28. Consider the Lie group G of upper triangular 2×2 matrices

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \tag{0.1}\\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0\right\}
$$

a) Let $\boldsymbol{v} \in \mathbb{R}^{3}, \boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Define an action of G on \boldsymbol{v} by writing

$$
v_{m}:=\left(\begin{array}{cc}
v_{1} & v_{2} \tag{0.2}\\
0 & v_{3}
\end{array}\right)
$$

and letting $g \in G$ act as

$$
\begin{equation*}
r(g) v_{m}:=g v_{m} g^{-1} . \tag{0.3}
\end{equation*}
$$

Convince yourself that this is a representation of G. Write the action of g on \boldsymbol{v} defined above in terms of a 3×3 matrix acting on \boldsymbol{v} :

$$
\begin{equation*}
r(g) \boldsymbol{v}=M(g) \boldsymbol{v} \tag{0.4}
\end{equation*}
$$

for a 3×3 matrix $M(g)$ acting on the vector $\boldsymbol{v} \in \mathbb{R}^{3}$ in the usual way.
b) Writing elements of the representation $r(G)$ in terms of the matrices $M(g)$, work out the associated representation ρ of the Lie algebra \mathfrak{g} of G.
c) Check that they give a Lie algebra representation of the Lie algebra \mathfrak{g} of G (see problem 20), i.e. find a Lie algebra homomorphism between the Lie algebra \mathfrak{g} of G and the Lie algebra representation $\rho(\mathfrak{g})$ associated with $r(G)$.

solution:

(a) First of all, this is a map that maps a matrix of the form v_{m} to another one of this form as product of upper triangular 2×2 matrices are again upper triangular as seen in problem 18. Furthermore it acts on the v_{i} linearly:

$$
\begin{equation*}
g\left(v_{m}+v_{m}^{\prime}\right) g^{-1}=g\left(v_{m}\right) g^{-1}+g\left(v_{m}^{\prime}\right) g^{-1} \tag{0.5}
\end{equation*}
$$

so r defines a map from G to $G L(3, \mathbb{R})$. What is left to check is that r is a group homomorphism. We work out

$$
\begin{equation*}
r(g h) v_{m}=g h v_{m}(g h)^{-1}=g h v_{m} h^{-1} g^{-1}=r(g) r(h) v_{m} . \tag{0.6}
\end{equation*}
$$

which shows it is. Hence this is a real three-dimensional representation of G. It is not injective as both g and $-g$ are mapped to $\mathbb{1} \in G L(3, \mathbb{R})$.

Note that this is simply the adjoint representation.

Let us work out explicitely how $r(g)$ acts on v_{m} :

$$
\begin{array}{r}
v_{m}=\left(\begin{array}{cc}
v_{1} & v_{2} \\
0 & v_{3}
\end{array}\right) \rightarrow v_{m}^{\prime}=g v_{m} g^{-1}=\frac{1}{a c}\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{cc}
v_{1} & v_{2} \\
0 & v_{3}
\end{array}\right)\left(\begin{array}{cc}
c & -b \\
0 & a
\end{array}\right) \\
=\frac{1}{a c}\left(\begin{array}{cc}
a c v_{1} & -v_{1} a b+a^{2} v_{2}+a b v_{3} \\
0 & a c v_{3}
\end{array}\right) \tag{0.7}
\end{array}
$$

Hence

$$
\begin{align*}
& v_{1} \rightarrow v_{1} \\
& v_{2} \rightarrow-b / c v_{1}+a / c v_{2}+b / c v_{3} \tag{0.8}\\
& v_{3} \rightarrow v_{3}
\end{align*}
$$

We can write this as the action of a 3×3 matric on a column vector as

$$
\boldsymbol{v} \rightarrow \boldsymbol{v}^{\prime}=M(g) \boldsymbol{v}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{0.9}\\
-b / c & a / c & b / c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

(b) Using the family of paths $a=e^{x t}, b=t y, c=e^{z t}, x, y, z \in \mathbb{R}$, we get

$$
M(g(t))=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{0.10}\\
-t y e^{-z t} & e^{t(x-z)} & t y e^{-t z} \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
\left.\frac{\partial}{\partial t} M(g(t))\right|_{t=0}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{0.11}\\
-y & x-z & y \\
0 & 0 & 0
\end{array}\right)
$$

This defines the associated Lie algebra representation ρ. Hence for every γ in \mathfrak{g} we can write

$$
\begin{equation*}
\rho(\gamma)=x \rho\left(\ell_{x}\right)+y \rho\left(\ell_{y}\right)+z \rho\left(\ell_{z}\right) \tag{0.12}
\end{equation*}
$$

where

$$
\rho\left(\ell_{x}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \tag{0.13}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \rho\left(\ell_{y}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \rho\left(\ell_{z}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

However, these matrices are not all linearly independent, i.e. the vector space they span is just two-dimensional as $\rho\left(\ell_{z}\right)=-\rho\left(\ell_{x}\right)$.

