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1. Lets first discuss the key concepts of the EP lectures and how to check/show
various basic things. If you were to make an exam, you might come up with
‘bread and butter’ questions that require you to use what is written below.
Alternatively, a good exercise is to design a cheat sheet which contains the
crucial things to have taken away from these lectures. The answers to the
questions below are things you might want to include in such a cheat sheet.

(a) What is the Lorentz group?
answer: Linear maps on R4 that leave −(x0)2 + (x1)2 + (x2)2 + (x3)2

invariant.
(b) What’s the deal with upper/lower indices? answer: Define xi = xi

and x0 = −x0 (or write xµ = ηµνx
ν) so that

xµx
µ (1)

is the invariant.
(c) What is a spinor?

answer: This is an object that lives in a vector space acted on by a
representation of the double cover SL(2,C) of the proper orthochronous
Lorentz group L↑+.

Ψ→ Λ1/2Ψ = exp(θµνSµν)Ψ (2)

where Sµν = 1
4 [γµ, γν ]. Recall that the Sµν are a Lie algebra represen-

tation of the Lie algebra of the Lorentz group, but their exponentiation
is not a group representation of L↑+. This is the same situation as the
relationship between SO(3) and the 2 representation of SU(2).

(d) How do you find the equations of motion from a field theory action?
answer:
For S =

∫
d4xL(φ, ∂µL), work out the Euler-Lagrange eqs:

0 = ∂µ
∂

∂∂µφI
L− ∂

∂φI
L (3)

for every field φI . Note that the index I is supposed to run over all real
fields contained in the action. For complex fields, we can treat either
the real and imaginary parts as independent fields, or do the same with
φ and φ̄.

(e) What is Noether’s theorem?
answer:
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For a symmetry of S under action of a Lie group, there is a conserved
current

jµ := [ρ(γ)φ]I
∂L

∂ (∂µφI)
(4)

Here ρ(γ)φ is the Lie algebra representation associated to the group
action on φ ∈ V . Note there is a sum over I in the above expression
which runs over all fields (which transform non-trivially). For a com-
plex field, you get 2 contributions in the sum, e.g. one from φ and one
from φ̄.

(f) How do you check if an action is Lorentz invariant?
answer:
As explained in the lectures, what we mean by a field theory to be
Lorentz invariant is that any solution φ(x) implies solutions φ(Λ−1x).
For an action, this means that replacing the arguments of the fields, but
not derivatives or the integration variables. However, vector/spinor/etc
fields also have an ‘exterior’ transformation, e.g.

Aµ(x)→ Λµ
νA

ν(Λ−1x) (5)

Now when replacing coords in the arguments of the fields and using
the chain rule, derivatives do effectively transform as indicated by their
indices, e.g.

∂µφ(Λ−1x) =
(
Λ−1

)ν
µ
∂

∂yν
φ(y) . (6)

This means that at the end of the day

S =
∫
d4x∂µφ∂

µφ (7)

is Lorentz invariant for the ’naive’ reason that we have contracted all
indices.

(g) Why are Maxwell’s equation’s Lorentz invariant and what is the action
they follow from ?
answer:
The action is

S =
∫
d4x− 1

4F
µνFµν + AµJ

µ (8)

and Fµν contains electric and magnetic fields. The field strength needs
to be understood as a function of Aµ

Fµν = ∂µAν − ∂νAµ (9)
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and varying the action produces

∂νF
µν = Jµ . (10)

These are the inhom. Maxwell eqs. The hom Maxwell eqs are the
identity εµνρσ∂νFρσ = 0.

(h) What is abelian gauge invariance and how do you check something is
gauge invariant?
answer:
The transformation Aµ → Aµ + ∂µα(x) does not change Fµν . There
can in general be other fields participating in gauge transformations,
e.g. φ → eiαφ. To check gauge invariance just apply the gauge trans-
formation to all the fields.
Be careful with derivatives as α depends on x.

(i) What is a covariant derivative?
For φ → eiαφ the covariant derivative is supposed to transform the
same way

Dµφ→ eiαDµφ (11)
This is achieved by letting

Dµ = ∂µφ− iAµφ (12)

(j) What is a non-abelian gauge theory? How is a gauge invariant action
constructed here?
For a field in the defining representation

φ→ eiαφ = gφ (13)

with α ∈ g for a Lie algebra g with group G and

Aµ → g(Aµ + i∂µ)g−1 (14)

for the gauge field.

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ] (15)
transforms as

Fµν → eiαFµνe
−iα (16)

and an invariant action is

S =
∫
d4x − 1

2g2
YM

tr (FµνF µν) (17)

for a constant gYM . For a field in representation r we have

Dµφ = ∂µφ− iAµφ :=
(
1r∂µ − iAaµt(r)a

)
φ , (18)
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2. A non-abelian gauge field Aµ = Aaµta has field strength

Fµν = F a
µνta := ∂µAν − ∂νAµ − igYM [Aµ, Aν ] .

(Notice the unusual normalization, with the Yang-Mills coupling constant g
appearing inside the field strength.)

