e. the action on $P(A \boldsymbol{z})$ for a 2×2 matrix A would be $\left.r_{d}(g): P(A \boldsymbol{z}) \mapsto P\left(A g^{-1} \boldsymbol{z}\right).\right]$
26. a) Describe a $U(1)$ subgroup of $S U(2)$. Is $U(1) \times U(1)$ a subgroup of $S U(2)$ as well?
b) Let A be an element of the vector space that is acted on by the adjoint representation of $S U(2)$. For the $U(1)$ subgroup of $S U(2)$ you identified above, find the action on A and use this to decompose the action of $U(1)$ into irreducible representations.
27. Consider the map $r_{\kappa}: U(1) \rightarrow G L(3, \mathbb{C})$ defined by

$$
r_{\kappa}\left(e^{i \phi}\right)=e^{\phi \lambda \kappa}
$$

where $\kappa \in \mathbb{C}$ and

$$
\lambda=\left(\begin{array}{ccc}
0 & i & 0 \\
i & 0 & i \\
0 & i & 0
\end{array}\right)
$$

For which values of κ is r_{κ} a representation of $U(1)$? [hint: think about what happens to eigenvectors of λ]
Here are some things you should discuss with your friends:

1. What is the idea behing reducible and irreducible representations?
2. Under which conditions can you decompose representations into irreducible ones?
3. How are representations of $U(1)$ characterized?