We can present a general element as

$$
\begin{equation*}
\rho(\gamma)=u \rho\left(\ell_{x}\right)+y \rho\left(\ell_{y}\right) \tag{0.14}
\end{equation*}
$$

Note that using different paths here might give you a different basis of the Lie algebra.
The matrices above satisfy

$$
\begin{equation*}
\left[\rho\left(\ell_{x}\right), \rho\left(\ell_{y}\right)\right]=\rho\left(\ell_{y}\right) \quad\left[\rho(\ell)_{x}, \rho(\ell)_{z}\right]=0 \quad\left[\rho(\ell)_{z}, \rho(\ell)_{y}\right]=-\ell_{y} \tag{0.15}
\end{equation*}
$$

(c) Using the paths above in problem 18 you find that a general element of the Lie algebra of G can be written as

$$
x\left(\begin{array}{ll}
1 & 0 \tag{0.16}\\
0 & 0
\end{array}\right)+y\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+z\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \equiv x \ell_{x}+y \ell_{y}+z \ell_{z}
$$

for $x, y, z \in \mathbb{R}$. The algebra of the ℓ is

$$
\begin{equation*}
\left[\ell_{x}, \ell_{y}\right]=\ell_{y} \quad\left[\ell_{x}, \ell_{z}\right]=0 \quad\left[\ell_{z}, \ell_{y}\right]=-\ell_{y} . \tag{0.17}
\end{equation*}
$$

The same relations are obeyed by $\rho\left(\ell_{x}\right), \rho\left(\ell_{y}\right)$ and $\rho\left(\ell_{z}\right)$ as it must be.
29. Let $\left\{t_{a}\right\}$ be the basis of a Lie algebra \mathfrak{g} and $f_{a b}{ }^{c}$ the structure constants which obey $\left[t_{a}, t_{b}\right]=f_{a b}{ }^{c} t_{c}$. Define

$$
\begin{equation*}
\left(\rho_{a d j}\left(t_{a}\right)\right)^{b}{ }_{c}=f_{a c}{ }^{b} . \tag{0.18}
\end{equation*}
$$

a) Check that the above defines a representation of γ by showing that $\left[\rho_{a d j}\left(t_{a}\right), \rho_{a d j}\left(t_{b}\right)\right]=\rho_{a d j}\left(\left[t_{a}, t_{b}\right]\right)$. [hint: use the Jacobi identity written in terms of structure constants.]
b) Show that the adjoint action in the basis $\left\{t_{a}\right\}$ is given by the matrices $\rho_{a d j}\left(t_{a}\right)$ with components $f_{a c}{ }^{b}$ by showing that

$$
\begin{equation*}
a d\left(t_{a}\right)\left(\gamma^{b} t_{b}\right)=\left(\rho_{a d j}\left(t_{a}\right)\right)^{b}{ }_{c} \gamma^{c} t_{b} \tag{0.19}
\end{equation*}
$$

solution:

a) We need to show that, abbreviating $\rho_{a d j}=\rho$,

$$
\begin{equation*}
\left[\rho\left(t_{a}\right), \rho\left(t_{b}\right)\right]=\rho\left(\left[t_{a}, t_{b}\right]\right) \tag{0.20}
\end{equation*}
$$

so let's express both sides in terms of $f_{a b}{ }^{c}$ using the definition of $\rho_{a d j}$:

$$
\begin{equation*}
\rho\left(\left[t_{a}, t_{b}\right]\right)^{e}{ }_{c}=\rho\left(f_{a b}{ }^{d} t_{d}\right)^{e}{ }_{c}=f_{a b}{ }^{d} f_{d c}^{e} \tag{0.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\left[\rho\left(t_{a}\right), \rho\left(t_{b}\right)\right]\right)^{e}{ }_{c}=\rho\left(t_{a}\right)^{e}{ }_{d} \rho\left(t_{b}\right)^{d}{ }_{c}-\rho\left(t_{b}\right)^{e}{ }_{d} \rho\left(t_{a}\right)^{d}{ }_{c}=f_{a d}{ }^{e} f_{b c}^{d}-f_{b d}{ }^{e} f_{a c}{ }^{d} \tag{0.22}
\end{equation*}
$$

so that after using $f_{a b}{ }^{c}=-f_{b a}{ }^{c}$

$$
\begin{equation*}
\left[\rho\left(t_{a}\right), \rho\left(t_{b}\right)\right]-\rho\left(\left[t_{a}, t_{b}\right]\right)=-f_{c a}{ }^{d} f_{d b}{ }^{e}-f_{b c}{ }^{d} f_{d a}{ }^{e}-f_{a b}{ }^{d} f_{d c}{ }^{e}=0 \tag{0.23}
\end{equation*}
$$

using the Jacobi identity.
b) We work out

$$
\begin{equation*}
a d\left(t_{a}\right)\left(\gamma^{b} t_{b}\right)=\left[t_{a}, \gamma^{b} t_{b}\right]=\gamma^{b} f_{a b}^{c} t_{c}=\rho_{a d j}\left(t_{a}\right)^{c}{ }_{b} \gamma^{b} t_{c} \tag{0.24}
\end{equation*}
$$

i.e. the components γ^{b} of any element of \mathfrak{g} are acted on as

$$
\begin{equation*}
\gamma^{b} \rightarrow \rho_{a d j}\left(t_{a}\right)^{b}{ }_{c} \gamma^{c} \tag{0.25}
\end{equation*}
$$

Here are some things you should discuss with your friends:

1. What is Lie algebra representation?
2. How does a group representation give rise to a Lie algebra representation?
3. What can we say about complex representations of $S U(2)$?