(a) Write the components F a
µν of the field strength in terms of the compo-

nents Aaµ of the gauge field and the structure constants fabc of the Lie
algebra of the gauge group, which has Lie bracket

[ta, tb] = ifab
ctc .

(b) Working in a normalization where tr(tatb) = 1
2δab, write the Lagrangian

density
L = −1

2tr(FµνF µν)

as a polynomial in gYM ,

L = L0 + gYML1 + g2
YML2 ,

and find explicit expressions for L0, L1, L2 in terms of the components
Aaµ of the gauge field and the structure constants fabc of the Lie algebra.

solution:

(a) We work out

F a
µνta = Fµν = ∂µA

a
νta − ∂νAaµta − igYM [Abµtb, Acνtc]

=
(
∂µA

a
ν − ∂νAaµ

)
ta − igYMAbµAcνifbcata

=
(
∂µA

a
ν − ∂νAaµ + gYMA

b
µA

c
νfbc

a
)
ta

(19)

(b) What we need to do is expand the action by writing Fµν in terms of
Aaµ. This can be evaluated in a straightforward way using the result
from the first part of this exercise:

L = −1
2tr(FµνF

µν) = −1
2F

a
µνF

bµνtr(tatb) = −1
4F

a
µνFa

µν

= −1
4
(
∂µA

a
ν − ∂νAaµ

)
(∂µAνa − ∂νAµa)

+ gYM(−1
2fbc

a)AbµAcν (∂µAνa − ∂νAµa)
+ g2

YM(−1
4)fbcafdeaAbµAcνA

µ
dA

ν
e

(20)
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here we have taken the convention of lowering/raising Lie algebra in-
dices with δab (so you might as well put them up/down whereever you
want, I have only written it like this to make it easier to read). You can
now read off L0,L1,L2 from the above expression. It is not required
to simplify L1 as

L1 = −fbcaAbµAcν∂µAνa (21)

but you could if you liked.

3. Let Ψ be a Dirac spinor and γµ the Dirac matrices.

(a) Let S := γµsµ for a Lorentz vector sµ. Show that S2 is proportional to
the identity matrix and find the constant of proportionality.

(b) How does
Γµν := Ψ̄γµγνΨ

transformation under elements of the Lorentz group?
(c) Write Ψ in terms of Weyl spinors by setting Ψ = (ΨL,ΨR) and find

the behaviour of Weyl spinors under Lorentz transformations.
(d) For ΨL and χL two left-handed Weyl spinors with components (ΨL)I

and (χL)J find the behavior under rotations for

MIJ := (ΨL)I(χ̄L)J .

Decompose the associated representation in terms of irreducible repre-
sentations.

solution:

(a) We need to use the Clifford algebra {γµ, γν} = 2ηµν :

S2 = γµsµγ
νsν = γµγνsνsµ = 1

2{γ
µ, γν}sνsµ = sνsµη

µν = sµsµ (22)

(b) Here we need to recall that Ψ transforms with Λ1/2 and that

Λ†1/2γ
0 = γ0Λ−1

1/2 (23)

as well as
Λ−1

1/2γ
µΛ1/2 = Λµ

νγ
ν (24)
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where Λµ
ν is the Lorentz transformation associated with Λ1/2. Putting

it all together we find

Γµν → Ψ∗Λ†1/2γ
0γµγνΛ1/2Ψ = Ψ∗γ0Λ−1

1/2γ
µγνΛ1/2Ψ

= Ψ∗γ0Λ−1
1/2γ

µΛ1/2Λ−1
1/2γ

νΛ1/2Ψ
= Λµ

µ′Λν
ν′Ψ̄γµ

′
γν

′Ψ = Λµ
µ′Λν

ν′Γµ
′ν′

(25)

This hence transforms as the indices would suggest.
(c) We need to recall that

Ψ→ eS
µνθµν Ψ (26)

and that Sµν is block diagonal:

S0i = 1
2

(
σi 0
0 −σi

)
(27)

and
Sij = i

2εijk
(
σk 0
0 σk

)
(28)

Hence
ΨL/R → exp

(
±1

2σiθ0i + i

2εijkσkθij
)

ΨL/R (29)

(there are sums over i, j, k here).
(d) Using the result from the last part and recalling that only θij 6= 0 for

rotations we get

(ΨL)I(χ̄L)J → [exp (iαiσi)]IK [exp (−iαiσ̄i)]JM (ΨL)K(χ̄L)M (30)

where we have rewritten i
2εijkσlθij = iαiσi. I.e. they transform in the

2 and 2̄ of SU(2) under rotations. Hence letting MIJ = (ΨL)I(χ̄L)J we
simply get

M → gMg† (31)
for g ∈ SU(2).
Now one needs to realize that to get a representation we need a vector
space, i.e. we need to allow arbitrary linear combinations of different
M , i.e. this is not the same as the adjoint but a tensor product 2̄⊗ 2.
This problem was treated in the lectures where we showed that this is
decomposed as 2̄ ⊗ 2 = 1 ⊕ 3. Alternatively you can reconstruct this
by observing that the trace of M is a singlet, while the rest gives us a
complex traceless matrix, which is the same as the complexifiction of
the Lie algebra of SU(2), i.e. a complexification of the adjoint.

6


